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Abstract

In this paper we present the extension of transform cod-
ing compression methods to multilead ECG recordings in
order to reduce the inter-lead correlation. Two orthogonal
expansions are considered: the Karhunen-Loéve transform
and a fast approximation of it based on wavelet packets,
also known as best basis algorithm. The multilead com-
pression algorithm with wavelet packets achieves an aver-
age compression ratio of 30.5:1 in two-leads records from
MIT-BIH Arrythmia database, in contrast to 21.4:1 for the
single-lead algorithm with the same distortion. Better re-
sults could be obtained in ECG recordings with more than
two leads.

1. Introduction

The growing amount of data coming from digital record-
ing of ECG signals needs data compression techniques.
Data compression can be understood as the process of de-
tecting and removing redundancies in a signal [1]. Three
different redundancy sources can be distinguished in the
ECG signal: time correlation between the samples of a sin-
gle beat (intra-beat correlation), beat-to-beat quasi-periodic
behavior (inter-beat correlation) and the inter-lead correla-
tion.

Data compression methods can be classified in two main
families: loss-less and lossy methods. The former can ob-
tain an exact reconstruction of the original signal, but they
only achieve very low values of compression ratio (around
3:1 for ECG) [1]. In constrast, lossy methods do not ob-
tain an exact reconstruction, but higher compression ratios
can be obtained. This is the reason why the latter family is
preferred for ECG signals. Typically three different groups
are considered for the ECG signal: direct methods, trans-
Sform methods and parameter extraction [1). Most of these
methods are independently applied to each lead of the ECG
record. As a consequence the inter-lead redundancy is not
removed from the signal.

A single-lead ECG compression algorithm based on
a fast approximate Karhunen-Loeve transform (KLT) us-
ing wavelet packets obtained a better rate-distortion (RD)
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trade-off than the KLT [2]. In this paper we propose the
extension of the algorithm given in [2)] to multilead ECG
records, achieving a significant performance improvement.

2. Orthogonal expansions for multilead
ECG records

Data compression methods based on transform coding
techniques can reduce correlation between samples of a
signal vector X. Most orthogonal-expansion ECG-coders
are applied in a single-lead fashion over a heartbeat (or seg-
ment) signal vector. In addition, differential quantization of
the coefficient time series can be applied to reduce redun-
dancy due to the beat-to-beat quasi-periodic behavior of the
signal. However, the inter-lead correlation is not usually
considered in ECG compression.

We propose a multilead segmentation of the signal,
where the signal vector X is the concatenation of signal
vectors coming from different leads, i.e.,

X = [XTxJ---x7]", 1)

being X; the signal vector of the i-th lead ant L the number
of leads. We can apply the same methodology of orthog-
onal expansions, but now with higher-dimension vectors.
The orthogonal expansion T will try to decorrelate samples
of the signal vector X, and therefore the inter-lead correla-
tion will also be reduced. Next we analyze two particular
orthogonal expansions: KLT and a fast approximate KLT
based on wavelet packets.

2.1. Optimum KL transform

The optimum orthogonal transform in a mean square er-
ror criteria is the KLT [3]. KLT achieves a signal represen-
tation with uncorrelated coefficients because its basis func-
tions are the eigenvectors of the covariance matrix. In addi-
tion, among all unitary transforms, the KLT is the one that
packs most energy into the first coefficients. There are two
major problems with KLT, however. First, the KLT is sig-
nal dependent, since it depends on the covariance matrix.
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Second, it is computationally complex, since no structure
can be assumed for T, and no fast algorithm can be used.
This leads to an order N? operations for applying the trans-
form. Moreover, a complexity of O (V%) is also needed
to find the covariance matrix eigenvectors. This computa-
tional cost becomes prohibitely expensive for high dimen-
sion vectors, as it is the case in multilead ECG records.

2.2. Fast approximation of the KLT based
on wavelet packets

An approximate KLT was introduced in {4] based on the
application of wavelet packets. The main idea is to gener-
ate a very large library of rapidly computable orthonormal
wavelet packet bases. Moreover, the library of bases is or-

ganized in a binary-tree to facilitate a fast search. Next, the .

best basis is chosen according to a criteria, usually related
to an additive cost function, J, evaluated over an ensemble
of signal vectors. The cost function is selected according
to the application. In data compression, J is a distortion
index. Once the best basis is selected, the basis vectors are
sorted into decreasing order in the same way as in the KLT.
Therefore, the first p basis functions retain most of the sig-
nal energy. A further decorrelation of the coefficients can
be obtained applying the KLT to the selected p < NN coef-
ficients in the first-stage [4]. More details and applications
of this technique can be found in[4, 5].

3. Results

3.1. Wa\}el'et' Packets versus KLT

Firstly, it would be very useful to compare the rate-
distortion performance of the best basis obtained by the
wavelet packets methodology to the optimum KLT. We
selected 10 minutes of record 100 from MIT Arrythmia
database. The *number of functions’-’distortion’ graphic in
Fig. 1 illustrates that KI'T is optimum, i. e., for any value
of the number of functions used, the RMS distortion in-
dex is minimum. Moreover, the best basis chosen from the
wavelet packets obtain a very close performance to KLT.

However, any data compression system must be eval-
uated in a rate-distortion sense, i.e., taking into account
also the number of bits used to code the coefficients and
the overhead information. The overhead information for
the KLT is very large (mainly composed of the basis func-
tions). In contrast, the overhead information related the
best basis is very small due to the binary-tree structure of
the wavelet packets expansions. We shown in Fig. 2 the RD
curves for KLT and WP, where it is shown the clear higher
performance of the wavelet packets approach. In next sec-
tions we will only consider the wavelet packets based algo-
rithm. o
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Figure 1: ’Number of functions’-'distortion’ graphic of
KLT and WP on record 100 from MIT-BIH Arrythmia
database.
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Figure 2: Rate-distortion curve of KL and WP on
record 100 from MIT-BIH Arrythmia database.

3.2. Multilead ‘vs single-lead wavelet pack-
ets

In this section we compare the proposed multilead
wavelet packets approach and the single-lead wavelet pack-
ets method in {2]. In order to obtain reliable conclusions
we reproduce the results in [2] using the same conditions:
implementation details and ECG data from MIT-BIH Arry-
thmia database (see record list in Fig. 3).

We calculated the RD curves of the multilead wavelet
packets approach for all ECG records considered in [2]. We
manually selected the operating conditions for each record
which obtain the same distortion (root-mean-square, RMS,
in uV) than reported in [2]. We show in Fig. 3 the data
rate (bits per second, bps) obtained with both methods.
Black bars represent the muitilead wavelet packets data
rate (corresponding to both leads). Grey and white bars
represent the data rate needed to independently code chan-
nel 1 and 2 respectively with the method given in {2]. It
can be seen that multilead wavelet packets approach obtain
smaller rates than unilead wavelet packets in all records.
The average data rate per channel for multilead wavelet
packets was 129.9 bps (corresponding to a compression
ratio of 30.5:1), compared to 184.7 bps (compression ra-
tio of 21.4:1) for the single-lead wavelet packets approach.
The distortion was exactly the same for both methods in all
records.



Figure 3: Rate (bps) of multilead wavelet packets versus
single-lead wavelet packets.

3.3.

In the previous section we showed the higher per-
formance of multilead wavelet packets algorithm versus
single-lead algorithm. The operating conditions were de-
fined by the number of coefficients selected from both
compression-stages, best wavelet packet expansion and
posterior KLT. In actual applications, the number of co-
efficients at each stage are determined automatically. Two
marginal thresholds (one for each stage) are used. A co-
efficient is selected to represent the signal if its marginal
variance is higher than the corresponding threshold.

In order to find the threshold values we calculated the
average data rate and distortion in all selected records
for a large range of threshold values (8 values uniformly
distributed between 0.005 and 0.25). The performance
of the 64 different operating conditions, corresponding to
pairs of both threshold values, are shown as dot marks in
the RD plane of Fig..4. The cross mark is the average
performance obtained in previous section where the operat-
ing conditions were different and manually chosen for each
record. A good choice for the operating conditions would
be the pair of marginal variance thresholds that get a point
near to the cross (0.04 and 0.04 for the first and second
stage respectively).

Multilead wavelet packets
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Figure 4: Average rate-distortion performance of multilead
wavelet packet algorithm for different marginal variance
thresholds in the selected records from MIT database.

If these operating conditions are applied to the same
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records selected in [2], we obtain the rate-distortion per-
formance shown in Fig. 5. The average compression ratio
is 34.7:1 with a mean distortion of RMS 21.51 pV. This
average distortion is very low (equivalent to 0.21 mm in
a standard ECG printout). Note that the amplitude res-
olution of the A/D converter used in the adquisition was
5 uV/LSB. Several distortion indexes are used in the liter-
ature to quantify distortion. One of the most common used
is the PRD(%) [1]. The distortion values given in Fig. 5
correspond to an average PRD of 5.44+2.30%. To the au-
thor’s knowledge, the performance of the multilead wavelet
packet algorithm is higher than all previous algorithms (in-
cluding the recent multichannel algorithm in [6]).
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Figure 5: Data rate (bps) and distortion (RMS pV) of multi-
lead wavelet packets algorithm in several records from MIT
Arrythmia.

The most important criterion for judging any ECG com-
pression algorithm is the clinical quality of its recon-
structed signals. Comparisons between orignal recordings
and the signals which result after compression by the mul-
tilead wavelet packet algorithm are shown in Figs. 6-7. The
original ECG appears as the first tracing, the reconstructed
signal as the middle tracing and the reconstruction error
as the bottom tracing. A normal sinus rythm is shown in
Fig. 6. The data rate per channel was 53.9 bps (compres-
sion ratio of 73.5:1) with a RMS value of 16.1 uV. An
episode of ventricular bigeminy with uniform ventricular
beats appears in Fig. 7. The data rate per channel was
154.7 bps (compression ratio of 25.6:1) with a RMS value
of 15.1 uV. .

Neither the RMS index nor PRD are a true measure of
the compression algorithm accuracy. Most of the energy
of the reconstruction error is due to presence of noise in
the original signal and it does not have any clinical relevant
information, as it can be seen from Figs. 6 and 7.

4. Conclusions

In this paper an extension of data compression methods
based on transform coding to multilead ECG recordings
was shown. Two orthogonal transforms were analyzed: the
Karhunen-Loeve transform and a fast approximation using
wavelet packets. In spite of the optimality of the Karhunen-
Loeve transform, it obtained a lower performance (in a rate-
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Figure 6: Original and reconstruction excerpts from
record 115, leads Il and V1. (Top tracing) Original ECG
signal. (Middle tracing) Reconstructed ECG. (Bottom trac-
ing) Reconstruction error.

distortion sense) than wavelet packets due to the overhead
information needed to code its basis functions. As an alter-
native a two-stage compression algorithm is proposed: in
the-first stage the best basis is chosen from wavelet pack-
ets expansions. In the second stage the KLT is applied to
lower-dimension vector. In order to reduce the inter-lead
correlation, a multilead segmentation was used. The signal
vector was defined as the concatenation of signal vectors (a
heartbeat) from each lead.

The average rate-distortion performance obtained by
the proposed algorithm evaluated in some records from
MIT-BIH Arrythmia Database is: data rate per channel
114.1 bps (compression ratio of 34.7:1) with a distortion
of 21.51 uV (PRD 5.44%).
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