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Analysis of the Desired-Response Influence on the
Convergence of Gradient-Based Adaptive Algorithms
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Abstract—Although the convergence behavior of gradient-based
adaptive algorithms, such as steepest descent and leas mean square
(LMS), has been extensively studied, the influence of the desired
response on the transient convergence has generally received little
attention. However, empirical results show that this signal can have
a great impact on the learning curve. In this paper we analyze the
influence of the desired response on the transient convergence by
making a novel interpretation, from the viewpoint of the desired
response, of previous convergence analyses of SD and LMS algo-
rithms. We show that, without prior knowledge that can be used
to wisely select the initial weight vector, initial convergence is fast
whenever there is high similarity between input and desired re-
sponse whereas, on the contrary, when there is low similarity be-
tween these two signals, convergence is slow from the beginning.

Index Terms—Adaptive filters, adaptive signal processing, con-
vergence, gradient methods, least-mean-square (LMS) methods.

I. INTRODUCTION

THE similarity between input and desired response plays a
significant role in the adaptation process of gradient-based

algorithms, such as steepest descent (SD) or least mean square
(LMS). Empirical results support this observation, since clearly
distinct convergence rates are obtained for different desired re-
sponses sharing the same input. However, the desired response
signal has received little attention in most convergence analyses,
even though it is present in all of them, through the cross-corre-
lation vector. This is due to practical reasons, since it is not gen-
erally possible to choose the desired response and, also, a proper
selection of the initial weight vector can mitigate any influence
that this signal might play. Nevertheless, in order to wisely se-
lect the initial weight vector, prior information of the environ-
ment should be available, which is not always the case. On the
other hand, the analysis proposed in this paper can provide a
deeper understanding of the algorithms convergence. Moreover,
this study provides a satisfactory explanation to why a system
with an adaptive prewhitener of the input converges almost al-
ways faster than the system without it, which is indeed the topic
that prompted this analysis.

So, in this paper, the effect of the desired response on
the MSE transient behavior of SD and LMS algorithms is
inspected, starting from previous and well-established conver-
gence analyses [1], [2]. The main conclusion is that, without
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any prior information that can be used to wisely choose the
initial weight vector, convergence is slow when there is low
similarity between input and desired response, but it is fast, at
least at the beginning, when the similarity between these two
signals is high. Although this result might seem quite logical
or intuitive, it has not been proven before, to the best of the
authors knowledge. Also, the analysis is clearly supported by
empirical observations.

In Section II, some results from previous convergence
analyses of SD and LMS algorithms are recalled in order to
make explicit the modes excitation dependence on the cross-cor-
relation vector. For the LMS algorithm, the small-step-size
theory is considered, avoiding the classical and restrictive
independence assumption, and yielding more accurate results
[2, Sec. 5.4], [3], [4]. A measure of the similarity between input
and desired response, suitable for the finite-impulse response
(FIR) adaptive filtering context, is also defined in Section II.
In Section III, the simple case of a sinusoidal input with a
two-tap adaptive filter is considered first. Two extreme desired
responses, from the point of view of similarity with the input,
are analyzed in detail and a geometrical interpretation of the
results is provided via an example. Section IV deals with the
more general case of wide-sense stationary stochastic processes
as input and desired response. Again, two extreme desired
responses are analyzed. The germ of the work introduced in
this section was presented in [5]. Empirical results are also
provided. Finally, the performance of a system with adaptive
prewhitening of the input is considered in Section V, in order to
explain why it converges almost always faster than the original
system.

II. CONVERGENCE DEPENDENCE ON

CROSS-CORRELATION VECTOR

According to most convergence analyses [1], [2], [6], the
mean-square error (MSE) evolution with time, for SD and LMS
algorithms, is given by the following general expression:

(1)

where is the step size of the algorithm, is the length of the
FIR adaptive filter, and are the eigenvalues of the correlation
matrix of the input vector . The su-
perscript denotes Hermitian transposition. The actual values
for the final MSE and the initial amplitude of each ex-
ponential function depend on the adaptive algorithm being
examined and, in the case of the LMS algorithm, also on the as-
sumptions made to arrive at (1).
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Thus, in gradient-based adaptive systems the learning curve
(1) consists of a sum of exponentials, each of which corresponds
to a natural mode of the algorithm. The exponential decay for
the th natural mode has a time constant given by

(2)

Since the step size is the same for every convergence mode, it
is its associated eigenvalue what determines whether a mode
is relatively fast or slow. Thus, the statistical properties of the
input to the adaptive filter are the one and only responsible for
the detached convergence rate of the different modes.

Other mode feature as important as the time constant is the
excitation, or initial amplitude , since it determines whether
and when a mode is dominant on global convergence. The nat-
ural mode being dominant at a specific time instant is the one
whose contribution to the sum in (1) is the most important one.
Thus, whenever the fast modes are much more excited than the
slow ones the initial convergence of the algorithm is fast, even
with great eigenvalue spread of the correlation matrix. Certainly,
the slow modes will always become dominant in the end, but
the point is how much convergence is left when this happens.
So, when we are concerned with convergence rate of a gra-
dient-based adaptive algorithm, we cannot obviate the relative
excitation of natural modes.

The geometrical interpretation of the cost function (1) helps
to clarify this point. It is evident that, depending on the departing
point of the weight value track on the bowl-shaped error surface,
convergence rate varies greatly. This topic has sometimes been
referred to as the directionality of convergence for nonwhite in-
puts [2, Sec. 5.9]. Obviously, the actual weight value track de-
pends on the initial weight vector, , but also on the optimal
solution for the weight vector, , which is clearly
influenced by the desired response through the cross-cor-
relation vector .

A. Steepest Descent Modes Excitation

The SD method is described by the following adaptation for-
mula:

(3)

The stability analysis of this adaptive algorithm [1], [2, Sec.
4.3] establishes the following evolution with time for the MSE:

(4)

where is the minimum MSE, obtained with the optimum
weight vector , and is the th component of the initial
transformed weight-error vector

(5)

is the unitary matrix of eigenvectors resulting from the eigen-
decomposition of the correlation matrix, being
the diagonal matrix of associated eigenvalues.

From (4) we see that the initial amplitude or excitation of each
mode in the SD method is

(6)

B. LMS Modes Excitation

The LMS algorithm adaptive recursion is given by

(7)

Classical analyses of the LMS algorithm [6, Sec. 9.4],[7]–[9],
are based on the independence assumption. Nevertheless, it is
well-known that this assumption is clearly violated in many
practical situations, such as the case of a tapped-delay line adap-
tive filter. More recent analyses have also been developed under
the small-step-size theory [2, Sec. 5.4], [3], [4], whose assump-
tions, apart from the step size being small, , are
much less restrictive. Although both theories lead to similar re-
sults, in the case of the small-step-size theory, they are more
accurate and elegant.

Thus, according to the small-step-size theory, the LMS cost
function can be expressed, when the step size is small, as

(8)

where the final MSE is

(9)

Therefore, the amplitude of each natural mode in the LMS case
is given by

(10)

C. Cross-Correlation Vector Influence

The coefficients of the initial transformed weight-error
vector, , which appear in both (6) and (10), are hiding
the influence of the desired response of the adaptive filter on
its convergence. Recalling (5) and taking into account the
optimum Wiener filter solution,

(11)

and the unitary property of the eigenvectors matrix ,
it follows that

(12)

or, equivalently

(13)
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where is the th column of matrix , that is, the eigenvector
associated with the eigenvalue .

Using this last result in the expressions for the modes excita-
tion, (6) and (10), the influence of the cross-correlation between
input and desired response on convergence is patent. Obviously,
from (13) we can also say that this influence can be counter-
acted by properly selecting the initial solution for the weight
vector. However, some prior information is compulsory in order
to choose a sensible initial weight vector. As our analysis is fo-
cused on the influence of the desired response, we assume there
is no such prior knowledge, and thus, the initial weight vector
can be thought of as being random.

Also, one particular but very common initialization of the
weight vector, when there is no prior information, is the null one,

, since it ensures no increment in the MSE level when
turning the adaptive algorithm on. In this special case, the trans-
formed weight-error vector can be viewed from (12) as the
result of a weighted projection of the cross-correlation vector
on each of the eigenvectors of the correlation matrix, with the
inverse of the eigenvalues, , as weighting factors.

D. Similarity Definition

At this point, we aim to define a suitable measure of the simi-
larity between input and desired response. This is due to the fact
that we want to inspect the differences in the algorithms conver-
gence depending on this similarity.

Since the influence of the desired response on the SD or
LMS convergence is channeled by the cross-correlation vector

, it is clear that the similarity concept has to be closely
related to the cross-correlation function between input and
desired response. In fact, the cross-correlation function itself,

, can be interpreted as a similarity
measure. When we define the Euclidean distance between two
stationary signals, with a possible time lag, we have

(14)

where and are the mean-square values of both signals.
Therefore, for fixed and values, the greater the real part of
the cross-correlation function , the lesser the distance
between the two signals .

However, given to the role of these signals in the adaptive
filtering problem, we should normalize them prior to measuring
their similarity (or their distance). This is due to the fact that a
constant scale change in one of the signals does not mean more
or less difficulties for the convergence of the algorithms, as long
as we can properly modify the step size. Therefore, a constant
scale change in any of the two signals should not change their
similarity measure.

We define the normalized signals, with unit power, as

(15)

(16)

For the very common case of real signals, this amplitude nor-
malization is enough. However, in the more general case of com-
plex signals, the phase of the signals has also to be taken into
account in the normalization process. Thus, the normalized sig-
nals are defined in this case by

(17)

(18)

where and are the mean phases1 of the input and the de-
sired response, respectively.

Once we have normalized the amplitude of the signals and
aligned them with the real axis, their cross-correlation function
can be seen, for our purposes, as a proper similarity function at
a given time lag. However, one final aspect that we still have
to consider is that for FIR adaptive filters, the cross-correlation
vector consists of several cross-correlation values, for dif-
ferent time lags. Hence, our similarity measure has also to take
this into account by accumulating the corresponding values of
the cross-correlation function of the normalized signals. Thus,
the similarity measure between the input and the desired re-
sponse that we consider for an FIR adaptive filter of order
is

(19)

III. SINUSOIDAL CASE

Although the derivation of adaptive algorithms is in general
based on wide-sense stationary stochastic signals, they are also
applicable to deterministic environments. In this section, we an-
alyze the very common case of real sinusoidal inputs and desired
responses.

Let the input be

(20)

The desired response is composed of a sinusoid, of the same
frequency as the input, plus any uncorrelated noise

(21)

In the following analysis, we consider a fixed phase differ-
ence:

(22)

1We define the mean phase of a signal ���� as

� �
�

��
���

����

� ���
�

Note that this definition has an ambiguity of �, that is, ���� 	 � � ���.
For instance, in the particular case of a real signal, the mean phase is always
0, independently of whether the signal predominantly takes positive or negative
values. The absolute value in the similarity measure (19) aims to cancel the
effect of this ambiguity.
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between the desired response and the input. This is a realistic
situation, since it implies that there is a fixed filter relating both
signals. Thus, the analysis corresponds to a deterministic situ-
ation, even in the case that the sinusoids in (20) and (21) were
stochastic processes due to a possible unknown initial phase.

We only consider the case of an adaptive filter with two taps,
, since it is the one with the greatest eigenvalue spread

and, on the other hand, it also allows a graphical representation
of the results, when we sketch the evolution of the weights on
the error surface.

The behavior of adaptive algorithms when the input is deter-
ministic may be quite different than when the input is stochastic,
due to non-Wiener solutions of the algorithms [10]–[13]. How-
ever, under the assumption of small step size, (4) is still valid
for the SD algorithm even for deterministic inputs. Moreover, as
long as the uncorrelated noise component in (21) is white,
(8) is also applicable for the LMS algorithm in the previous sce-
nario [2].

So, according to (6) and (10), we are now interested in the
initial value of the transformed weight-error vector components
for this sinusoidal case. For a tapped delay line configuration
with two filter weights, it can be easily shown (see Appendix I)
that

(23)

The negative sign in the term between brackets in (23) cor-
responds to the eigenvalue whereas
the positive sign corresponds to the eigenvalue

.
The similarity measure in this simple sinusoidal case is

(24)

In the following subsections, we analyze two extreme cases of
similarity between desired response and input, with constant
phase difference . This cases are the in-phase and quadrature
sinusoidal signals, respectively. It is easy to check that the sim-
ilarity (24) for the in-phase case is always greater than for the
quadrature case (with the only exception of , when
both similarities are equal).

A. In-Phase (Or Counter-Phase) Desired Response

When the phase difference between input and desired re-
sponse is or and (23) becomes

(25)

where the positive sign of the first term corresponds to a phase
difference and the negative sign to . The similarity
measure is, in this case,

(26)

Using (25) in (6) and (10), we get the initial amplitudes of SD
and LMS modes

(27)

(28)

At first sight, we can say that, in this case of high similarity
between input and desired response, the excitation of each SD
and LMS mode is directly proportional to its own eigenvalue.
Therefore, the fast mode is initially much more excited than the
slow one and, so, fast initial convergence can be expected.

Of course, it can be argued that the term , which is
different for each eigenvalue, could as well turn convergence
slow. However, we have assumed a random initial weight vector

, due to the lack of prior knowledge of the environment
where the adaptive algorithm works. In this case, it seems fair to
suppose that the expectation of the term is the same for
both eigenvalues, and thus, the “expected” excitation for each
mode is indeed directly proportional to its own eigenvalue.

B. Desired Response in Phase Quadrature

In the event of a phase shift between input and
desired response, and (23) becomes

(29)

where the sign of the first term is negative for the eigenvalue
and positive for the eigenvalue

. When , (29) is also valid, but the
signs corresponding to each eigenvalue are exchanged. The sim-
ilarity measure is now

(30)

Again, substituting (29) in (6) and (10), the initial amplitudes
of the modes are

(31)

(32)

For the following discussion, we think of a case with great
eigenvalue spread, that is, the eigenvalue associated to the fast
mode is very large while the one associated to the slow mode
is very small. We can conclude from (31) and (32) that the
excitation of the fast mode will be directly proportional to its
own eigenvalue whereas the excitation of the slow mode will
be inversely proportional to its own eigenvalue. Thus, it seems
that both modes will be greatly excited.

However, to obtain fast initial convergence, the fast mode
needs to be much more excited than the slow one in order to
be dominant for a long period of time. So, in this low similarity
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Fig. 1. LMS convergence for a two-tap adaptive filter with sinusoidal input,
� � �������� � �����, and different phase shifts between input and desired
response. (a) Ensemble average learning curves. (b) Weight-value tracks on the
error surface.

case, convergence will be slow, since the slow mode is very ex-
cited and can dominate convergence from the very beginning,
making the fast mode go unnoticed.

In the same way as in the high similarity case, the term
introduces some randomness in the excitation of both

modes. Therefore, the previous discussion refers also to the
“expected” excitation of natural modes. In the particular case of
null initial filter weights there is no randomness. Furthermore,
in this case the excitation of the SD fast mode is also inversely
proportional to its own eigenvalue, and so slow convergence is
even more evident.

C. Example

In the next example, we consider a two-tap LMS adaptive
filter with sinusoidal input, , for different
phase shifts between input and desired response. In order to see
more clearly the two convergence modes in the learning curves,
the desired responses do not contain any uncorrelated noise,

. Thus, total cancellation, (
dB), is in this case possible, at least theoretically (but for ma-
chine precision).

Fig. 1(a) shows the ensemble average learning curves ob-
tained from 1000 runs of the LMS algorithm for a frequency

and three different phase shifts between input and
desired response, , and (with respective simi-

larities and ). For each run, the initial phase
of the input, , is a random variable with uniform distribution
between 0 and . However, the phase difference between input
and desired response is fixed. The initial weight vector is

. In this case, the two eigenvalues are and
, and therefore, the eigenvalue spread is

. The step size is . Each mode individually con-
verges at a rate of dB/sample and dB/sample,
respectively. Both modes, with their different slopes, are evident
in the learning curves in Fig. 1(a).

Analyzing the learning curves, we see that when , initial
convergence is quite fast, until the slow mode becomes domi-
nant. On the contrary, when the fast mode goes com-
pletely unnoticed, since the slow mode dominates convergence
from the beginning. Last, when we get an interme-
diate situation of the two already commented, that is, initial con-
vergence is as fast as when but it lasts shorter.

When there are just two filter weights, it is possible to sketch
a geometrical interpretation of the results. Fig. 1(b) shows the
LMS mean weight-value tracks together with the elliptic error-
surface contours for the three learning curves in Fig. 1(a). The
components of the weight-error vector, , are used in the
plot to facilitate the comparison, since this way the minimum
value of the error surface is located at point of the plot for
the three cases.

From Fig. 1(b), we see that the weight-value track for
departs from a point close to the optimum, that is, close to the
ellipse minor axis, and, consequently, with high excitation of the
fast mode, what justifies the fast convergence seen in Fig. 1(a).
On the contrary, when the track departs from a point
close to the ellipse major axis, exciting greatly the slow mode.

The results presented in this example, with , can
be transferred to any frequency, with the consideration that the
greater the eigenvalue spread, the greater the difference in con-
vergence speed when comparing different phase shifts . Also,
it is remarkable that similar results to the ones presented here
are obtained with a random initial weight vector for each run of
the algorithm, as long as the mean of the random distribution is

, what seems sensible when prior knowledge of
the environment is not available.

IV. STOCHASTIC CASE

In the previous section, the simple case of real sinusoidal sig-
nals with a two-tap filter has been analyzed. In this section we
consider the more general case of wide-sense stationary sto-
chastic processes for the input and the desired response, with
any filter length. As in the previous section, we raise two ex-
treme desired responses, from the viewpoint of similarity with
the input, in order to draw conclusions concerning the influence
of the desired response on the initial convergence of the algo-
rithms.

A. High Similarity Between Input and Desired Response

Let the desired response be simply a scaled and delayed ver-
sion of the input, with possibly an additive uncorrelated noise

(33)
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(the complex conjugate in the scaling factor is used only for
notational convenience). In this case, the cross-correlation func-
tion is also a scaled and time-shifted
version of the autocorrelation function

(34)

In the frequency domain, this condition means that the power
spectral densities of both signals, without uncorrelated compo-
nents, are directly proportional

(35)

The similarity measure is

(36)

When the delay is inside the filter span, that is, when
( being the length of the adaptive filter), the following

condition is met

(37)

since is one of the terms in the sum in (36). The
equality in the previous condition happens only when the input
(and also its correlated component in the desired response) is
white.

Also, when , the cross-correlation vector is
proportional to one of the columns, , of the input correlation
matrix, that is

(38)

where is the th component of the th eigenvector. Using
the orthogonality property of the eigenvectors, the projection of
the cross-correlation vector on each of the eigenvectors is

(39)

Making use of (39) in (6) and (10) we find the initial amplitudes
of SD and LMS modes for this case

(40)

(41)

As with the in-phase sinusoidal signals in the previous sec-
tion, the excitation of each mode in this high-similarity case is

directly proportional to its own eigenvalue. Therefore, fast ini-
tial convergence can be expected since faster modes are initially
much more excited than slower ones.

Observe that the term is now the one
introducing some randomness in the modes excitation. So, this
randomness exists now even with the null initial weight vector.
Furthermore, the excitation uncertainty is now greater than in
the sinusoidal case since the eigenvectors are not generally
known. Of course, it could be argued once more that, depending
on the initial weight vector and as a consequence of the ran-
domness in the excitation, convergence can also be slow even in
this high similarity case. However, this unwanted possibility is
remote and hard to find without exact knowledge of the eigen-
values and eigenvectors.

B. Low Similarity Between Input and Desired Response

In order to make possible some MSE reduction, it is manda-
tory to have some cross-correlation between input and desired
response. Therefore, we do not consider here the trivial case of
null cross-correlation, . Instead, we consider the sit-
uation where the cross-correlation function is just an impulse

(42)

This low similarity condition can also be interpreted in the
spectral domain, in terms of the power spectral density func-
tions of both signals. In this case, their spectra will be inversely
proportional

(43)

if we consider only the correlated components of both signals
(see Appendix II). Hence, now a low-pass input implies a high-
pass desired response, and vice versa.

The delay must be again inside the filter span, ,
for the MSE reduction to be feasible. The condition met now by
the similarity measure is

(44)

with the equality happening, once again, only when the corre-
lated components of the input and the desired response are both
white. The demonstration of the inequality in (44) is linked to
the demonstration of the condition , that can be
easily obtained in the frequency domain with the aid of (43) and
Schwarz’s inequality.

With , all of the cross-correlation vector compo-
nents are zero but for the th one

(45)
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For this cross-correlation vector, we have the following projec-
tions on the eigenvectors

(46)

Again, substituting (46) in (6) and (10), we get the initial am-
plitude of each mode in this case

(47)

(48)

Inspecting the limiting cases for the excitations (47) and (48),
we reach now the same conclusions as with sinusoidal signals in
phase quadrature. Thus, the excitation of modes with very large
eigenvalue will be, at best, directly proportional to its own eigen-
value whereas the excitation of modes with very small eigen-
value will be inversely proportional to it. Therefore, although
fast and slow modes are greatly excited, convergence is now
dominated by the slow modes from the beginning.

C. Example 1

To illustrate the preceding high versus low similarity analysis,
let us consider the next example. The input is generated by fil-
tering a unit-variance white Gaussian signal with the following
second-order low-pass filter

(49)

The gain factor, , is such that the power of the input is .
The two desired responses from the preceding analysis

are also generated by filtering the same unit-variance white
Gaussian signal used to produce the input. The high-similarity
desired response is generated with a delayed version of the
low-pass input filter

(50)

On the other hand, the low-similarity desired response is gen-
erated also by filtering the Gaussian signal but with this other
high-pass filter

(51)

Both filters, (50) and (51), are causal and stable whenever .
Taking into account that , it is easy to
check that the power spectral density functions of the two de-
sired responses and , are directly and in-
versely proportional, respectively, to the power spectral density
of the input, , in accordance with (35) and (43) in our
analysis.

Additionally, both desired responses contain also an addi-
tive uncorrelated white noise signal whose power level is 25

Fig. 2. LMS ensemble average learning curves with two different desired re-
sponses, (1) high similarity case, and (2) low similarity case, for two possible
eigenvalue spreads. (a) ���� � ������� � ���	�. (b) ���� � ��
�	��� �
��	��.

dB below that of the correlated component. Note that this un-
correlated component imposes a limit in the achievable MSE,

25 dB.
Varying the distance from the poles in to the origin,

we obtain different inputs with different eigenvalue spreads,
. Fig. 2(a) and (b) shows the learning curves

obtained by averaging 5000 runs of the LMS algorithms for
two different inputs, the ones obtained when and

, respectively. The initial weight vector is .
The length of the adaptive filter and the adaptation step size used
are and . Thus, differences on convergence
rate with the two desired responses are only due to the different
excitation of natural modes. The similarity measure in the high
similarity case is when and when

. In the low similarity case the similarities are
when and when .

It is clear that the high-similarity case converges significantly
faster than the low-similarity one for both inputs, in accordance
with our previous discussion. In addition, with greater eigen-
value spread , the difference on convergence rate in
the two situations becomes more evident, since the fast modes
are faster and the slow modes are slower.

D. Example 2

Our previous analysis suggests that initial convergence is fast
when there is great similarity between input and desired re-
sponse and slow with little similarity. In order to check this
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point, in the next example we consider four different desired re-
sponses, none of them corresponding to the two extreme cases
already analyzed. Each of the desired responses has different
spectral similarity with the input.

The input is a unit-power autoregressive-moving-average
(ARMA) process generated by filtering a unit-variance white
Gaussian signal with the following low-pass filter:

(52)

The correlated component in the four desired responses is ob-
tained by filtering this same unit-variance white Gaussian signal
with different bandpass filters

(53)

The gain factor is selected in the four cases in order to get
a unit-power desired response. In (53), the angles of the poles
are , while the angles of two of the zeros are their sup-
plementaries, . The four desired responses are obtained
with , and , yielding the following
similarities and , respectively. There
is also an uncorrelated white noise in the desired responses,
whose power level is 25 dB below that of the correlated com-
ponent. Again, this uncorrelated component imposes the limit,

dB, in the achievable MSE.
The power spectral density functions of the input and the four

desired responses are plotted in Fig. 3(a), in order to compare the
spectral similarity between them. Fig. 3(b) shows the learning
curves obtained in the four cases by averaging of 5000 runs of
the LMS algorithm. The filter length is , which yields an
eigenvalue spread . The step size is
and the initial weight vector is also .

The learning curves from Fig. 3(b) boost the main idea behind
our analysis: the greater the spectral similarity between input
and desired response, the faster convergence. That is, the fast
modes are more excited and the slow modes are less excited in
the case that the desired response is more similar to the input.

Therefore, according to our analysis and the empirical results,
one criterion to be taken into account when selecting the de-
sired response, whenever this is possible, should be obtaining
the greatest spectral similarity between this signal and the input,
in order to ensure a fast convergence for the adaptive algorithm.
Also, when it is not possible to select the desired response, we
can say that prior knowledge of the environment is more neces-
sary, in order to select an adequate initial weight vector, when
the similarity between desired response and input is low.

V. ADAPTIVE PREWHITENING OF THE INPUT

Prewhitening of the input is a well-known method for im-
proving LMS convergence [14]–[17]: the input to the LMS filter
is preconditioned, in order to obtain faster convergence, by fil-
tering it with an inverse linear stochastic model of itself, that
is, a whitener. Fig. 4 shows a block diagram of this alternative
adaptive system where the whitener, implemented as a predic-
tion error filter, is also made adaptive.

Fig. 3. LMS convergence with four different desired responses. (a) Power spec-
tral density functions: input (dashed line) and four different desired responses
(solid lines). (b) Ensemble average learning curves.

Fig. 4. System with adaptive prewhitening of the input.

In order to check the performance of this alternative adap-
tive system, we consider again the same data from the example
in Subsection IV.D for the last of the four possible desired re-
sponses [ in (53)]. That is, we have the same input,
the filter length is , the step size is and the
initial weight vector is . On the other hand, for the pre-
diction filter , the filter length is , the step size is

and the initial weight vector is . Fig. 5
shows the learning curves obtained by averaging of 5000 runs
for the original LMS system, without the prewhitening, and for
the alternative system with adaptive prewhitening of the input.
The convergence improvement is evident in this example.

We have also considered the case of the first desired response
in the example of Section IV-D [ in (53)]. In this case,
the two learning curves, with and without input prewhitening,
overlap. So, the prewhitening stage is unnecessary, due to the
fact that convergence was already fast without it [curve (1) in
Fig. 3(b)].

To explain the improvement in convergence speed with an
adaptive prewhitening of the input, we must consider that there
are two adaptive filters in the system from Fig. 4. From the view-
point of the main adaptive filter, , the new input (that is,
the output of the whitener) is whiter than the previous one and
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Fig. 5. LMS ensemble average learning curves for (1) the original system and
(2) the system with adaptive prewhitening of the input.

hence there is an eigenvalue spread reduction. Thus, this reduc-
tion of the directionality of convergence justifies the improve-
ment. However, a relatively fast whitener convergence is also
needed for this argument to be true.

From the standpoint of the prediction filter, , its input
is the same as that of the original system, but for a unit-sample
delay. So, thinking only of the input, it seems that we have just
transferred the convergence problems (i.e., eigenvalue spread)
of the original system to the whitening stage. Nevertheless, ac-
cording to our previous analysis, the prediction filter will gen-
erally exhibit fast convergence, due to the evident high simi-
larity between its input, , and desired response, .
Therefore, the superior performance of the system with the input
prewhitening is also a consequence that can be extracted from
our analysis.

Besides the adaptive prewhitening of the input and with the
conclusions of our analysis in mind, one could also think of a
novel adaptive system where the desired response, instead of
the input, is preconditioned in order to get faster convergence.
This can be done, for instance, by filtering with a linear
stochastic model of the input. This way, an improvement in
convergence could be expected in relation to the basic adaptive
system, due to the higher similarity between the input and the
new desired response. However, from our tests we can say that
when compared to the system that simply prewhitens the input,
the convergence of this new system is clearly worse. In other
words, the benefit on convergence speed of a reduction on the
eigenvalue spread (i.e., in the directionality of convergence) is
clearly greater than that of providing a more adequate excitation
for the pre-existing modes. Therefore, in order to get faster con-
vergence the input is the signal that should be preconditioned,
by whitening it, and not the desired response.

VI. CONCLUSION

The influence of the desired response on the convergence
of SD and LMS algorithms has been addressed in this paper.
Starting from previous well-established convergence analyses,
and considering two extreme cases, first for sinusoidal signals
and later for wide-sense stationary stochastic processes, we have
shown that the greater the similarity between input and desired

response, the faster convergence. Thus, in the same way that
very high coherence between input and desired response is re-
quired in order to get high cancellation levels, we can conclude
that high similarity is a must in order to get the fastest conver-
gence. This conclusion, that can seem quite logical or intuitive,
is supported by experimental results and explained by our anal-
ysis. To the best of our knowledge, this was one of the few re-
maining unanalyzed aspects of the LMS convergence behavior.

From a practical perspective, we can say that, if it is pos-
sible to choose the input or the desired response in any sense,
it would be wise to look for the greatest similarity between
both signals, in order to ensure fast convergence. On the other
hand, prewhitening of the input is a simple and effective way of
speeding up convergence for stochastic processes when there is
low similarity between desired response and input.

APPENDIX I
DERIVATION OF (23)

Since the input in (20) is sinusoidal, so is its correlation func-
tion

(54)

When the number of filter taps is , the correlation matrix
of the input vector is

(55)

which can be decomposed as , where

(56)

and

(57)

are the eigenvector and eigenvalue matrices, respectively.
The cross-correlation function between input and desired re-

sponse is also sinusoidal, when the desired response is given by
(21)

(58)

with as defined in (22). So, the cross-correlation vector is

(59)

After some manipulation, we get

(60)

Using the previous result and recalling (12), it is straightforward
to obtain (23).
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APPENDIX II
DERIVATION OF (43)

Since we consider only the correlated components in the
wide-sense stationary processes and , we can think
that could be obtained from by filtering it with some
unknown filter, with impulse response . In this case, the
following relations hold:

(61)

(62)

Considering that the -transform of is , the
previous relations in the transformed domain are

(63)

(64)

From (42), we also know that

(65)

Equating (63) and (65), we can obtain now the expression for
the filter relating and in the low similarity case,

(66)

The relation , that follows from the
hermitian symmetry property of the autocorrelation function

, has been used in the derivation of (66).
Making use of (66) and this same relation in (64), it is straight-
forward to obtain (43).
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