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Aims Clinical consequences of coronary artery disease (CAD) are varied [e.g. atrial fibrillation (AF) and heart failure (HF)], and 
current risk stratification tools are ineffective. We aimed to identify clusters of individuals with CAD exhibiting unique pat-
terns on the electrocardiogram (ECG) in an unsupervised manner and assess their association with cardiovascular risk.

Methods 
and results

Twenty-one ECG markers were derived from single-lead median-beat ECGs of 1928 individuals with CAD without a pre-
vious diagnosis of AF, HF, or ventricular arrhythmia (VA) from the imaging study in UK Biobank (CAD-IMG-UKB). An un-
supervised clustering algorithm was used to group these markers into distinct clusters. We characterized each cluster 
according to their demographic and ECG characteristics, as well as their prevalent and incident risk of AF, HF, and VA 
(4-year median follow-up). Validation and association with prevalent diagnoses were performed in an independent cohort 
of 1644 individuals. The model identified two clusters within the CAD-IMG-UKB cohort. Cluster 1 (n = 359) exhibited pro-
longed QRS duration and QT intervals, along with greater morphological variations in QRS and T-waves, compared with 
Cluster 2 (n = 1569). Cluster 1, relative to Cluster 2, had a significantly higher risk of incident HF [hazard ratio (HR): 
2.40, 95% confidence interval (CI): 1.51–3.83], confirmed by independent validation (HR: 1.77, CI: 1.31–2.41). It also showed 
a higher association with prevalent HF (odds ratio: 4.10, CI: 2.02–8.29), independent of clinical risk factors.

Conclusion Our approach identified a cluster of individuals with CAD sharing ECG characteristics indicating HF risk, holding significant 
implications for targeted treatment and prevention enabling accessible large-scale screening.
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Introduction
Coronary artery disease (CAD) is the main cause of cardiovascular 
mortality and morbidity worldwide.1 Coronary artery disease manifests 
heterogeneously across individuals resulting in distinct adverse out-
comes, which may be driven by cardiac ion channel remodelling in 
the context of acute or chronic ischaemia, or by myocardial scar tissue 
following infarction.2,3 Heart failure (HF, incidence of 26%),4 ventricular 
arrhythmias (VAs, 3–5%),5 and atrial fibrillation (AF, 0.2–5%)6 are 
common adverse outcomes in CAD, each requiring specific treat-
ment strategies.4,5,7 Considering the global burden of CAD, there is 
a need for accessible, cost-effective, and non-invasive tools that can 
be used for large-scale screening. Early risk stratification of patients 
is needed to optimize prevention strategies and ensure effective 
use of healthcare resources.

Electrocardiogram-based risk prediction strategies allow for afford-
able, non-invasive, and efficient ways to screen large populations.8

In CAD, these commonly rely on supervised models derived from stat-
istical9–11 and machine learning techniques.12–15 These models learn 
from prior labelled outcome data to make classifications in new unseen 
data supporting risk stratification in outcomes such as myocardial 
infarction.14 However, supervised models may oversimplify the het-
erogeneous nature of CAD, highlighting the need for ‘hypothesis- 
free’ methodologies to uncover ECG patterns through unsupervised 
approaches.16

Unsupervised clustering models based on ECG data are able to 
differentiate clusters of individuals within a population by identifying 
unique ECG characteristics specific to each cluster.16 These studies 

have demonstrated potential ability to risk stratify patients following 
acute coronary syndrome (ACS) at major risk of major adverse cardio-
vascular events17 and in patients with hypertrophic cardiomyopathy at 
elevated arrhythmic risk.18 However, the study in Syed and Guttag17 fo-
cused on a post-ACS patient cohort, which inherently limits the scope 
to individuals with a recent coronary event. A broader population-level 
definition of CAD would encompass a wider range of patients, including 
those at earlier stages of CAD enhancing the generalizability of the find-
ings. Furthermore, a longer follow-up period and focusing on specific 
outcomes would provide a more comprehensive and tailored long- 
term risk assessment potentially enabling the development of more ac-
curate predictive models for diverse CAD populations. Two previous 
studies have performed unsupervised clustering using a multimodal 
approach for CAD, which included clinical data, ECG markers, and 
advanced imaging features.19,20 These studies were able to identify 
distinct clinical and imaging profiles in CAD19,20 and provide better 
risk stratification for all-cause mortality compared with stress total 
perfusion deficit alone20; however, their dependence on cardiac im-
aging means the models developed have limited utility in large-scale 
screening and healthcare centres without easy access to advanced im-
aging technologies.

Our hypothesis is that there are distinct clusters of individuals with 
CAD who share similar morphological ECG features, which are in 
turn associated with specific cardiovascular outcomes. Accordingly, 
this study aimed to identify unique clusters of individuals with CAD 
using advanced ECG features derived from single-lead 10 s ECG signals 
using unsupervised clustering and to investigate the association of these 
clusters with incident and prevalent AF, HF, or VA.
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Materials and methods
Study population
The UK Biobank (UKB) study is a large-scale prospective cohort that 
contains half a million densely phenotyped individuals from the UK.21

From the UKB study, two cohorts of individuals were included in this 
study: individuals from the imaging study (IMG-UKB, 4 years of median 
follow-up) that had a standard 10 s 12-lead ECG recorded in a supine 
position at rest and individuals who participated in an exercise stress 
test (EST-UKB, 13 years of median follow-up), during which a single- 
lead ECG (lead I) signal was recorded at rest in the first 15 s (pre-test). 
All individuals involved in the UKB study provided informed consent. The 
UKB study has approval from the North West Multi-Centre Research 
Ethics Committee.21 This work was performed under UKB application 
number 8256. Additionally, available information included demographic 
data, cardiovascular risk factors, and health electronic records.

Electrocardiogram signal processing and 
characterization
Pre-processing of ECG signals involved high-pass filtering at 0.3 Hz, 
baseline wander correction through cubic splines interpolation,22

high-frequency noise removal by low-pass filtering at 40 Hz, and ex-
clusion of ectopic beats.23 A median heartbeat ECG was derived, 
and a wavelet-based delineator24 located ECG wave onset, peaks, and 
end timings. Characterization of ECG waveforms included standard and 
morphology-based indices. These ECG indices were considered due to 
prior evidence linking them to adverse cardiovascular outcomes.11,25,26

Standard indices comprised RR-interval, QRS amplitude, QRS complex 
slopes,27 QRS duration, ST segment amplitude, ST segment area, cor-
rected QT interval (QTc), corrected T-peak-to-end interval (Tpec), 
T-wave polarity, and T/QRS amplitude ratio. QRS and T-wave morpholo-
gies were mathematically characterized using Hermite functions28 to cap-
ture inter-subject variability. Additionally, morphologic variations in the 
T-waves compared with a normal reference were calculated through 
the T-wave morphologic variation (TMV) index.11 Supplementary 
material online, Table S1 provides details on the definition and calculation 
of each ECG feature. Supplementary material online, Methods provide fur-
ther information on the methodology of the ECG signal processing and 
feature extraction. All processing of the ECG signals was performed using 
custom software in MATLAB R2022b (The MathWorks Inc.).

CAD-IMG-UKB cohort
We used a set of 2551 UKB individuals with prevalent CAD from 
the IMG-UKB cohort (CAD-IMG-UKB; Figure 1). Health electronic re-
cords were used to define CAD according to the World Health 
Organization International Classification of Diseases29 ninth revision 
codes (ICD-9) as 410, 411, 414, and 429 and tenth revision codes 
(ICD-10) as I20 to I25 and the Office of Population Censuses and 
Surveys Classification of Surgical Operations and Procedures Fourth 
Revision codes (OPCS4) K40 to K42; K44 to K45; K49 to K50; and 
K75 (see Supplementary material online, Table S2). Individuals with a 
prior diagnosis of AF, HF, or VA before ECG acquisition (n = 348) 
were excluded. Atrial fibrillation was defined using ICD-10 codes I48 
to I48.9 and OPCS4 codes K62.1 to K62.4. Heart failure was defined 
using ICD-10 codes I50, I50.0, I50.1, I13.0, I13.2, and I50.9 and 
OPCS4 codes K59.6, K61.7, and K60.7. Ventricular arrhythmia was de-
fined using ICD-10 codes I46.0, I46.1, I46.9, I47.0, I47.2, and I49.0 and 
OPCS4 codes K57.6, K64.1, ×50.3 and ×50.4 (see Supplementary 
material online, Table S2). These diagnoses were defined within each 
study as self-reported or during admission to hospital.

Signals displaying significant electrode-driven artefacts, ectopic beats, 
and low correlation with their calculated median heartbeat ECG were 

excluded (n = 275). Ultimately, a total of 1928 individuals constituted 
the CAD-IMG-UKB cohort, which was used for the unsupervised clus-
tering analysis (Figure 1).

CAD-EST-UKB cohort
From a total of 1941 independent individuals with prevalent CAD from 
the EST-UKB cohort (CAD-EST-UKB; Figure 1), two subsets were ex-
tracted: (i) To validate the association of the unsupervised model with in-
cident AF, HF, and VA, the same exclusion criteria were used as described 
for CAD-IMG-UKB, leading to a total of 1644 individuals, and (ii) to find 
association with prevalent AF, HF, or VA diagnoses, we excluded ECGs of 
insufficient quality (n = 7) and individuals with AF, HF, or VA prior to a 
diagnosis of CAD (n = 102; Figure 1), leading to 1832 individuals.

Unsupervised identification of clusters
In the CAD-IMG-UKB cohort, to reduce multicollinearity, we removed 
those ECG features that exhibited a strong Spearman’s correlation 
(r2 > 0.8) with multiple other features. The remaining features were 
then standardized using z-score, centring the data around the mean 
and scaling it by the standard deviation.

We determined the optimal number of clusters using the ‘Silhouette 
score’ and the ‘Gap statistic’ for a range of 2–10 clusters (choosing 
the optimal number of clusters as the highest Gap statistic and 
Silhouette score; Supplementary material online, Figure S1).13,27 Then, 
a K-means clustering algorithm was performed to derive the centroids. 
The squared Euclidean distance was used to evaluate the distance be-
tween neighbours. The clustering analysis was performed blindly to 
clinical data, only relying on the ECG features.

Allocation to clusters
A support vector machine model30 was built to allocate individuals 
from the CAD-IMG-UKB and CAD-EST-UKB cohorts to each of the 
K-clusters identified with the K-means algorithm. We generated cluster 
plots to visualize the distance distribution of each individual to each 
cluster using the t-distributed Stochastic Neighbour Embedding algo-
rithm (t-SNE), which embeds high-dimensional points into low dimen-
sions31 allowing for a graphical representation of the allocation into 
clusters of individuals in the CAD-EST-UKB cohort (Figure 2). 
Subsequently, a representative median heartbeat was calculated from 
each cluster to characterize the ECG morphology representing each 
cluster (Figure 3). t-SNE and median heartbeats plots were generated 
using MATLAB R2022b (The MathWorks Inc.).

Contribution of ventricular depolarization 
and repolarization features in the 
clustering process
To discern the individual contributions of ventricular depolarization and 
repolarization features to the K-clusters and to evaluate their specific im-
pact on detecting and predicting HF, AF, or VA diagnoses in individuals 
with CAD, two analyses were conducted by repeating the main analyses 
using each group of features independently (the total number of features 
was 8 for the depolarization analysis and 11 for the repolarization ana-
lysis; Supplementary material online, Table S1).

Association analyses of clusters with 
incident and prevalent atrial fibrillation, 
heart failure, and ventricular 
arrhythmia risk
Features with less than 10% missing data were imputed using the 
R library ‘mice’ (multivariate imputation by chained equations). 
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The imputation was performed following the classification and 
regression trees method, with a total of 10 iterations to refine the 
estimates. Continuous variables are reported as medians and inter-
quartile range (IQR), while categorical variables are presented as 
numbers and percentages. Differences in ECG, demographic (sex, age, 
alcohol, and smoking status), and clinical features [body mass index 
(BMI), systolic and diastolic blood pressure (SBP and DBP), left ventricu-
lar ejection fraction (LVEF), LDL, HDL, triglycerides, and diabetes] 
between clusters were compared using the Wilcoxon rank-sum test 
for continuous variables and the Fisher test for categorical variables.

Association with incident AF, HF, and VA risk in the CAD-IMG-UKB 
and CAD-EST-UKB cohorts was tested using univariable and multivari-
able Cox proportional hazards models. Age, sex, BMI, SBP, DBP, 
alcohol, and smoking status were considered as covariates for the mul-
tivariable Cox models. Additionally, HDL, LDL, and triglycerides were 
included as covariates in the association with incident diagnoses for 
the CAD-EST-UKB cohort, as these covariates were only available 
for this cohort. Hazard ratio (HR), 95% confidence interval (CI) and 
P-values are reported.

To test for association with prevalent AF, HF, and VA risk in the 
CAD-EST-UKB, we used univariable and multivariable binomial logistic 
regression models. Multivariate models included age, sex, BMI, SBP, 

Figure 1 Outline of the study design. From the UK Biobank study, we derived two independent populations of individuals with prevalent coronary 
artery disease: the CAD-IMG-UKB and the CAD-EST-UKB cohorts. The CAD-IMG-UKB cohort was used to perform an unsupervised clustering mod-
el based solely on electrocardiogram features and test the association of the clusters with incident atrial fibrillation, heart failure, and ventricular ar-
rhythmia diagnoses. The CAD-EST-UKB cohort was used to validate the association of incident diagnoses and to test the association of the 
clusters with prevalent ones. Inclusion and exclusion criteria for each analysis are presented. CAD, coronary artery disease; AF, atrial fibrillation; 
HF, heart failure; VA, ventricular arrhythmia; CAD-IMG-UKB, individuals with prevalent CAD in the UKB study who participated in the imaging study; 
CAD-EST-UKB, individuals with prevalent CAD in the UKB study who participated in the exercise stress test study.

Figure 2 Two-dimensional representation of the clusters identified in 
the CAD-IMG-UKB cohort along with the allocation of individuals from 
the association analyses with incident and prevalent diagnoses in the 
CAD-EST-UKB cohort within each cluster. Each point represents an al-
located individual. 
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DBP, HDL, LDL, triglycerides, diabetes, alcohol, and smoking status as 
covariates. We report the performance using odds ratio (OR), 95% CI, 
and P-values.

For both Cox proportional hazard and binomial logistic regression 
models, multivariable models were constructed adjusting for covariates 
with less than 10% of missing data. Subsequently, stepwise regression 
models were applied to identify the minimal group of features that op-
timally describe the model based on the Akaike information criterion. 
The Kaplan–Meier survival curves were plotted using the R library ‘surv-
miner’. Coordinate charts were plotted to represent differences in me-
dian clinical and ECG features using the R library ‘ggplot’. The most 
significant (P < 0.001) and independent features are represented in 
each plot. Data points represent the median for each feature, and 
the scale is normalized using min–max scale (ranges from 0 to 1) for 
each group of features. Categorical features are represented in bar 
plots. The units for each variable are indicated in Table 1. Statistical sig-
nificance was assumed when P < 0.001 after Bonferroni correction. 
Statistical analyses, survival curves, coordinate charts, and box plots 
were performed using R (version 4.2.2).

Results
Study population
The median age in the CAD-IMG-UKB cohort was 70 years (IQR 10), 
and 69.7% individuals were male (Table 1). The BMI levels showed indi-
viduals were in overweight, with a median of 27.18 kg/m2 (IQR 5.45) 
and had elevated SBP levels, with a median of 140.5 mmHg (IQR 
25.5). In the CAD-EST-UKB cohort, the median age was 64 years 
(IQR 7) and 72.1% were male (Table 2). Further demographic and clin-
ical characteristics of both cohorts are shown in Tables 1 and 2.

Unsupervised clustering analysis
From the 24 standardized ECG features, the upward and downward 
slopes of the QRS complex were removed from the model due to their 
high correlation with its amplitude and duration. Additionally, the 
Hermite-based width for the reconstruction of the T-wave was with-
drawn due to its high correlation (>0.8) with its Hermite Base 
2. Therefore, the final unsupervised clustering model included 21 stan-
dardized features that represent components of ventricular 

depolarization and repolarization in the median heartbeat ECG of 
each individual (see Supplementary material online, Table S1).

The optimal number of clusters indicated by the Silhouette score 
was 2, with a corresponding coefficient of 0.47 (see Supplementary 
material online, Figure S1). The Gap statistic showed no significant in-
crease for other number of clusters. Thus, the 2-means clustering algo-
rithm identified two distinct clusters of ECG features in CAD.

Allocation to clusters
In the CAD-IMG-UKB cohort, Cluster 1 included 359 individuals 
and Cluster 2 included the remaining 1569 individuals (Table 1 and 
Figure 1). In the association with incident diagnoses for the CAD- 
EST-UKB cohort, 299 individuals were allocated to Cluster 1, while the re-
maining 1345 individuals were allocated to Cluster 2 (Table 2 and Figure 1). 
Finally, in the association analysis with prevalent diagnoses for the 
CAD-EST-UKB cohort, Cluster 1 comprised 339 individuals, while 1493 
individuals were allocated to Cluster 2. Figure 2 illustrates a 2D represen-
tation of the allocated individuals from the association analyses for incident 
and prevalent diagnoses for the CAD-EST-UKB cohort to each cluster.

Differences in standard and morphologic 
electrocardiogram indices between 
clusters
Figure 3 illustrates the representative ECG heartbeats of Clusters 1 and 
2 in the CAD-IMG-UKB cohort. Individuals in Cluster 1 had significantly 
wider QRS complexes (Table 1; Supplementary material online, 
Figure S2). The morphological differences in the QRS complex between 
the two clusters were mainly characterized by the Hermite’s Bases 1 
and 2, exhibiting different Q and S waves, and QRS amplitudes as shown 
in Table 1. Specifically, Cluster 1 exhibited lower median values of these 
bases when compared with Cluster 2 (2.2 vs. 2.6 for Hermite’s Bases 1 
and 0.1 vs. 0.4 for Hermite’s Base 2) and exhibited higher variability (IQR 
1.37 vs. 0.49 for Hermite’s Base 1 and 0.66 vs. 0.27 for Hermite’s Base 2). 
The higher contribution of QRS Hermite’s Bases 1 and 2 in the QRS re-
construction in Cluster 2 indicates more pronounced Q and R waves 
than in Cluster 1 (see Supplementary material online, Figure S2).

Additionally, significant differences in ventricular repolarization- 
related features were observed between the two clusters (Table 1). 
Cluster 1 exhibited a larger area under the ST segment and larger de-
pression of the ST segment’s amplitude (median of −8.7 µV), lower 

Figure 3 Representative median and 25–75% interquartile range (shaded) heartbeat ECG for each cluster in the CAD-IMG-UKB cohort.
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T-wave amplitude, and a longer QTc interval (25 ms on average). 
Longer Tpec intervals in Cluster 1 (7 ms on average) suggest that 
the prolonged QTc interval is not driven by QRS duration increase 
alone. Morphological variations in the T-wave were characterized 
by the Hermite’s Bases 1 and 2, TMV indices, and T-wave polarity. 
A larger contribution of the Hermite’s Base 1 in Cluster 2 [5.2 
(IQR 0.69)] is associated with positive and monophasic T-waves. 
In contrast, Cluster 1 showed more negative and biphasic T-waves 
associated with the larger contribution of the Hermite Base 2 

[0.1 (IQR 0.55)] vs. 0.01 (IQR 0.20); Supplementary material online, 
Figure S3]. In the same line, the majority of inverted T-waves were 
found in Cluster 1 (19.5%). The TMV indices were two-fold higher 
in Cluster 1 [4.3 (IQR 4.65)], indicating larger morphological differ-
ences from a reference T-wave when compared with Cluster 2 [1.8 
(IQR 1.37)]. Figure 4 summarizes the ECG profiles for each cluster 
within the CAD-IMG-UKB cohort.

Findings observed for ECG features in the CAD-EST-UKB cohort 
were concordant with those in CAD-IMG-UKB (Table 2).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .

Table 1 Baseline and electrocardiogram characteristics for all individuals and clusters in the CAD-IMG-UKB cohort

Characteristic All (n = 1928) Cluster 1 (n = 359) Cluster 2 (n = 1569) P-value

Demographic and clinical

Male sex, no. [%] 1344 [69.7%] 287 [79.94%] 1057 [67.37%] <0.001
Age, yr 70 [10] 70 [8] 69 [10] 0.01

BMI, kg/m2 27.18 [5.45] 27.80 [5.57] 27.04 [5.32] 0.01

SBP, mmHg 140.5 [25.5] 143 [23.62] 140 [25.25] 0.001
DBP, mmHg 76 [13] 77 [13.62] 75.5 [13] 0.08

Diabetes, no. [%] 268 [13.90%] 63 [17.55%] 205 [13.07%] 0.03

Smoker, no. [%] 69 [3.58%] 13 [3.62%] 56 [3.57%] 1.00
Alcohol, no. [%] 315 [16.34%] 54 [15.04%] 261 [16.63%] 0.48

LVEF, % 58.93 [8.89] 56.85 [10.22] 59.38 [8.28] <0.001
ECG indices

RR interval, ms 1084.0 [220.5] 1064.0 [216] 1090.0 [220] 0.01

Depolarization ECG indices

Standard indices
QRS-Amplitude, µV 840.9 [389.92] 824.0 [410.56] 844.2 [384.14] 0.26

QRS-width, ms 82.0 [26] 104.0 [60] 78.0 [22] <0.001
Morphology-based indices

QRS-Hermite width, ms 12.7 [2.42] 14.6 [5.28] 12.5 [2.11] <0.001
QRS-Hermite error 0.0 [0.01] 0.0 [0.03] 0.0 [0.01] <0.001
QRS-Hermite Base 1 2.6 [0.6] 2.2 [1.37] 2.6 [0.49] <0.001
QRS-Hermite Base 2 0.4 [0.31] 0.1 [0.66] 0.4 [0.27] <0.001
QRS-Hermite Base 3 −0.5 [0.59] −0.7 [1.36] −0.5 [0.51] 0.01

QRS-Hermite Base 4 −0.1 [0.41] −0.3 [0.52] 0.0 [0.38] <0.001
Repolarization ECG indices

Standard indices

ST segment area, µV2 23.4 [21.94] 25.0 [28.01] 23.0 [20.6] <0.001
ST segment amplitude, µV 5.6 [30.91] −8.7 [42.48] 7.5 [27.85] <0.001
T-amplitude, µV 190.8 [113.43] 140.6 [120.83] 198.7 [106.05] <0.001
QTc interval, ms 395.6 [34.72] 417.9 [50.07] 392.6 [31.47] <0.001
Tpec interval, ms 76.7 [13.04] 83.1 [25.61] 76.0 [11.22] <0.001

Morphology-based indices

T-Hermite error 0.05 [0.04] 0.1 [0.07] 0.0 [0.03] <0.001
T-Hermite Base 1 5.18 [0.88] 4.4 [6.77] 5.2 [0.69] <0.001
T-Hermite Base 2 0.03 [0.22] 0.1 [0.55] 0.0 [0.2] <0.001
TMV index 2.0 [1.91] 4.3 [4.65] 1.8 [1.37] <0.001
TMV index (T-peak to T-end) 1.9 [1.8] 2.8 [3.11] 1.8 [1.59] <0.001
Inversed T-polarity 91 [4.72%] 70 [19.50%] 21 [1.34%] <0.001

Other ECG indices
Ratio T-amplitude/QRS-amplitude 0.2 [0.15] 0.2 [0.16] 0.2 [0.14] <0.001

Number [%]; median [interquartile range]; bold indicates P < 0.001.
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LVEF, left ventricular ejection fraction; ECG, electrocardiogram; QTc, corrected QT interval; Tpec, 
corrected T-peak to T-end interval; TMV, t-wave’s morphological variations index.
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Differences in demographic and clinical 
features between clusters
As shown in Table 1 and Figure 4, the distribution of demographic and 
clinical features was similar across the two clusters in the CAD- 
IMG-UKB cohort. The median age was 70 years (IQR 8) in Cluster 1 
and 69 years (IQR 10) in Cluster 2, with 79.94% male in Cluster 1 

and 67.37% male in Cluster 2 (P < 0.001). Among the cardiovascular 
risk factors, individuals in Cluster 1 exhibited higher SBP (143 mmHg 
vs. 140 mmHg) and had lower LVEF (56.85% vs. 59.38%) than those 
in Cluster 2. Additional details regarding differences in the characteris-
tics among clusters are provided in Table 1 and Supplementary material 
online, Figure S4.
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Table 2 Baseline and electrocardiogram characteristics for all individuals and clusters in the CAD-EST-UKB cohort

Characteristic All (n = 1644) Cluster 1 (n = 299) Cluster 2 (n = 1345) P-value

Demographic and clinical

Male sex, no. [%] 1186 [72.1%] 250 [83.61%] 936 [69.59%] <0.001
Age, yr 64 [7] 65 [6] 64 [7] 0.003

BMI, kg/m2 28.15 [5.6] 28.95 [6.74] 28.04 [5.37] 0.03

SBP, mmHg 137 [22] 138 [20] 136.5 [22.5] 0.16
DBP, mmHg 78.5 [12.5] 78.5 [13] 78 [12.5] 0.86

LDL, mmol/L 2.66 [0.98] 2.55 [0.96] 2.67 [0.98] 0.01

HDL, mmol/L 1.22 [0.4] 1.18 [0.36] 1.23 [0.42] 0.01
Triglycerides, mmol/L 1.54 [1.11] 1.61 [1.09] 1.53 [1.12] 0.49

Diabetes, no. [%] 276 [16.79%] 66 [22.07%] 210 [15.61%] 0.01

Smoker, no. [%] 150 [9.12%] 29 [9.70%] 121 [9.00%] 0.66
Alcohol, no. [%] 337 [20.50%] 61 [20.40%] 276 [20.52%] 1.00

ECG indices

RR interval, ms 970.0 [204] 928.0 [234] 982.0 [204] <0.001
Depolarization ECG indices

Standard indices

QRS-amplitude, µV 1113.5 [514.09] 1091.7 [534.44] 1117.4 [512.17] 0.24
QRS-width, ms 86.0 [32] 106.0 [50] 82.0 [24] <0.001

Morphology-based indices

QRS-Hermite width, ms 12.4 [2.17] 13.9 [3.68] 12.2 [2] <0.001
QRS-Hermite error 0.0 [0.01] 0.0 [0.02] 0.0 [0.01] <0.001
QRS-Hermite Base 1 2.5 [0.71] 2.0 [1.37] 2.5 [0.61] <0.001
QRS-Hermite Base 2 0.3 [0.38] 0.1 [0.9] 0.4 [0.32] <0.001
QRS-Hermite Base 3 −0.6 [0.6] −0.8 [1.05] −0.6 [0.54] <0.001
QRS-Hermite Base 4 −0.1 [0.4] −0.3 [0.44] −0.1 [0.39] <0.001

Repolarization ECG indices
Standard indices

ST segment area, µV2 34.5 [29.44] 39.5 [37.55] 33.5 [27.92] <0.001
ST segment amplitude, µV 11.1 [40.58] −1.9 [61.35] 12.9 [38.35] <0.001
T-amplitude, µV 242.7 [143.15] 181.9 [125.74] 255.0 [138.39] <0.001
QTc interval, ms 396.9 [35.23] 416.1 [39.7] 393.7 [32.73] <0.001
Tpec interval, ms 78.6 [14.5] 86.4 [26.52] 77.8 [12.78] <0.001

Morphology-based indices

T-Hermite error 0.1 [0.04] 0.1 [0.06] 0.1 [0.03] <0.001
T-Hermite Base 1 5.2 [0.82] 4.7 [3.62] 5.2 [0.69] <0.001
T-Hermite Base 2 0.0 [0.24] 0.2 [0.56] 0.0 [0.2] <0.001
TMV index 2.1 [1.86] 4.0 [4.36] 1.9 [1.35] <0.001
TMV index (T-peak to T-end) 2.0 [1.92] 2.9 [2.91] 1.8 [1.73] <0.001
Inversed T-polarity 65 [3.95%] 52 [17.39%] 13 [0.97%] <0.001

Other ECG indices

Ratio T-amplitude/QRS-amplitude 0.2 [0.15] 0.2 [0.14] 0.2 [0.14] <0.001

Number [%]; median [interquartile range]; bold indicates P < 0.001.
BMI, body mass index; SBP, systolic blood pressure; DBP, diastolic blood pressure; LDL, low-density lipoprotein; HDL, high-density lipoprotein; ECG, electrocardiogram; QTc, corrected 
QT interval; Tpec, corrected T-peak to T-end interval; TMV, T-wave’s morphological variations index; AF, atrial fibrillation; HF, heart failure; VA, ventricular arrhythmia.
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Regarding the CAD-EST-UKB cohort, in contrast to the CAD-IMG- 
UKB cohort, no significant differences were found in levels of SBP. The 
rest of the findings were consistent with those in the CAD-IMG-UKB 
cohort (Table 2).

Differences in prevalent coronary artery 
disease diagnoses of ICD9, ICD10, and 
OPCS-4 codes between clusters
In the CAD-IMG-UKB cohort, nominally significant differences were 
observed for angina pectoris (I20.9) [n = 65 (18%) vs. n = 362 (23%), 
P = 0.03] and saphenous vein graft replacement of one coronary artery 
(K40.1) [n = 3 (1%) vs. n = 2 (0.1%), P = 0.05] when comparing Cluster 
1 vs. Cluster 2.

In the CAD-EST-UKB cohort, additional significant differences were 
found between clusters for saphenous vein graft replacement for two 
coronary arteries [n = 5 (2%) vs. n = 5 (0.4%), P = 0.02]. The remaining 
results aligned with those from the CAD-IMG-UKB cohort (see 
Supplementary material online, Table S3).

There was no significant difference in the number of diagnoses of 
myocardial infarction between clusters, in either cohort.

Cluster-based association with incident 
atrial fibrillation, heart failure, or 
ventricular arrhythmia risk
In the CAD-IMG-UKB cohort, there were a total of 101 incident AF [in 
Cluster 1: 33 (9.19%) vs. Cluster 2: 68 (4.33%)], 80 incident HF [29 
(8.08%) vs. 51 (3.25%)], and 15 incident VA diagnoses [6 (1.67%) vs. 
9 (0.57%)] out of 1928 individuals. The univariable Cox model demon-
strated that belonging to Cluster 1 was significantly associated with 
higher risk of incident HF in 4 years of median follow-up [HR: 2.78 
(CI: 1.76–4.39), P < 0.001], and this association remained significant in 
a multivariable Cox model [HR: 2.40 (CI: 1.51–3.83), P < 0.001; 
Table 3; Supplementary material online, Table S4]. Similarly, a univariable 
Cox model revealed a significant association between Cluster 1 and the 
risk of incident AF [HR: 2.32 (CI: 1.53–3.52), P < 0.001], which remained 
significant in the multivariable Cox model [HR: 1.99 (CI: 1.30–3.04), 
P = 0.001]. Regarding risk for incident VA, the univariable Cox model 
revealed a nominally significant association [HR: 3.06 (CI: 1.09–8.60), 
P = 0.03], which became non-significant in the multivariable model.

In the independent CAD-EST-UKB cohort, there were a total of 267 
incident AF diagnoses [in Cluster 1: 63 (21.07%) vs. Cluster 2: 204 

Figure 4 Clinical and electrocardiogram profiles for each cluster in the CAD-IMG-UKB cohort. (A) The quantitative clinical features. (B) Categorical 
clinical features are represented in bar plots. (C ) The most significant and independent depolarization-related electrocardiogram features. (D) The most 
significant and independent repolarization-related electrocardiogram features. Data points represent the median for each feature. In each plot, the scale 
is normalized using min–max to the range of each group of features. Units for each variable correspond to those indicated in Table 1.
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(15.17%)] and 209 incident HF [63 (21.07%) vs. 146 (10.86%)] out of 
1644 individuals. Both the univariable and multivariable Cox models 
supported the association of Cluster 1 with an increased risk of incident 
HF [HR: 2.20 (CI: 1.64–2.96), P < 0.001 and HR: 1.77 (CI: 1.31–2.41), 
P < 0.001, respectively; Table 3]. Figure 5 shows the Kaplan–Meier 
survival curves for incident HF risk in the CAD-IMG-UKB cohort, dem-
onstrating a decreased survival probability for individuals in Cluster 
1. The association with incident AF risk was not validated in the 
CAD-EST-UKB cohort (Table 3).

Cluster-based association with prevalent 
atrial fibrillation, heart failure, or 
ventricular arrhythmia risk
In the CAD-EST-UKB cohort, when including prevalent cases, there 
were a total of 85 [in Cluster 1: 20 (5.90%) vs. Cluster 2: 65 (4.35%)] 
prevalent AF diagnoses, 34 prevalent HF diagnoses [17 (5.01%) vs. 17 

(1.14%)], and 10 prevalent VA diagnoses [3 (0.88%) vs. 7 (0.47%)]. 
The univariate binomial logistic regression model revealed a signifi-
cant association with prevalent HF diagnoses, with an OR and CI of 
4.57 (2.30–9.08) and P < 0.001, which remained significant in the mul-
tivariable model [OR: 4.10 (CI: 2.02–8.29), P < 0.001; Table 4; 
Supplementary material online, Table S5). No association with AF 
or VA was observed.

Contribution of depolarization and 
repolarization features in the clustering 
process
The clustering analysis using only the repolarization-related features 
revealed a significant association with risk for incident AF [HR: 1.43 
(CI: 1.04–1.96), P = 0.03], incident HF [HR: 1.59 (CI: 1.13–2.24), 
P = 0.008], and incident VA [HR: 2.05 (CI: 1.12–3.76), P = 0.02] when 
validated in the CAD-EST-UKB cohort. Regarding the association 

Figure 5 Survival curves for risk of incident heart failure by Clusters 1 and 2 demonstrate strong risk stratification in the CAD-IMG-UKB cohort.
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Table 3 Cox models for incident risk of atrial fibrillation, heart failure, and ventricular arrhythmia risk in the 
CAD-IMG-UKB and CAD-EST-UKB cohorts

Type of CVD Univariate model Multivariate model

HR (95% CI) P-value HR (95% CI) P-value

Hazard ratio for AF, HF, and VA risk in the CAD-IMG-UKB cohort
HF 2.78 (1.76–4.39) <0.001 2.4 (1.51–3.83) <0.001
AF 2.32 (1.53–3.52) <0.001 1.99 (1.30–3.04) 0.001
VA 3.06 (1.09–8.60) 0.03 2.67 (0.94–7.63) 0.07
Hazard ratio for AF, HF, and VA risk in the CAD-EST-UKB cohort

HF 2.2 (1.64–2.96) <0.001 1.77 (1.31–2.41) <0.001
AF 1.55 (1.16–2.05) 0.003 1.31 (0.98–1.75) 0.07
VA 1.48 (0.81–2.69) 0.2 — — —

Bold indicates P < 0.05.
AF, atrial fibrillation; HF, heart failure; VA, ventricular arrhythmia; CVD, cardiovascular disease; HR, hazard ratio; CI, confidence interval.
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with prevalent HF diagnoses in the CAD-EST-UKB cohort, Cluster 1 
showed a significant association [OR: 2.75 (CI: 1.28–5.90), P = 0.009] 
(see Supplementary material online, Table S6). Most of the individuals 
classified in the HF-risk cluster (81.54%) matched those from the origin-
al Cluster 1 using all features, suggesting that similar clusters are ob-
tained using only repolarization features. When only depolarization 
features were considered, no association with HF, AF, or VA was found 
(see Supplementary material online, Table S7).

Discussion
In this study, we developed, tested, and validated a model to identify dis-
tinct ECG-based morphological clusters of individuals with CAD in an 
unsupervised manner using short 10 s single-lead ECGs. The main find-
ing of this study is the identification of individuals with CAD mapping to 
two distinct ECG morphological clusters, of which Cluster 1, relative to 
Cluster 2, showed a stronger association with both incident and preva-
lent HF, independently of age, sex, and other clinical variables.

Given the configuration of the clusters in our unsupervised model, 
the evaluation metrics indicated moderate separation between clusters 
with minimal overlapping between the groups, while no significant im-
provement was observed when tested for other configurations (3–10 
clusters). Thus, suggesting that this configuration of clusters adequately 
captures the underlying structure of the data without adding unneces-
sary complexity to the model.

Individuals in Cluster 1 exhibited significant associations with inci-
dent and prevalent HF, suggesting that the shared ECG features in 
this cluster reflect an underlying mechanical and/or electrophysio-
logical predisposition to HF. These ECG features included wider 
QRS complexes, longer QTc and Tpec intervals, a greater preva-
lence of inverted T-waves in lead I, and higher T-wave morphological 
variations, all of which are known clinical biomarkers associated with 
increased risk in the general population.27,32–34 Individuals in Cluster 
1 also showed higher prevalence of established clinical risk factors in 
CAD, including a lower end of normal LVEF (56.85% compared with 
59.38% in Cluster 2) and higher blood pressure.1 Additionally, 43 out 
of the 235 individuals in Cluster 1 with available LVEF information 
had a LVEF below 50%, compared with 85 out of the 1015 in 
Cluster 2. The larger proportion of participants in Cluster 1 with a 
LVEF < 50% indicates that individuals in this cluster share ECG fea-
tures reflecting LV dysfunction that may predispose to developing 
the clinical syndrome of HF.

Coronary artery disease is one of the main causes of HF, and indivi-
duals diagnosed with both CAD and concomitant HF exhibit a signifi-
cant increase in mortality rate.35,36 So far, no association with HF has 
been declared in previous unsupervised models in CAD.19,20,37,38

These models had offered prognostic value in typical outcomes in 
CAD (i.e. mortality, myocardial infarction, stroke, and stenosis) using 
as input demographic, biochemical, standard ECG, imaging, and genetic 

data.19,20,37,38 Our ECG-based model was able to identify a subgroup of 
individuals with CAD at a higher risk of having or developing HF based 
solely on advanced ECG features, suggesting that the inclusion of these 
features is capturing relevant information on the potential structural 
and electrophysiological substrate leading to HF, thereby enhancing 
its association with incident and prevalent HF diagnoses. These stand-
ard and advanced ECG features were extracted from short single-lead 
ECGs at rest, with low computational complexity, enabling an afford-
able, fast, and non-invasive method for screening HF risk in CAD 
populations.

Considering ECG markers may reflect undiagnosed HF, to deter-
mine whether the association with HF in CAD is primarily driven by 
abnormalities in the depolarization or repolarization phase, we con-
ducted additional analyses incorporating ECG features specific to 
each of these phases. We discovered that among the features used 
in our model, the parameters related to ventricular repolarization 
formed the primary component in determining the clusters, and spe-
cifically the association of Cluster 1 with incident risk of AF, HF, and 
VA. Unlike our study including all features, the clusters derived from 
only repolarization features have a stronger association with VA, sug-
gesting that VA may be more closely linked to abnormalities in the re-
polarization process as reported in previous studies.11,39 Although the 
depolarization features used in this study did not indicate a higher in-
cidence or prevalence of HF on their own, some of these features pro-
vided additional risk information when combined together with the 
repolarization features (i.e. QRS width, Hermite’s Base 2, and error 
of the reconstruction). In our main study, Cluster 1 exhibited an in-
creased QRS duration, which is common in HF.32 However, studies 
have shown prolongation of QRS is typically observed in more ad-
vanced stages of HF.40,41 Therefore, when predicting the risk of inci-
dent HF in CAD, depolarization features may be less relevant in the 
earlier stages of the disease progression. Our findings suggest risk 
for HF in CAD could primarily manifest as abnormalities in duration 
and dispersion of ventricular repolarization. This is in agreement 
with the previous studies showing HF is frequently associated with re-
polarization features.34,42–44

We did not observe any association of our clusters with either inci-
dent or prevalent risk of AF and VA. Coronary artery disease is an im-
portant risk factor for AF45; however, we did not find a definitive 
association in this study. This highlights the need for further research, 
potentially incorporating additional ECG features. Future studies should 
explore this using longer ECG recordings with availability of the 12-leads 
and inclusion of P-wave parameters.7 Regarding VA, our cohorts encom-
passed a limited number of VA events as found in the general population, 
which limited statistical power to conduct this study.

One of the strengths of our methodology is its robustness to ECGs 
recorded under different postural changes. While the unsupervised 
model was developed using 10 s resting ECGs (lead I) in a supine pos-
ition (CAD-IMG-UKB cohort), it was validated with stress test ECGs 
recorded on a bike (CAD-EST-UKB). Variations in body posture can 
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Table 4 Binomial logistic regression for prevalent atrial fibrillation, heart failure, and ventricular arrhythmia risk in the 
CAD-EST-UKB cohort

Type of CVD Univariate model Multivariate model

OR (95% CI) P-value OR (95% CI) P-value

HF 4.57 (2.30–9.08) <0.001 4.10 (2.02–8.29) <0.001
AF 1.38 (0.83–2.29) 0.22 — — —

VA 1.90 (0.49–7.33) 0.36 — — —

Bold indicates P < 0.05.
AF, atrial fibrillation; HF, heart failure; VA, ventricular arrhythmia; CVD, cardiovascular disease; Std; standard error.
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affect ECG signal amplitude and morphology, though less so in lead I, as 
shown in Mincholé et al.46 Even some studies suggest that such varia-
tions may be significant enough to either mask or mimic signs of ischae-
mia in the ECG.47 Additionally, individuals in CAD-EST-UKB were 
younger and had longer follow-up period. Therefore, validating our 
findings in the CAD-EST-UKB cohort enhances the model’s generaliz-
ability and robustness, reducing overfitting risks and improving clinical 
applicability. This approach can potentially be further validated in any 
dataset that includes ECG raw signals from lead I and minimum 10 s 
duration at rest.

Among the limitations, first we recognize some clinical variables ex-
hibited a considerable amount of missing data (>10%), which limited 
their inclusion in the analyses. Second, our study was constrained by 
a limited population size of individuals with CAD. Finally, although 
this study included individuals from multiple ancestries, the majority 
(>90%) were of European ancestry. Future research should replicate 
similar studies in cohorts with diverse ancestries to enhance the gener-
alizability of the findings.

Conclusions
Our analysis has identified in an unsupervised manner a group of in-
dividuals with CAD at risk of HF (Cluster 1) based on 10 s single-lead 
ECGs, allowing affordable and fast risk assessment with potential for 
application in large populations. Cluster 1 showed abnormalities in 
the ECG associated with delayed ventricular conduction and in-
creased repolarization time compared with Cluster 2. Moreover, in-
dividuals in Cluster 1, relative to Cluster 2, were at a higher prevalent 
and incident HF risk independent of age, gender, or differences in 
other risk factors. Our findings highlight the potential utility of our 
model to identify individuals with CAD at increased risk of HF, cru-
cial step to optimize effective therapeutic measures and prioritize 
targeted prevention measures.
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