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Abstract

In this work we have evaluated a single-lead wavelet
transform (WT) based detector of ECG significant points.
A quadratic spline wavelet was used as prototype wavelet,
and the first four scales of the Dyadic WT were analyzed.
First of all, we detect QRS complexes. Then, the individual
waves, the onset and the offset of the QRS complexes
are identified, and finally P and T peaks and their onset
and offset are detected. We have validated the algorithm
with the manual annotations in the QT Database (QTDB),
developed for validation purposes. QRS and other ECG
waveform boundaries were independently evaluated. The
mean and standard deviation of the differences between the
manual and detector’s wave boundary annotations were
calculated. The standard deviations obtained with the
WT approach are around the accepted tolerances between
expert physicians, outperforming the results of a low-pass
differentiator algorithm, which was used as a reference,
especially in the T wave offset. The QRS detector obtained
a sensitivity of Se=99.91 and a positive predictivity of
P+=99.88%.

1. Introduction

The analysis of the ECG is widely used for diagnosing
many cardiac diseases, which are the main cause of
mortality in developed countries. Some of the clinically
useful information from the ECG is found in the
intervals and amplitudes defined by its significant points
(characteristic wave peaks and boundaries). Therefore, it
is necessary to develop automatic systems to detect these
significant points, specially for long recordings.

Different methods have been proposed in literature
for detection of significant points in the ECG. Amongst
these, we can highlight the approaches based on low-
pass differentiation (LPD) [1] and the wavelet transform
(WT) [2].

The wavelet transform provides a description of
the signal in the time-scale domain, and permits the
representation of the temporal characteristics of a signal
at different resolutions, and therefore, it is a suitable
tool to analyze the ECG signal, where we have a cyclic
occurrence of patterns with different frequential content
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(QRS complexes, P and T waves), and moreover, the
various noises and artifacts which affect the ECG signal
also appear at different resolutions.

A multiscale QRS detector and a method for detecting
monophasic P and T waves were proposed in [2], but
only the QRS detector was validated with the MIT-BIH
Arrhytmia Database. In this work, a generalization of
the method proposed in [2] is presented and it is assessed
with the manual annotations in the QT database, developed
for validation purposes [3]. The performance is evaluated
independently for QRS complexes and for waveform
boundaries.

The paper is organized as follows: in Section 2, the
basis essentials of the WT, the detection method and the
validation process are described. Then we present the
results of the validation in Section 3, and finally, we discuss
the results and present our conclusions.

2. Materials and methods

2.1. Wavelet Transform (WT)

The wavelet transform is a decomposition of the signal
as a combination of a set of basis functions, obtained
by means of dilation (@) and translation (b) of a single
prototype wavelet v(t). Thus, the WT of a signal z(t) is
defined as

t—b

Waz(s) = ﬁ / :° 2(6) (—a—) &

For discrete-time signals, the dyadic discrete wavelet
transform (DWT) is used, where the scales a are integer
powers of 2. It can be easily implemented with Mallat’s
algorithm, which is equivalent to an octave filterbank [4],
as shown in Figure 1.

If we choose as the prototype wavelet the derivative of a
low pass function, W,x[b] is proportional to the derivative
of the signal once low pass filtered at scale a. Consequently
the WT shows zeros at different scales in the positions
where z[n], approximated at a given scale, shows local
maxima or minima. Whenever z[nr] has abrupt changes,
W,z[b] will show positive maxima or negative minima
through the scales.

In this work the selected prototype wavelet ¢/(t) was a
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Figure 1. Filterbank implementation of DWT according to
Mallat’s algorithm.

quadratic spline whose continuous-time Fourier transform

w

which can be easily identified as the derivative of the
convolution of four rectangular pulses, i. e. the derivative
of a low-pass function.

The equivalent frequency responses for the first 5 scales
of the DWT with a sampling rate of 250 Hz are shown in
Figure 2. It is noteworthy that the characteristics of the
responses are those of low-pass differentiators.
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Figure 2. Equivalent frequency responses of the DWT at
scales 2%, k = 1. - 5, for 250 Hz sampling rate.

2.2. Detection of ECG significant points.

Most of the energy of the ECG signal lies at scales 22,
23 y 2%, For scales higher than 2%, the energy of the
QRS is very low. Only P and T waves have significant
components at scale 2%, but at this scale the influence of
baseline wandering is very important. Consequently, we
only use the first four scales Worz[b], k = 1, 2, 3, 4. The
reason for including scale 2! in this work is that it supplies
the best time-domain resolution.

Simulated waves similar to those appearing in the
ECG, and its WT at the first four scales are shown in
Figure 3. To monophasic waves, as exemplified in (a) or
(b), corresponds a positive maximum-—negative minimum
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pair along the scales, with a zero crossing in between.
A sharp change in the signal is associated to a line of
maxima or minima across the scales. In the wave (c), which
simulates a QRS complex, it can be observed that the small
Q and S wave peaks have zero crossings associated in the
WT, mainly at scales 2! and 22. P or T-like waves (d) have
their major component at scale 2%, whereas artifacts like
(e) produce isolated maximum or minimum lines, which
can be easily discarded. If the signal is contaminated with
high-frequency noise, like EMG noise (f), the most affected
scales are 2! and 22, but higher scales are hardly affected by
this kind of noise. Baseline wander (g) only affects slightly
to scale 24.
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Figure 3. DWT at the first four scales of ECG-like
simulated waves.

Using the information of local maxima, minima and
zero crossings at different scales, the algorithm identifies
the significant points in four steps: 1) Detection of
QRS complexes. 2) Detection and identification of QRS
individual waves (Q,R,R’,S), onset and offset. 3) T wave
peak, onset and offset and 4) peak and limits of P wave.

First of all, QRS complexes are detected using an
algorithm based on the multiscale method proposed in [2],
which we have done more robust searching for the more
significant wave of the QRS complex, not necessarily the
R wave. Li’s algorithm searches across the scales for
”maximum modulus lines” which exceed some thresholds.
Then the regularity exponent is tested to distinguish QRS
lines from lines produced by noise, artifacts or other waves.
After eliminating all isolated and redundant maximum
lines, the zero crossing of the WT at scale 2! between a
positive maximum—negative minimum pair are marked as a
QRS. Other protection measures are taken, like a refractory
period or a search back if a significant time has passed
without detecting any QRS.

One of the novelties with respect to Li’s algorithm is the
detection and identification of the QRS individual waves.



For this purpose, we look in the environs of the QRS
position for all the maximum moduli of the WT which
surpass a threshold at scales 2! and 22. The zero crossings
between them will be assigned to wave peaks, and they are
labelled depending of the polarity and the distribution of
the waves. We consider any possible QRS morphology
with 3 or less waves (QRS, RSR’, QR, RS, R and QS
complexes).

The onset (offset) of the QRS is before (after) the first
(last) slope of the QRS, which will be associated with a
maximum of |[Wysz[n}]|. So, we first identify the first and
last peaks associated with the QRS in Woz2x[n], say nipeakon
and npeakos. To determine the onset and offset, we apply
two criteria: the first one searches for the sample where
|Wy2z[n]| is below a threshold relative to the amplitude
of the peak (lWZQz[nPeakon” or [Wa2X[npeakost]|); the
second criterion searches for a local minimum of | Wz z[n]|
before npeakon OF after Npeakos. In both cases the criterion
selected finally is the one that supplies the nearest sample
to the QRS. The same procedure is also applied at scale 2°.

As for the T and P waves, the process is as follows: first
of all, we define a search window for each wave, relative to
the QRS position and depending on the RR interval. Within
the window we look for maxima of |Wsaz[n]| whose
amplitude surpasses a threshold, and the zero crossings in
between. Depending of the number and polarity of these
peaks, we distinguish different morphologies (positive,
negative, biphasic, only upwards and only downwards).
The criteria to identify the limits of these waves were the
same as for QRS onset and offset, but applied to scale 2*.

2.3.

For validation purposes, we have used the QT database
(QTDB) (3] which includes annotations carried out by
cardiologists. The database has 105 fifteen-minute excerpts
of two-lead digitized ECG’s. For each of its 105 records,
in a minimum of 30 consecutive beats, the waveform
peaks and boundaries have been manually annotated by
cardiologists. Moreover, the QRS complexes have been
annotated in 79 complete recordings.

To evaluate the QRS detector we have used the
percentages of misdetections defined as Sensitivity Se =
7P and Positive Predictivity P+ = Trip» Where
TP are the number of true positive detections, FN stands
for the number of false negative and FP for the number of
false positive misdetections.

For the rest of the points, we have calculated the Se
and the mean (m) and the mean standard deviation (o)
of the differences between cardiologists’ and automated
annotations. Given the format of the QT database, it was
not possible to quantify the P+, as it was noted in [5].

The first recorded channel was used in the assessment
of the QRS detector. As for the other points, we chose for
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each beat the best channel, coherently with the fact that
the experts had in sight both leads when they annotated the
recordings.

3. Results and discussion

The values of Se and P+ obtained by the QRS detector
are shown in Table 1. These results are compared with
those obtained by the commercial software ARISTOTLE [6]
(in single-lead mode), which is based on a matched filter
approach.

Table 1. Performance of the WT-based QRS detector,
compared with ARISTOTLE.

[Detector | N | FP [ FN][Se% | P+ % |
[ DwWT 82991 | 103 72 199.91 | 99.88 |
[ Arstote || 82991 | 203 | 2336 | 97.18 | 99.75 |

The results of Se, m and o at some wave boundaries
are presented in Table 2. We have also applied an LPD-
based method [1] to the same database, and its results
are also included in the table. The LPD algorithm was
also validated with the QTDB in [7]. In the last row, we
include the accepted standard deviation tolerances from
the measurements made by different experts on the CSE
database [8].

Table 2. Table: Performance of the detector for
other significant points, and acceptable tolerance between
experts.

Pon Poff QRSon QRSoff T Toﬁ

nbeats | 3101 | 3101 [ 3621 3621 | 3540 | 3540
DWT DETECTOR

Se(%) | 838 | 838 [ 978 992 [ 981 ] 970

m(ms) | 82 | 42 46 08 74 | 06

o(ms) | 120 | 108 | 78 90 | 138 | 226
LPD DETECTOR

Se(%) | 985 [ 985 [ 934 948 | 99.1 | 974

m@ms) | 104 | 37 | 41 10 | 80 | 116

o(ms) | 125 { 114 | 9.0 84 | 150 | 282

[ TOL J102 [ 127] 65 11.6 - | 306

A new T-U complex detector (TU) has been recently
proposed and also validated on the QT database [5]. The
detection results for the T wave peak and T, are given in
Table 3 for comparison purposes.

Table 3. Some of the validation results of TU detector [5].

nbeats | Se (%) | mEo (ms) |
T 3528 92.6 -12.0+23.4 |
Tor 3528 92.6 0.8+30.3 ]




On the whole database the best performance for T peak
and T wave offset was achieved by the WT detector. In
contrast, the P wave detection performance was better
with LPD. With respect to algorithm complexity, the TU
detector seems to be the most complex method, but it is
the only one which can detect U waves. Moreover, the
WT detector is a bit more complex than LPD only at the
QRS complex, due to its multiscale procedure, but the
performance of QRS detection was larger for DWT than
for LPD.

We also performed a record by record analysis in order to
observe in which records there was an accurate detection,
as it was proposed in [7] and more recently used in [5].
In order to facilitate comparison with previous works with
chose the same threshold than in [5], i.e. 15 ms for the bias
and 30.6 ms for the standard deviation. Thus, the records
are classified into four groups, according to:

Group I: bias<15 ms and ¢<30.6 ms.

Group II: bias>15 ms and 0<30.6 ms.

Group III: bias<15 ms and ¢>30.6 ms.

Group IV: bias>15 ms and ¢>30.6 ms.

The recording stratification results for the T wave peak
and T offset on the three algorithms are given in Table 4.
The percentage of records and also the mean value of
bias and ¢ in each group is shown. The stratification
performance is quite similar for all three methods, but the
TU detector seems to give a larger population of well-
detected recordings in the T offset.

Table 4. Stratification according to detection accuracy.

T Tos J
Gr LPD | DWTlTU LPD | DWT | TU |
% 84 82 82 55 64 72
I bias 3 3 4 5 5 7
o 8 7 9 13 13 16
% 2 5 8 9 12 16
1T bias 45 39 36 57 35 31
o 13 15 15 20 18 18
% 1 4 4 10 11
IIl | bias 8 7 9 4 1 9
o 35 41 38 45 42 35
% 13 9 6 26 13 8
IV | bias 57 72 32 50 56 49
o 62 55 40 58 52 45
4. Conclusions

A WT-based ECG significant point detector has been
developed and validated with more than 3500 beats (more
than 80000 in the case of QRS detection) manually
annotated by physicians at the QTDB. From the results of
the validation, we can conclude that:
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In QRS detection, the method attains very good results
(Se = 99.91% and P+ 99.88 %) at the validation
database. The WT-based system has a Sensitivity greater
than the software ARISTOTLE by 2%, maintaining a similar
Positive Predictivity. The clue to this improvement is, to
our understanding, the multiscale approach, which permits
to avoid noise at rough scales, and then to fine-tune the
precision of the QRS position with the help of the lower
scales.

The detection of waveform boundaries (Pon, Pos
QRSon, QRSor, T and To) was sufficiently precise. The
differences between automatic annotations and the manual
ones are within the accepted tolerances between human
experts, outperforming the low-pass derivative method [1].
The point with the most significant improvement are the T
peak and the T wave offset. Thus, we can state that the
performance of the WT approach in detecting significant
points in the ECG is comparable to the experts’ at least on
the QT database
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