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Novel FxLMS Convergence Condition
With Deterministic Reference
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Abstract—A novel analysis of FxLMS convergence when the ref-
erence signal is deterministic is presented in this paper. The simple
case of a sinusoidal reference is considered first, to be later ex-
tended to any combination of multiple sinusoids. In both cases, we
derive an upper bound for the algorithm step size which ensures
convergence. In the derivation of this result there is no need of any
of the usual approximations, such as independence between refer-
ence and weights or slow convergence, which are not suitable for
deterministic references. Instead, we consider the common cases
where the adaptive system shows linear time-invariant behavior.
The upper bound obtained for the step size is in good agreement
with empirical measurements.

Index Terms—Acoustic noise, active noise control, adaptive con-
trol, adaptive filters, adaptive signal processing, feedforward sys-
tems, least-mean-square methods, vibration control.

I. INTRODUCTION

PERIODIC and deterministic noises are very often the sub-
ject of cancellation in active noise and vibration control

applications. This is due to two reasons: These disturbances are
the most annoying, and it is usually easier to find a good ref-
erence signal to cancel them. However, the adaptive algorithms
generally employed in these situations were originally derived
considering stochastic signals. This is the case of the filtered
reference LMS or FxLMS algorithm [1], [2], which is the most
widely used in this context. Therefore, when using this algo-
rithm with deterministic inputs, some behaviors arise that sto-
chastic-based convergence analyses [3], [4] cannot predict. In
the case of the LMS algorithm, these behaviors are known as
non-Wiener effects [5]–[7].

Moreover, FxLMS convergence analyses with stochastic ref-
erence are always based on some assumptions, such as slow con-
vergence or independence between reference signal and filter
weights [8]. However, when the reference signal is determin-
istic, such assumptions are questionable. Specifically, the inde-
pendence assumption is no longer applicable, whereas the slow
convergence assumption compromises the main result we are
looking for, that is, a strict upper bound for the adaptation step
size to ensure convergence.
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Fig. 1. Block diagram of FxLMS algorithm.

In this paper, we present a novel convergence analysis for
the FxLMS algorithm when the reference signal is determin-
istic. This analysis is similar to the one made by Glover, Jr.,
for the LMS algorithm [5]. It is based on studying the common
cases where the adaptive system can be considered to be linear
and time-invariant, and applying root-locus theory to the system
transfer function. Thus, without need of the usual stochastic as-
sumptions, this analysis leads to a reliable bound for the greatest
adaptation step size rendering convergence of the FxLMS algo-
rithm with deterministic input. In Section II, the simple case of
a sinusoidal reference is considered first. Portions of the work
introduced in this section were presented in [9]. The results ob-
tained are contrasted with previous analyses and are in good
agreement with empirical measurements. The analysis is then
extended to simultaneous cancellation of several frequencies:
Section III considers the case of multiple sinusoidal references,
and Section IV deals with the generic sum of sinusoids as a ref-
erence signal. Obviously, this last case comprises any periodic
noise as reference, considering Fourier series representation.

II. SINUSOIDAL REFERENCE

The FxLMS algorithm is shown as a block diagram in
Fig. 1. In active noise and vibration control, represents
the so-called secondary path, which accounts for the transducer
response, the analog–digital (A/D) and digital–analog (D/A)
converters, and the acoustical or structural propagation. is
a model of the secondary path transfer function. The FxLMS
algorithm is given by the following set of equations:

(1a)

(1b)

(1c)

(1d)

(1e)

where boldface characters represent column vectors.
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Fig. 2. Signal flow diagram for FxLMS algorithm with sinusoidal reference.

When the reference signal is sinusoidal, each element of the
reference vector admits the following general expression:

(2)

where , and is the total number of filter
weights. The FxLMS signal flow diagram, according to (1),
is shown in detail for one of these elements in Fig. 2.
From this diagram, it is possible to obtain the -transform of
the canceling signal or secondary noise as a function of
the -transform of the adaptation error signal or residual noise

. Thus, we can find the open-loop input–output transfor-
mation for the feedback system shown in Fig. 2.

This result has already been obtained by Elliott and Nelson
[10], [11] for the case of a synchronously sampled sinusoid, that
is, , with integer . However, we include here the
detailed derivation of the single-sinusoid input–output transfor-
mation in order to facilitate the more complex derivations of the
subsequent multiple-sinusoid cases.

A. Open-Loop Input–Output Transformation

Considering (2) and the exponential multiplication property
of the -transform, the th weight of the adaptive filter can be
expressed in the transform domain as

(3)

where

(4)

is the transfer function of the inner dashed block in Fig. 2. The
contribution of this th weight to the adaptive filter output is
given by

(5)

Combining all of the components we get the control
signal output of the adaptive filter, . Eventually, the
secondary noise signal is obtained as filtering by the
secondary path

(6)

Substituting for and rearranging yields the open-loop
input–output transformation we were searching for, as follows:

(7)

The first two terms in (7) represent the time-invariant part of the
response from to , since they fulfill the convolution
theorem, and, so, only frequencies of appear at the output.
On the contrary, the last two terms in (7) are time varying, since
they introduce unwanted frequency shifted components of
at the output .

Next, we comment on two special cases of sinusoidal refer-
ence, which are also very common and with great relevance.

• In-phase and quadrature (I/Q) sinusoidal components: In
this case, there are only two sinusoidal components in the
reference vector, with a phase shift between them of
rad:

(8)

Therefore, the filter length is , with and
, yielding . Thus, in this

case, the time-varying terms in (7) are exactly zero.
• Transversal filter: When a tapped-delay line is used with

a sinusoidal reference input, the initial phase of each com-
ponent of the reference vector is given by ,
and so

(9)

In this case, when the frequency of the sinusoid is
, with integer , (9) is exactly zero and, consequently,

so again are the time-varying terms in (7). In addition, for
any frequency , when the number of filter weights of
the transversal filter is sufficiently high, (9) approaches
zero, and the time-varying terms in (7) may be considered
negligible, even though not being exactly zero.

In the previous cases, and in any other case where the time-
varying terms in (7) are zero or negligible, the response from
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to is linear and time invariant (LTI). Therefore, we
can define the following open-loop transfer function

(10)

The secondary path model is regularly a real system,
and thus its frequency response is conjugate-symmetric,

. Taking this into account, the open-loop
transfer function can be expressed [10] ([1], p. 126) as follows:

(11)

where and .

B. Root-Locus Analysis of the Closed-Loop Transfer Function

The closed-loop transfer function, from the primary noise
to the residual noise , is easily obtained from

(12)

Therefore, in the special but very common cases where the adap-
tive system exhibits LTI behavior, the upper bound for the step
size to ensure convergence can be obtained analyzing the sta-
bility of this transfer function, , without needing any ques-
tionable assumption.

The analysis of the most general case, with any secondary
path and any model , is so difficult that it is almost
impossible to extract any global conclusion. Therefore, in the
following, we consider the simple case where the secondary
path is composed of a pure delay1 and a gain factor, that is,

. We also consider perfect modeling of this sec-
ondary path . In this case, the open-loop transfer
function, from (11), is given by

(13)

where is the power of the filtered reference
signal, . This function can be expressed as

(14)

where the gain factor

(15)

is the normalized step size, and
and are polynomials

in . Therefore, from (12), the closed-loop transfer function is

(16)

1When the secondary path is just a pure delay, the FxLMS algorithm is equiv-
alent to the simpler delayed LMS or DLMS.

Fig. 3. Root loci for ! = �=4 and � = 5, for 0 � ~� � 1.

From (16), it is clear that the poles of are simultaneously
zeros of . So, the adaptive system with sinusoidal reference
behaves as a notch filter at the frequency of the reference, since

are the poles of and so, zeros of . On the other
hand, the poles of are the roots of the characteristic
equation

(17)

As long as the modulus of all of these roots is less than unity,
, the adaptive system will be stable, that is to say,

will converge. Thus, root-locus analysis [12] of the character-
istic equation (17) makes it possible to obtain the values for the
normalized step size that ensures stability of the
system.

The following conclusions are extracted from this analysis.
• When , two of the roots from (17) are ,

that is, they are on the unit circle, and all of the others are
. In this trivial case, without adaptation, .

• With negative , at least the two roots that were lying on
the unit circle go outside, turning the system unstable, as
could be expected.

• With positive and sufficiently small , all of the roots
are inside the unit circle, and so, the system is stable. An
example of root loci is shown in Fig. 3 for and

, when the normalized step size varies from 0 to 1.
The arrows indicate the direction of increasing values for

.
• There is an upper bound for the normalized step size ,

depending on both the frequency of the reference, , and
the secondary path delay, . When ,
there is at least one root outside the unit circle, which
again turns the system unstable. In the example shown in
Fig. 3, . For this reason, some of the
branches in the root loci go across the unit circle, since the
normalized step size varies from 0 to 1.

Therefore, the convergence condition for the adaptive system
is always . Fig. 4 displays the stability
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Fig. 4. Upper bound for the normalized step size ~� = P L� as a function
of the reference frequency ! , for several values of secondary path delay. (a)
� = 1; (b) � = 5; (c) � = 10; and (d) � = 25.

upper bound for the normalized step size as a function of fre-
quency for some particular values of the secondary path delay.

Even though there seems to be a clear pattern in the curves
of , it is not simple at all to obtain a closed-form
analytical expression. In any case, the frequency of the reference
may be unknown before turning on the adaptive system or could
be varying. For this reason, it seems useful to obtain an upper
bound for the normalized step size to ensure convergence for
every possible frequency. It can be seen in Fig. 4 that for a given
delay in the secondary path, the minimum value of the upper
bound , ensuring stability for every frequency in the
reference, is reached when or . In the first
case, when , system stability is lost because one of the
poles of goes across the unit circle through . When

, the crossing point is . The upper bound for
may be obtained from (17) considering that and ,
or alternatively, when and . Thus, we get

(18)

Since , the convergence condition for the step size,
without normalization, as a function of secondary path delay, but
ensuring convergence for every frequency, is eventually given
by

(19)

C. Comparison With Previous Analyses

In the case of a white reference signal, the valid range usually
considered for the step size is [2], [13]

(20)

Comparing (19) and (20), we note that the convergence condi-
tion in the sinusoidal reference case is much more restrictive
than in the white reference case. With a sinusoidal reference,
the upper bound for the step size is inversely proportional to the
product of the length of the filter and the delay in the secondary
path, whereas with a white reference signal, we get only the sum
of these parameters, instead of their product.

In [3], Bjarnason analyzes FxLMS convergence with a sinu-
soidal reference, but employs the habitual assumptions made
with stochastic signals, that is, independence theory. The sta-
bility condition derived in that analysis is as follows:

(21)

In the event of large delay in the secondary path, (21) simpli-
fies to

(22)

The similarity between this last convergence condition and the
one we have just derived in (19) is evident. Nevertheless, it has
to be pointed out that our analysis is exact, at least for all the
cases where the time-varying terms of the open-loop response
in (7) are negligible compared to the time-invariant terms.

It is also interesting to note that the stability range (19) is also
valid for the LMS algorithm, since it can be seen as a particular
case of the FxLMS algorithm with . Thus, the upper
bound for the LMS from (19) is exactly the same as already
obtained by Glover, Jr. [5].

Some authors have considered DLMS convergence with a si-
nusoidal reference, but only for the particular case where

. According to Elliott, Stothers, and Nelson [11, eq. (29)],
the optimum step size for a filter with two coefficients and

is . For these authors, the optimum step
size is the greatest value for without oscillatory behavior in
the learning curve, which will obviously be lower than the sta-
bility upper bound. Also, Morgan and Sanford [14] establish a
stability upper bound for the step size for the same
situation, and .

In order to facilitate comparison with these results, we con-
sider next in our analysis the stability when the reference fre-
quency is . Again applying root locus theory to the
characteristic equation (17), it can be shown that the maximum
value for the normalized step size yielding a stable adaptive
system is

(23)
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where (“floor”) stands for the rounding function returning
the greatest integer less than or equal to . For large delay ,
we can approximate this as

(24)

Therefore, when , the stability bound for the step size,
without normalization, is

(25)
Considering the particular case where and , we
see that the upper bound in (25) is in close agreement with the
ones already commented on from previous analyses [11], [14]
for sinusoidal references with frequency .

The convergence condition (19) could be seen as rather con-
servative, due to the fact of being valid for every frequency. In
fact, inspecting the condition for the particular case of

, which is the midpoint in the curves in Fig. 4, there is an
approximate factor of between both convergence conditions,
(19) and (25). However, we also see that in (25) there is still a
relation of inverse proportionality with the product of the length
of the filter and the delay introduced by the secondary path .

In our analysis we have only considered the case of noiseless
sinusoidal references. Some authors have analyzed the LMS
algorithm with noisy sinusoidal reference [15], [16]. The main
conclusion from these analyses is that the adaptive system will
no longer behave as a linear time-invariant system due to the
presence of noise in the reference. However, for reasonable
signal-to-noise ratios, it seems that the effect of this noise is
insignificant.

D. Empirical Validation

In order to check the validity of the upper bound for the step
size found in our analysis, several experiments have been carried
out. Fig. 5 shows some empirical results together with the the-
oretical prediction obtained with root locus theory and the LTI
approximation. These results correspond to the empirical upper
bounds for the normalized step size when transversal filters with

and coefficients are used. The different frequen-
cies considered for the sinusoidal reference are , with
integer ranging from 1 to 49.

When we consider the transversal filter with coeffi-
cients, we can see that there is good agreement between theoret-
ical prediction and the empirical results. Of course, the theoret-
ical prediction is not exact, since it is based on the LTI approxi-
mation. In fact, the approximation is exact only for frequencies

with being an integer multiple of 5. For these fre-
quencies, we check that the empirical bound really lies on the
theoretical curve. However, for the rest of the frequencies, there
is little difference between the theoretical prediction and the em-
pirical bound.

For the sake of comparison, we consider the case of Fig. 5(d),
with and . The upper bound we have derived,
that is, the minimum value of the theoretical curve, is in this
case . If we make use of the usual bound
(20) derived for a white reference signal, the upper bound would

Fig. 5. Upper bound for the normalized step size ~� = P L� as a function
of the reference frequency ! , for several values of secondary path delay: the-
oretical prediction (solid), empirical results with L = 20 (circles) and L = 2

(asterisks), and overall-frequency bound (dashed). (a) � = 1; (b) � = 5;
(c) � = 10; and (d) � = 25.

be , that is, more than 22 times greater.
Hence, the bound in (19) seems much more appropriate, even
though it may be considered a bit conservative, as we have al-
ready commented.

When the transversal filter has only coefficients, the
agreement between the empirical bounds and the theoretical
prediction is not so good. However, observe that this is the worst
case from the point of view of the LTI approximation, since there
is only one frequency, , for which we can say that the
adaptive system behaves as being LTI. At all of the other fre-
quencies, the time-varying terms in (7) are not zero. This is the
only reason for the differences found between theoretical pre-
diction and the empirical results. In fact, if we consider the case
of filter weights but with I/Q sinusoidal components (not
shown in the graphics), where the LTI approximation is valid
for every frequency, the match between predicted and empirical
bounds is perfect.

Nevertheless, despite the differences caused by the applica-
bility of the LTI approximation, as shown in Fig. 5, the con-
vergence condition (19) seems a really good one, even in this
worst case: the value of the minimum empirical upper bound is,
for every secondary delay, very close to the theoretical one, al-
though these minima do not really occur at the same frequency.

III. MULTIPLE SINUSOIDAL REFERENCES

In this section, we consider the case of multiple reference
signals that are independently processed. That is to say, there
is an adaptive filter for each reference signal, and the outputs
of all of the filters are summed to form the control signal .
Each of these reference signals is a sinusoid of frequency .
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We can think of using an in-phase and quadrature component for
each sinusoid or, alternatively, a transversal filter, with a number
of coefficients sufficiently high, to process each sinusoid.
For both situations, the behavior of the open-loop system for
each frequency is assumed to be linear and time-invariant, as
discussed in the previous section. Therefore, we can define the
th transfer function

(26)

where

(27)

and and are the polynomials in from the numer-
ator and denominator, respectively. Due to the presence of mul-
tiple reference signals, the global open-loop transfer function is
now the sum of all of these individual contributions

(28)

where is the number of independent reference signals.
Using the relation (12) yields, also in this case, the closed-loop
transfer function

(29)

Analyzing the stability of , we can get an upper bound for
the algorithm step size. It should be pointed out that in this case,
we could use different step sizes, , for each of the multiple-ref-
erence signals. However, it seems sensible that for every refer-
ence signal, the maximum value for the normalized step size
is the same. Thus, taking makes the analysis
much simpler.

The maximum normalized step size , to en-
sure convergence for every possible set of sinusoidal ref-
erences, will be the real and positive minimum value
of . For each of the terms

, the maximum positive and real value is
obtained when and , or alternatively, when

and . Therefore, the worst case for the stability
of occurs also when one of the poles crosses the unit
circle through when , or crosses through
when . Thus, we eventually find the upper bound

(30)

Therefore, stability is guaranteed for each of the reference sig-
nals when

(31)

Comparing this last result with the convergence condition ob-
tained for a single sinusoidal reference, (19), we note that the
maximum step size has been reduced by , and the only
reason for this is having simultaneously several sinusoidal sig-
nals as references.

IV. SINGLE MULTIFREQUENCY REFERENCE

Our initial analysis for one sinusoidal reference can also be
easily extended to the case of a reference signal consisting of
the sum of several sinusoids [5]. Let be the total number
of sinusoids in the reference

(32)

Now we consider only the case of a transversal filter. So, the th
component of the reference signal vector is

(33)

Proceeding in the same way as before for a single sinusoid, we
get the following expression for the secondary noise:

TV

TV

(34)
where

(35)

and . In (34), TV represents time-varying fre-
quency-shifted components of the error signal . Therefore,
the first term in (34) is the time-invariant part of the open-loop
response and the last terms are the time-varying part. For these
last terms to be negligible when compared to the time-invariant
response, we must have

(36)

Consequently, the filter length required for achieving LTI be-
havior from the adaptive system may be in this case quite high.
Specifically, large will be required when some of the frequen-
cies of the different sinusoids are very close.

When we have LTI behavior and consider the simple sec-
ondary path , the open-loop transfer function is

(37)
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Therefore, in this case, we find the same open-loop transfer
function as that of the multiple sinusoidal references (28). Nev-
ertheless, in this situation the step size and the filter length
are unique, since there is just one reference signal.

The worst case from the viewpoint of stability is again a pole
of the closed-loop transfer function going out of the unit circle
through when . Thus, convergence of the adaptive
system is now guaranteed as long as

(38)

Comparing (38) with (19), we see that when the reference
signal is a generic sum of sinusoids, the sinusoidal stability
upper bound is still valid.

V. CONCLUSION

The FxLMS convergence analysis presented in this paper has
obtained a strict upper bound on the algorithm step size when
the reference signal is deterministic. Several cases have been
considered in detail: single sinusoidal reference, multiple si-
nusoidal references, and single multi-frequency reference. The
analysis is founded on considering the cases where, with a deter-
ministic reference, the adaptive system global behavior is linear
and time-invariant. Applying root locus theory to the transfer
function of the LTI adaptive system, the maximum value of the
algorithm step size for which the system is stable is determined.
Thus, the usual assumptions of stochastic convergence analyses
have been avoided, such as independence between filter weights
and reference signal or slow convergence.

The upper bound obtained for deterministic references is
clearly much more restrictive than the one generally considered
for stochastic wideband references. With a white reference, the
maximum stable step size is inversely proportional to the sum
of the length of the filter and the delay in the secondary path.
However, when the reference is deterministic, the upper bound
is inversely proportional to the product of these two parameters.
Hence, this new upper bound is more accurate and should be the
one considered whenever the reference is deterministic, since
the stochastic reference bound would easily lead to divergence.

The convergence condition derived for a deterministic refer-
ence is also in good agreement with special cases of previous
analyses. Furthermore, empirical observations clearly support
the theoretical results, even though the LTI approximation is not
always strictly applicable.
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