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ABSTRACT

A new algorithm for speech enhancement
based on the iterative Wiener filtering method
due to Lim-Oppenheim [1] is presented. We
propose the use of a generalized non-quadratic
cost function in addition to the classical MSE
term (quadratic term). The proposed  cost
function includes two signal-error  Cross-
correlation terms and a L2 norm term of the
filter weights. The  signal-error Cross-
correlation terms reduce both the residual
noise and the signal distortion in the enhanced
speech. The L2 norm term of the filter weights
reduces the overall gain of the filter,
decreasing the weight noise variance and
removing the side lobe of the filter response.
Two solutions to the mnew cost function are
presented: the classical non-causal type (ideal
Wiener), working in the frequency domain; and
a causal finite length in the time domain. In
both cases, as Lim’s algorithm, the filter output
of each iteration is used as "noiseless” speech
signal for the following one. Simulation results
demonstrate the effectiveness of these
algorithms.

1. INTRODUCTION

As it is well known, many applications of
speech  processing that show very high
performance in laboratory conditions degrade
dramatically when working in real

environments because of low robustness. In the

more common case (which is addressed here)
where only the corrupted signal source 1is
available, the noise reduction must be only
carried out by exploiting the statistical
differences between noise and signal sources.
One of the more popular algorithms is the
iterative speech enhancement method,
originally formulated by Lim-Oppenheim [1]
and based in a sequential MAP estimation of the
speech. This method consists of an iterative
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Wiener filtering of the noisy speech based on
spectral estimation of the noise (obtained in a
non-speech frames) and an AR modeling of the

‘speech. This speech model is continuously

improved by using the filtered speech obtained
in the preceding iteration. The convergence of
the algorithm is very impaired by the residual
noise influence in the speech AR modeling.
Also, this noise-speech coupling causes a
spectral distortion (“peaking” or “narrowness”
formant effect) and a subsequent intelligibility
loss of the speech. The authors proposed in
previous works [2-4] some solutions to these
drawbacks based in the use of HOS (Higher
Order Statistics) to overcome the mentioned
drawbacks of the Lim algorithm. They are based
on the HOS uncoupling properties between noise
(gaussian supposed) and speech. The obtained
results were very good but the computational
load was too great due to HOS estimations
mainly. In this paper, we propose the use of
generalized non-quadratic  cost function to
design the filter response. Section 2 gives a
short review of the iterative Wiener algorithm,
the new algorithm is presented in section 3.
Preliminary results are discussed in section 4,
and finally, conclusions are presented in
section 5.

2. ORIGINAL ITERATIVE WIENER
FILTERING

In the original Lim-Oppenheim Method [1],
noisy speech is enhanced by means of an
iterative Wiener filtering that is defined as:

Ps(f)
WO = FTyF Pr(D (1

where Pr(f) is the spectrum of the noise signal
r(n) estimated in non-speech frames, and Ps(f)
is a spectrum estimation of the unavailable
clean speech signal. An iterative Wiener
filtering is used to obtain a better estimation of



the AR speech modeling as shown in figure 1.
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Figure 1. Scheme of the classical iterative
Wiener algorithm.

At first glace, an  improvement of
performance can be expected after every
iteration since this  current AR speech
estimation is carried out from a cleaner speech
signal than filter estimation of the preceding
iteration. But other factors sidetrack this
iterative algorithm and a limitation in the
number of iterations must be taken in account.
Clearly the filtered speech signal contains a
smaller residual noise but it presents a larger
spectral distortion. Therefore, increasing the
number of iterations doesn't always involve a
better speech estimation. It is well known that
this algorithm leads to a narrowness ("peaking”
effects of the formants) and a shifting of the
speech  formants, providing an unnatural
sounding speech. These effects can be observed
in Figures 2.
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Figure 2. Evolution with iterations of the

formant "peaking” effect. SNR=0 dB

The formant peaking effect appears although
the exact Wiener filter was used in each
iteration, since the MMSE solution cause a
spectral envelope distortion. In [2] a detailed
convergence analysis of this algorithm s
carried out. It is proved that this estimated
Wiener filter tends to cancel all signal
frequencies with SNR lower than 4.77dB, and an
additional attenuation, proportionally to the
noise level, affects signal frequencies with

higher SNR, in comparison to the optimum
Wiener filter. Only the non-contaminated
speech frequencies undergo a null attenuation.

3. THE NON-QUADRATIC ALGORITHM

In the preceding section we commented the
existence of a tradeoff between noise reduction
level and signal spectral distortion in the
classical Wiener algorithm. The speech
estimation error obtained in the Wiener filter
output consists of two different terms: a signal
distortion, and a residual noise. The first term,
correlated with the speech, results very more
harmful to the listening than the second one, an
incorrelated-signal distortion. The Wiener
MMSE criterion treats both terms in a uniform
way.

In order to earn control over this signal-
noise distortions tradeoff we include two terms
measuring both effects in the cost function to
be minimized. So, we include a filter stress
term such as is next explained. Thus, we define
the following non-quadratic cost function:

L=B,E{e’(m)} +B, EZ{Z y(n)r(n— m)} +
+B, EZ{Ze(n)S(n - m)} +B,4 E{Z wfn} (2)

where e(n) is the global error signal, s(n) is the
clean speech signal, r(n) is the noise signal,
y(n) is the enhanced speech and w, are the
filter  coefficients. ~The B; are weighting

parameters driving the relative importance
given to the different terms. The first term
presents a linear dependence with the signal
power and the second and third ones present a
quadratic dependence. For homogeneity, the B,

and By parameters are normalized by the input

signal power estimation. The significance of all
terms are the following:

- lst term: the classic MSE term of the
Wiener filtering.

- 2nd term: claims for the orthogonality
between the noise r(n) and the enhanced
signal y(n). It works in the same way of the
MSE minimization (first term), strengthening
the residual noise removal.

- 3rd term: claims for the orthogonality
between the residual error e(n) (signal



s(n). It takes care for a minimum signal
distortion. It works in a complementary way of
the preceding term.

4th term: aims to the w, coefficient
solution of minimal L2-norm consistent with
the minimization of the other cost terms. It
tends to remove the filter weights with a
smaller influence in the minimization
process, decreasing the noise weight variance,
and therefore, removing the side lobe of the
filter response.

We points two solution types to the
minimization problem of new L cost function.
The classics non-causal Lim solution type
(ideal Wiener) and a causal finite-length. In
both cases, the consecutive iterations are
carried out like the Lim algorithm: the filter
output of each iteration is used as speech signal
s(n) for the following one.
3.1.Non-causal solution type

In this case we consider a non-causal and
unlimited length filter (ideal filter response)
and the minimization of the proposed
generalized cost function results directly 1in
the following filter response:

B, P,(f)+B; P2(F)

W(f)= 7 2
B, [Ps(f)+Pr(f)]+B2 P (f)+B; P () + B4

3)

This expression reduces to the known
ideal Wiener filter in the case of choosing the
weighting parameters as B;=1, rest of B;=0. The

numerator term qu(f) strengthens the high

level  signal frequencies preventing its
distortion. On the contrary, the term

denominator term Prz(f) strengthens the noise

level frequencies for an higher removal of
these. Both spectra are estimated like in the
Lim algorithm: P(f) by means of an AR

modeling and P (f) with smoothing periodogram

of the silence frames. The unrealizability of the
ideal non-causal filter is overcome in the same
way of the original Lim algorithm, by sampling
(fine, N=256 points) of the ideal W(f) response
and calculating the filter weights by inverse
FFT. Also, the signal filtering is carried out by
using 2N-FFT.

3.2.Causal solution type

The preceding solution uses an over-
dimensioned  filter length to prevent the
aliasing and the ripple implied in the inverse
FFT design method. A detailed study of the
significant length of the design filter suggests
that a filter length N=21 would be sufficient.
Working in the time domain, the direct
minimization of the L cost function (2) leads to
a “special normal equation” whose solution is:

W=(BiR,, +BoRy +BaR +Ball™ [BiBs + B3R, Ps)
=R7'P (4)
where double underlined indicates matrix and
simple underlined indicates vector. The signal
correlation coefficients are estimated from the
frame data samples and the noise correlation
ones from silence frames. This solution
requires a great computational burden and,
further, the inversion matrix can be produce
serious numerical problems. Thus, we prefer to
use the Steepest Descent (SD) algorithm, where

the gradient estimation responds to the
expression: ¥Y,.(n)= RW(n)-P.

4. PRELIMINARY RESULTS

In this section we present some comparative
results obtained with the proposed causal-time
domain SD algorithm, which has proven to be
the more efficient. Thus, in the figure 3 is
shown the LPC envelope of a enhanced speech
frame, by using: a) Classic Lim algorithm with
up 3 iterations and b) proposed algorithm with
two iterations and several combination of Bi

parameters, The global SNR of the noisy speech
is 9 dB. As can be seen, the peaking effect
(increasing with the iteration number) is
evident in the Lim results. On the contrary, the
peaking effect is very low with the proposed
algorithm (especially with B;= p3=0.5), and the

spectral matching is very high including the
valleys. Even the pure MMSE criterion
outperforms the Lim results by using the SD

algorithm.  The listening quality of the
enhanced signals  confirms  these results,
resulting always a better quality with the

proposed algorithm. With respect to objective
measures, not always correlated with the
subjective tests, we report an higher SNR
improvement in the Wiener algorithm results,
at least in the first iteration (after several
iterations, the peaking effect becomes dominant
and the SNR decreases quickly). On the



contrary, the proposed algorithm gives better
results in terms of spectral distances (Cosh,
Itakura and Cepstrum), more related with the
spectral distortion and in agreement with the
results in figure 4. Further results will be
available in the paper presentation.
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Figure 4. Spectral envelopes of the enhanced
speech. SNR Noisy speech=9 dB.

a) Classic Lim algorithm.
Solid line: noiseless original speech.’*’:noisy

speech. *.,’0” and ‘-.": enhanced speech after 1,2
and 3 iterations, respectively

b) Proposed algorithm.

Solid line: noiseless speech. '*': noisy speech.
“2:Bi=1, B3=0; ‘0":p=0.7, B3=0.3; *-.":$,=05, B2=0.5.
All cases Pr,=Py=0.

5. CONCLUSIONS

A new speech enhancement algorithm based
on an iterative Wiener filtering have been
proposed. We have defined a generalized non-
quadratic cost function including two error-
signal cross-correlation terms and a L2-norm of
the filter weight in addition to the classical
MSE term. The two cross-correlation terms
control two components of estimation error: the
signal distortion and the residual noise. The L2
weight term aims to remove the unnecessary
filter ~weights reducing the mnoise weight
variance and the side lobe of the filter
response. We have proposed two algorithms
solving the posed minimization problem: non
causal-frequency domain algorithm and causal-
time domain algorithm. Two approaches have
been presented for the time domain algorithm:
block and adaptive Steepest Descent estimation
of the filter weights. In anycase, the proposed
algorithms outperform the classical Wiener
algorithm both in spectral distance measures
and subjective listening. In the informal tests,
the SD algorithm gives the best quality over all
algorithms.
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