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1. Introduction

Monitoring breathing rate (BR) is a strong and specific predictor of serious adverse events such as cardiac arrest 
and unplanned intensive care unit admission (Fieselmann et al 1993, Cretikos et al 2008). Fieselmann showed 
that a BR greater than 27 breaths per minute is a predictor of cardiac arrest, and is even more informative com-
pared to cardiac pulse and blood pressure changes. Moreover, Gravelyn and Weg (1980) demonstrated that BR is 
a specific marker of acute respiratory dysfunction such as hypoxemia (abnormally low level of O2 in the blood) 
and hypercapnia (abnormal CO2 in the blood).

Different methods have been exploited to monitor respiratory activity: airflow sensing technology uses a 
nasal sensor installed on a mouthpiece of a face mask to measure the volume of air exhaled; microphones record-
ing respiratory sounds (Corbishley and Rodriguez-Villegas 2007); airflow can be detected because expiratory 
air is warmer, has higher humidity, and contains more CO2 than inspiratory air (Folke et al 2003); impedance 
plethysmography measures variations in transthoracic electrical impedance to derive ventilation (Cohen et al 
1997); respiratory inductance plethysmography, which includes an elastic respiratory band made of strain gauge 
that, by the respiratory-induced motion, changes the resistance of the conductor according to the respiration or 
based on the modulation of the cardiac activity (Charlton et al 2017). Each method has its own disadvantages, 
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Abstract
Objective: The simple observation of breathing rate (BR) remains the first and often the most 
sensitive marker of acute respiratory dysfunction. In fact, there is evidence that drastic changes in BR 
are a predictive indicator of adverse events (i.e. cardiac arrest). The aim of this study is to develop a 
camera-based technology that may provide near-continuous estimation of BR considering the effect 
of respiration on video-PPG (vPPG). Approach: The technology has been tested in two different 
experimental settings, including controlled BR and more challenging scenarios with spontaneous 
breathing patterns. Video data were processed offline to derive the vPPG signal. The method 
derives respiration from beat-to-beat PPG rate and morphology changes in amplitude and width 
driven by the physiological relationships between vPPG and respiration. Moreover, respiratory-
induced head movements were used as an additional source of information for the vPPG system. A 
combination of these methods has been exploited to estimate the respiratory rate every 10 seconds. 
Main results: According to the results, respiratory frequencies in the central range (0.2–0.4 Hz) may 
be estimated using the vPPG system with a low relative error, εR < 2% and interquartile range of 
the order IQR < 5%. However, the vPPG system showed a drop in performance at respiratory range 
boundaries, around 0.1 Hz and 0.5 Hz. Significance: This camera-based technology can be used as an 
ubiquitous BR monitoring system. However, vPPG-based systems should consider the effect of the 
BR in the estimation, mainly in applications where the respiratory rate is out of the 0.2–0.4 Hz range.
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e.g. cumbersome for the patient, time consuming, or does not allow for long-term monitoring (Al-Khalidi et al 
2011, Massaroni et al 2019). Nowadays there is still a lack of low-cost home care solutions that can be ubiquitous 
and allow for daily monitoring of respiratory activity.

In state-of-the-art methods, a step forward in the improvement of patient compliance has been obtained 
by the introduction of noncontact devices. There are clear advantages to noncontact respiration monitoring 
methods. These include improved patient comfort (especially for long-term monitoring) as the subject is not 
tied to an instrument, and improved accuracy as distress caused by a contact device may alter the respiration 
rate (Al-Khalidi et al 2011). Three main camera-based approaches have been proposed to monitor respiratory 
information based on movement, thermal, and photoplethysmography principles. Movement-based methods 
exploit image processing techniques for the detection of shifting associated with respiration, basically chest and/
or abdomen movement (Nakajima et al 2001, Bartula et al 2013, Zhao et al 2013, Al-Naji and Chahl 2016, Janssen 
et al 2016, Nam et al 2016, Regev and Wulich 2017, Rehoumaa et al 2018) or even shoulder movement (Shao et al 
2014). In absence of other movement artefacts, these systems estimate the respiratory rate, and many of them 
have been validated while subjects are lying in bed; these subjects include neonates (Janssen et al 2016, Rehoumaa 
et al 2018), babies (Al-Naji and Chahl 2016, Regev and Wulich 2017), and adults (Nakajima et al 2001, Bartula 
et al 2013). Thermal cameras allow for respiratory rate estimation by monitoring dynamic thermal activity emit-
ted from specific areas (usually nostrils) since the temperature of exhaled air is higher than that of inhaled air 
(Abbas et al 2011, Lewis et al 2011, Pereira et al 2017, Hochhausen et al 2018). In addition, some authors have 
combined both methods in order to increase the accuracy of respiratory rate estimation (Pereira et al 2016, Ben-
nett et al 2017, Procházka et al 2017).

A contactless alternative is represented by the video-photoplethysmographic (vPPG) system. In the litera-
ture, the vPPG-based method has been widely used to monitor cardiac parameters such as heart rate and pulse 
rate variability (PRV). However, it has been poorly studied as a method to derive respiratory features as BR. In 
Poh et al (2011), the BR was extracted as a component of the power spectrum of PRV derived from the vPPG 
signal. In Villarroel et al (2014) and Tarassenko et al (2014), a band pass filter tuned to the expected BR has been 
applied to the vPPG signal. Hence, the peak in the spectrum has been considered as the BR. Similarly, Al-Naji 
et al (2017) combined information of head movement and the vPPG signal for respiratory rate estimation based 
on spectral analysis and filtering. The first pioneering work aimed at deriving a breathing signal from vPPG was 
performed by Gastel et al (2016). The method firstly proposed to divide the face into different subregions. For 
each region, a set of weights was calculated using the chrominance method (already implemented in de Haan and 
Jeanne (2013)), which allows us to enhance the respiratory information and suppress motion distortions. Then 
the best set of weights was selected by the  signal to noise ratio (SNR) quality parameter and used to exploit the 
breathing signal.

As shown in the literature, the contact PPG signal has been used to derive breathing information based on 
the physiological effects of respiration over it. It is known that respiration modulates pulse beat occurrence and 
the PPG waveform (Garde et al 2013, Lázaro et al 2015). Indeed, during inspiration pulse-to-pulse interval short-
ens while during expiration it is prolonged. The following phenomenon, called respiratory sinus arrhythmia 
(RSA), plays an important role in respiratory–circulatory interaction, improving the efficiency of pulmonary gas 
exchange (Yasuma and Hayano 2004). During the mechanism of alveolar ventilation/perfusion matching, RSA 
allows the body to save energy by suppressing unnecessary heartbeats and increasing the efficiency of ventilation 
during the end of perfusion. Therefore, the respiratory component can be extracted from the PRV.

The mechanics of respiration, in particular inspiration, can lead to a reduction in tissue blood volume 
(reflected in a reduction of vPPG amplitude) mainly by two distinct mechanisms (Meredith et al 2012): reduc-
tion in cardiac output, and a reduction in venous pressure. As second effect, the negative intrathoracic pressure 
during inspiration produces a reduction in venous pressure, which pools the blood from the vascular bed within 
the tissue. Therefore, the pulse amplitude variability (PAV) can be an indirect measure of BR.

Finally, as shown by Lázaro et al (2013), the sympathetic nervous system regulates the vascular resistance by 
means of vein constriction, venous compliance, and blood volume. During expiration the blood vessels are more 
flexible than during inspiration. This mechanism affects the pulse wave propagation velocity that is reflected in 
the pulse width of the PPG signal. Therefore, the pulse width variability (PWV) is affected by respiratory modu-
lation.

Focusing on noncontact respiration methods based on photoplethysmography, there is a need to characterize 
the physiological effects that affect the estimation. Most of the studies in the field have been performed during 
spontaneous breathing at resting conditions without considering different BRs (Verkruysse et al 2008, Poh et al 
2011, Villarroel et al 2014, Tarassenko et al 2014, Al-Naji et al 2017). Our hypothesis is that these methods could 
be affected by the respiratory rate since the physiological modulation of PPG by respiration depends on it. For 
instance, it is well known that RSA decreases at high respiratory rates (Sin et al 2010). Moreover, in the case of 
vPPG, this decrease comes with a low-passed shape in comparison to finger-PPG (fPPG), which increases the 
uncertainty in locating the pulse and therefore reduces the RSA estimation. These effects should be carefully 
considered in BR estimation applications based on vPPG depending on the expected respiratory pattern. Mainly, 
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when BR is out of its typical values at rest, e.g. during physical exercise, relax conditions or some clinical applica-
tions, among others. The aim of the present work is to test the feasibility of a contactless, camera-based method 
that estimates BR values based on vPPG signals while considering the effect of respiration on these vPPG signals. 
In addition, the added value of using movement information for the estimation will be evaluated. Compared to 
existing state-of-the-art methods, the proposed method’s novelty lies in several aspects: providing an exhaus-
tive analysis of the effect of respiratory rate in the estimation; implementation of a data fusion technique that 
combines breathing information derived from PPG waveform changes, PRV, PAV, PWV, and vertical head move-
ments; assessment of PPG-derived respiratory (DR) modulation measured at two different body sites (finger 
versus head) using fPPG and vPPG technology, respectively; use of two different technological cameras in order 
to test the robustness of the implemented BR estimation. A preliminary version of this work has been reported 
(Iozzia et al 2017).

2. Materials

2.1. Experimental protocols
Two experiments were conducted involving 20 healthy subjects. In both experiments the subject was sitting on a 
chair, facing the camera device at a distance of approximately 0.5–1 m. To reduce motion artefacts, participants 
were instructed to move their head as little as possible. In both experiments the PPG signal was recorded from 
the index finger whereas the respiratory signal was recorded by a respiratory belt fixed to the subject’s chest. Both 
signals were sampled at 256 Hz using the FlexComp Infiniti TM biofeedback system (Thought Technology Ltd., 
Montreal, Canada). The study was conducted in accordance with the ethical principles of the Declaration of 
Helsinki.

Experiment I: Video recordings were performed by the Logitech C922 Pro Stream Webcam. The resolution 
was set to 1280 × 720 with a frame rate of 60 fps. The subject was informed to breathe at a constant rate, by 
using a set of breathing guidance videos showing a bar moving from 0.1 to 0.5 Hz at increments of 0.1 Hz. A 2 
minute recording was made for each respiratory frequency.
Experiment II: In the second protocol a GigE Sony XCG-C30C camera was selected with a spatial resolution 
of 659 × 494 pixels and 60 fps. The camera was equipped with a 15 mm fixed focal length lens (Tamron 
25 HB), which was used to magnify the region occupied by the participant’s face. The protocol was the 
following: 2 min of spontaneous breathing, a period of apnea (whose duration depended on the subject’s 
capacity), and 2 min of recovery.

The data in the second database were divided into two stages: spontaneous breath lasted for 110 s of the recordings 
and recovery breath lasted for 110 s after the apnea phase. Each stage was treated as independent, and the 
estimation of respiratory rate was conducted for each stage except for the apnea stage.

3. Methods

3.1. Signal preprocessing
Videos were saved in H.264 format, with a compression rate factor close to 0 (so no effect related to data 
compression is expected) and were processed offline to derive the vPPG signal according to the algorithm 
presented in Iozzia et al (2016). Three regions of interest (ROI) were considered: forehead (ROI1), nose (ROI2), 
and cheek (ROI3). ROI detection and tracking were developed in OpenCV: detections were performed by the 
Viola–Jones face detection algorithm (Viola and Jones 2001) while ROI tracking along the X–Y axis (horizontal 
and vertical movements, respectively) was obtained by the Lucas–Kanade–Tomasi (LKT) motion flow tracking 
algorithm (Lucas and Kanade 1991). A modification of LKT was presented in this work: a Kalman filter was 
implemented to smooth movements of the face tracked with the LKT feature tracker using a linear model for the 
prediction and the Y axis coordinate as observations of the LKT centroid tracker output.

Within each ROI a spatial average of pixel intensities of each channel (red, green, and blue) was calculated for 
each frame to generate N raw signals (where N is the number of color channels). Considering M as the number 
of ROI, a total of M ∗ N  raw traces was obtained. The time series were first detrended (Tarvainen et al 2002) 
and band-pass filtered (finite impulse response filter using the Hamming window) with cut-off frequencies of 
f c1  =  0.1 Hz and f c2  =  5 Hz. To enhance the pulsatile component of the reflected light and reduce the motion 
noise, zero-phase component analysis (Bell and Sejnowski 1997) was applied to each ROI. As a result, M vPPG 
signals were obtained. Selection of the target vPPG signal was achieved by calculating the power spectral density 
(PSD) on the entire signal and by measuring the SNR using the following formula:
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SNRi = 10 ∗ log10




∫ f2

f1

PvPPGi( f ) df

∫ f1

0.1
PvPPGi( f ) df +

∫ 5

f2

PvPPGi( f ) df


, (1)

where PvPPGi( f ) with i ∈ {1, 2, . . . , M} is the PSD of ith vPPG signals, f1 = fp − 0.15 Hz, f2 = fp + 0.15 Hz, and 
f p  is the highest peak assumed to be the pulse frequency (measured in Hz). The signal with the highest SNR was 
selected as the target vPPG signal. Subsequently, the motion artefacts were automatically detected using the X–Y 
coordinates of facial movement (as shown in figure 1). Within a sliding window 1 s long, the first derivatives of 
X and Y coordinates (defined as vX  and vY) were calculated. If the mean of vX  or vY calculated inside the interval 
time was higher than a threshold (manually selected as 14 pixels s−1), the corresponding vPPG segment was 
labeled as artefactual and discarded from further analysis (see figure 2). Less than 5% of the total number of 
segments were excluded from the successive procedure.

3.2. Detection of fiducial points
To derive the PWV, PRV, and PAV signals from both fPPG and vPPG, the method implemented by Lázaro et al 
(2013) was applied. Briefly, the systolic peaks nAi were identified by an automatic PPG pulse detector based on 
a low-pass filter differentiator and an adaptive time-varying threshold (Lázaro et al 2014). Next, the diastolic 
points nBi were identified inside a temporal window prior to nAi:

nBi = arg min
n

{s(n)}, n ∈ [nAi − 0.3fs, nAi ], (2)

where s(n) is the PPG signal, and f s the sampling frequency of the signal. Finally, nMi was detected as the  half of the 
pulse amplitude of the cardiac pulse:

nMi = arg min
n

{∣∣∣∣s(n)−
s(nAi) + s(nBi)

2

∣∣∣∣
}

, n ∈ [nBi , nAi ]. (3)

The width of each pulse wave was measured by considering the onset nOi and the end of the wave nEi. Meanwhile, 
the distances between nMi+1 and nMi were used to estimate the pulse rate (see figure 3). More details are shown 
in the original work Lázaro et al (2013). Although PWV and PRV seem similar in this figure, both DR signals 
are considered since their physiological origins are completely different. PRV reflects the RSA, i.e. it reflects the 
effect of respiration in the generation of beats at the sinoatrial node, while PWV reflects the effect of pulse wave 
propagation, which is also affected by the respiratory modulation (Lázaro et al 2013).

Figure 1. Tracking of the face according to horizontal (X axis) and vertical (Y axis) movement.

Physiol. Meas. 40 (2019) 094002 (12pp)



5

L Iozza et al

3.3. DR signals
3.3.1. From PPG signals
Three DR signals were calculated using pulse-to-pulse methods based on PRV, PAV, and PWV. The DR signal 
based on PRV was obtained as a pulse-to-pulse series:

du
PRV(n) =

∑
i

fs
1

nNi − nNi−1

δ(n − nAi), (4)

where u indicates that the signal is unevenly sampled, and nNi represents the arrival of the pulse after removing 
the ectopic and miss-detected pulses from nMi by using the method proposed in Mateo and Laguna (2003). The 
other two derived signals, i.e. those based on PAV and PWV, were obtained as follows:

du
PAV(n) =

∑
i

[s(nAi)− s(nBi)]δ(n − nAi), (5)

du
PWV(n) =

∑
i

1

fs
[nEi − nOi ]δ(n − nAi). (6)

An outlier rejection rule based on median absolute deviation was applied (Bailón et al 2006), and the signals 
were resampled at 4 Hz using the cubic spline interpolation. Nonrespiratory frequencies should be removed 
from respiratory signals to avoid erroneously identifying spurious frequency content as the BR. There is no 
consensus on the optimal range of plausible respiratory frequencies. Furthermore, the optimal range may need 
to be adjusted according to the patient population or the specific application (Charlton et al 2017). A band-pass 
filter was applied with the low and high cutoff frequencies 0.075 Hz and 1 Hz, respectively.

3.3.2. From tracking signals
A fourth DR signal was obtained by the Y coordinate of the face movement returned from the LKT algorithm. 
Since respiration affects the vertical movement of the face, the y(t) signal derived from the Y-axis movement over 

Figure 2. Example of artefact movement removal on vPPG signal (c) using the X–Y tracking signals (a) and (b) as references of 
noise.
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time was used as a source to detect breath. The signal was first resampled at 4 Hz and then a high-pass filter with 
a cutoff frequency of 0.075 Hz was applied to remove the signal trend. However, the subject may show various 
involuntarily head movements not correlated with the breath, such as yaw movement (turning the head), rolling 
movement (tilting the head), and pitching movement (looking up and down).

To detect possible abrupt changes in the signal due to these movements, the speeds of the two motion sig-
nals vX(n) and vY(n) were used. Defining a sliding temporal window of 2 s, if both speeds along vX(n) and vY(n) 
signals are above the threshold T1  =  14 pixels s−1 (empirically chosen), then the corresponding segment of the 
signal is excluded. Since the pitching movement will be the most disturbing source of noise, a second threshold 
of T2  =  30 pixels s−1 was set to reject episodes with high vertical head movements by controlling the speed vY(n). 
Finally, the motion signal dTR(n) was obtained as the band pass-filtered version of y(n) with the cutoff frequen-
cies of f c1  =  0.075 Hz and f c2  =  1 Hz.

3.4. Respiratory frequency estimation
The respiratory rate has been estimated from DR signals on a time interval of 30 s shifted every 10 s by adapting 
Lázaro’s method (Lázaro et al 2015).

Briefly, the method uses a combination of PWV, PAV, and PRV (denoted as combined vPPG derived respi-
ration (CvPDR)). The effect of including the tracking signal to increase the accuracy of the estimation is also 
considered (CvPDR+TR). Let us denote Sj (k,f ) as the power spectral densities for the j th DR signal at every time 
instant k. From these spectra, an average is computed as follows:

S̄(k, f ) =
∑

j

χA
j (k)χ

B
j (k)Sj(k, f ),

 (7)

where χA
j  and χB

j  are two weighting factors used to restrict the inclusion in the average S̄( f ) to (a) peaked spectra; 
and (b) spectra whose peak is not much lower than the peak of the other spectra at that time instant. For this 
reason, the following quantity Pj (k) has been calculated:

Pj(k) =

∫ fp(k,j)+0.05 Hz

fp(k,j)−0.05 Hz
Sj(k, f )df

∫ 0.5 Hz

0.15 Hz
Sj(k, f )df

× 100, (8)

where Pj (k) is the percentage of Sj (k,f ) related to the j th DR signal and contained in the interval centered around 
the highest peak f p (k,j ). Peaked spectra are defined as those that have a Pj (k) greater than a threshold defined by 
ξ = 40%. Thus,

χA
j (k) =

{
1, Pj(k) � ξ

0, otherwise. (9)

The condition χB
j (k) selects the Sj (k,f ) whose Pj (k) is not less than λ = 30% of the maximum Pj (k):

χB
j (k) =

{
1, Pj(k) � maxj{Pj(k)} − λ

0, otherwise. (10)

The respiratory frequency f̂ (0) is calculated as the frequency that corresponds to the maximum of S̄(0, f ) in the 
frequency band [0.15–0.5] Hz:

f̂ (0) = arg max
f∈[0.15–0.5] Hz

{S̄(0, f )}. (11)

If in the spectrum of each DR signal no peak has enough energy in the considered frequency band, the range is 
enlarged to [0.08–0.5] Hz and a new search is started.

After initialization of f̂ (0), the frequency band for the searching of f̂ (k) was defined as 
[f̂ (k − 1)− 0.075; f̂ (k − 1) + 0.15] Hz, where f̂ (k − 1) is the previous estimated value. As can be imagined, the 

phase of initialization of the algorithm is decisive since subsequent respiratory rate estimations will be based on 

a window defined by the previous value f̂ (k − 1). Due to the morphology of the vPPG signal, for higher respira-
tory frequencies (e.g. f � 0.3 Hz) the modulation of the breath is less evident compared to the modulation pre-
sented on fPPG. To account for this, a modification of Lázaro’s algorithm is proposed when the tracking signal is 
considered. Since the tracking DR signal is uncorrelated with the breath modulation on the vPPG signal, it could 
be possible to increase the robustness of the respiratory rate estimation even for high respiratory rates. There-
fore, during the initialization, the procedure described to estimate the respiratory rate was repeated separately 

for dPRV(n), dPAV(n), dPWV(n), and dTR(n) signals. Two f̂  values were estimated: f̂vPPG and f̂TR. Lastly, the initial 

 respiratory frequency was established as follows:

Physiol. Meas. 40 (2019) 094002 (12pp)
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f̂ (0) =

{
f̂TR, if ∆ � 0.3

f̂vPPG, otherwise
, (12)

where ∆ = f̂TR − f̂vPPG. If the tracking signal was detecting a higher respiratory frequency compared to the one 
measured by pulse-to-pulse methods, f̂ (0) was forced to start at f̂TR.

Finally, the results are expressed as relative error, calculated according to the following equation:

εR =
fR − f̂

fR
× 100, (13)

where f R is the respiratory frequency obtained from the respiratory belt used as a reference for the analysis of 
fPPG and vPPG.

4. Results

4.1. Camera comparisons
To evaluate the performance of the two cameras on the extraction of the vPPG signal, the SNR of the vPPG signal 
of each subject was calculated according to the equation (1) and averaged for the whole population (as mean 
± standard deviation). The vPPG quality signal obtained from the commercial camera was significantly lower 
(9.06 ± 3.84 dB) compared to the one obtained from the industrial camera (12.20 ± 4.73 dB).

4.2. ROI selection
As stated before, the ROI used for breath extraction was selected according to the highest SNR. In table 1, it is 
worth noticing that the forehead was the most selected region no matter the proposed experimental setting.

4.3. Database I
Results are shown in table 2, figures 4 and 5 for fPPG (a), CvPDR (b), and CvPDR+TR (c). Comparison of the 

methods shows different behaviors for different ranges:

 (i)  The best results are obtained if the BR is in the range of [0.2–0.4] Hz. The median and interquartile 
ranges (IQRs) of εR are below 5% for fPPG and CvPDR+TR, but are higher for CvPDR. In 
particular, for the fPPG there is only one estimation with a relative error higher than 10% (defined as 
nOUT10%

) among all records within this range (0.2–0.4 Hz) for all subjects. For CvPDR, nOUT10%
= 22 

corresponds to 43.1% of the estimations (13 at f R  =  0.4 Hz) while for CvPDR+TR nOUT10%
= 6 

(11.7%).  
 (ii)  In the boundary of the respiratory frequency range (f R  =  0.1 Hz to f R  =  0.5 Hz) there is a drastic drop 

in performances of vPPG-based systems compared to the fPPG system. At f R  =  0.1 Hz, the decreased 
accuracy has a methodological reason. According to the developed method, the initialization should 
enlarge the respiratory frequency range to [0.08–0.5] Hz. However this condition is not always satisfied, 
leading to an overestimation of f R.

Note the increase in performance in all respiratory frequencies for CvPDR when the dTR(n) signal is taken into 
account. The large benefits of using the dTR(n) signal are shown for f R  =  0.2 and mainly f R  =  0.4 Hz, where the 
median/IQR is clearly reduced.

4.4. Database II
The validation of the method for spontaneous breathing was carried out on the second database. As before, the 
results on respiratory rate obtained by vPPG-based systems were compared to the results obtained by the fPPG 
system. It is worth noting (see table 3) that the results are comparable looking at the median/IQR between fPPG 
and vPPG when tracking information is considered. Although results based only on vPPG (CvPDR) are worse 
than fPPG, its median relative error is around 1%. The slight decrease in performance for the vPPG system dur-
ing the recovery stage (median/IQR at 0.46/4.81%, see table 3) is due to the re-establishment of spontaneous 

Table 1. Percentage of use of each ROI according to the selected database.

ROI Database I (%) Database II (%)

Forehead 60 61.11

Nose 30 11.11

Cheek 10 27.78

Physiol. Meas. 40 (2019) 094002 (12pp)
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respiratory rate after a period of stress caused by apnea. Despite this, the fPPG system maintains a low median/

IQR value (0.27/1.63%, see table 3).
Moreover, as confirmed by database I, both systems (vPPG and fPPG) failed to detect the respiratory rate of 

subject 01 whose frequency was up to 0.4 Hz in both the spontaneous and recovery phases.
An example of time frequency analysis is shown in figure 6, where the stages of spontaneous and recovery 

breath are shown for the fPPG (figure 6(a) and figure 6(b) respectively) and vPPG (figure 6(c) and figure 6(d), 
respectively). As can be seen, the two methods show similar behavior in the respiratory rate tracking over the 
time.

5. Discussion

The present work demonstrated the feasibility of a camera-based contactless system to estimate instantaneous 
BR on a group of healthy subjects in two experimental settings: controlled BR and spontaneous breathing.

The first step for vPPG extraction is face detection. The classical Viola–Jones face detector (Viola and Jones 
2001), which uses cascaded classifiers on Haar-like features, was used. This method provides real-time face detec-
tion, but works best for full, frontal, and well-lit faces. It has been shown that in unconstrained face detection, 
features like Haar wavelets do not capture the discriminative facial information at different illumination vari-
ations or poses (Liao et al 2016, Ranjan et al 2017). Therefore, this face detection method has some limitations 
when dealing with faces in a crowd, face rotation, inclined or angled faces, expression variations, and low image 
resolution. These should be considered in BR estimation.

Table 2. Relative error εR in database I, expressed as median and interquartile ranges (IQRs).

fPPG CvPDR CvPDR+TR

f R (Hz) εR (%) IQR (%) nOUT10%
εR (%) IQR (%) nOUT10%

εR (%) IQR (%) nOUT10%

0.1 0.89 4.56 1 −37.78 89.30 11 −8.80 35.69 6

0.2 −0.59 0.75 1 −0.56 17.70 5 0.26 1.11 1

0.3 −0.14 0.51 0 2.43 9.41 4 0.49 3.62 2

0.4 0.12 0.63 0 19.93 28.82 13 1.94 3.88 3

0.5 0.28 0.47 2 38.73 13.23 17 38.65 36.55 13

Figure 4. Boxplot of the respiratory rate relative error, calculated for dataset I, obtained with fPPG (a), CvPDR (b), and  
CvPDR+TR (c).

Figure 5. Bland–Altman plots for fPPG (a), CvPDR (b), and CvPDR+TR (c).
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According to our results, the accuracy of respiratory frequency estimation is almost comparable between 
vPPG-based methods and fPPG systems. However, when concentrating on respiratory frequencies at the bound-
aries of the typical respiratory frequency ranges, the fPPG presents generally better results compared to the vPPG 
in terms of extraction of breath information from the variability in PPG amplitude, width, and pulse occur-
rence. A possible explanation for the drastically reduced performances at very high respiratory frequencies can 
be given by the physiological nature of the two signals. The vPPG signal is a low-pass-filtered version of the fPPG 
signal. Therefore, RSA’s impact on the face is attenuated more rapidly compared to the respiratory modulation 
found in peripheral zones such as the finger. Moreover, since the vPPG system works without contact between 
the sensor and the skin, it is more sensitive to artefact motion. Therefore, the presence of a high energy peak in the 
power spectrum not related to the respiration may confound the method that selects an erroneous respiratory 
frequency.

Bland–Altman plots show a positive bias in all considered methods, indicating an underestimation of the 
respiratory rate. However, a detailed analysis of figure 5 indicates an overestimation at low respiratory rates. 
Additionally, fPPG presents a lower standard deviation (SD) than vPPG-based methods, and the inclusion of the 
tracking signal reduces the SD of the error.

A review of methods for BR estimation based on electrocardiogram (ECG) and fPPG is presented in Charl-
ton et al (2016). The performance of the 314 algorithms evaluated was assessed based on 2SD; the results ranged 
from 4.7 breaths per minute (bpm) at best to 50.1 bpm at worst. Our fPPG method obtained a 2SD of 6.38 bpm, 
being outperformed only by the best fPPG method whose 2SD was 6.2 bpm. Focusing on vPPG-based meth-
ods, a mean absolute error (MAE) of 0.541 bpm for vPPG was reported in Al-Naji et al (2017) using a protocol 
with respiratory rate ranging from 0.2 to 0.3 Hz. Constraining the analysis to this respiratory rate, our results 
are similar (MAE  =  0.537 bpm) for CvPPG  +TR. However, when all respiratory rates in our study are consid-
ered (0.1 to 0.6 Hz), the MAE increases up to 2.98 bpm; this points out the relevance of considering the effect 
of respiratory rate in the modulation of the vPPG signal. The approach presented in Poh et al (2011) does not 
derive any DR signal, although BR is estimated from the heart rate variability spectrum with BRs in the range of  
0.16–0.35 Hz. Their results showed a mean error and SD of 0.12 and 1.33 bpm, respectively. Using the same 
BR range, our results had a higher mean error (0.29 bpm) but lower SD (1.27 bpm). Again, the performance 
decreases (mean error and SD of 2.25 and 5.55 bpm, respectively) when the entire BR range in our study is con-
sidered. To the best of our knowledge, only the work of Gastel et al (2016) exploited the different ways respiration 
modulates vPPG to track instantaneous respiratory rate covering a huge range of breathing frequencies. Despite 
their innovative work, the main limitation is concerned with the limited number of recruited subjects, which 
prevents us from extrapolating their conclusions. Beside this, their method presents superior performances in 
higher respiratory frequencies estimation (f R  >  0.5) compared to the present work.

The second experimental setup tested the system with an industrial camera and a phase of spontaneous 
breathing and another of irregular breathing provoked by recovery after apnea. The proposed method is able to 
estimate the respiratory rate with an IQR relative error lower than 5% for both fPPG and vPPG, corroborating 
the good performances obtained in the estimation of respiratory frequencies in the central respiratory range 
during the first protocol. Interestingly, although the commercial camera produces a signal quality lower than the 
industrial one, the accuracy of respiratory rate estimation is still comparable to that of the fPPG system.

In terms of selected ROIs, the forehead appears to be the region with the highest SNR. A possible reason may 
be the region size: compared to the nose and cheek, the forehead is the largest area, and it allows us to reduce the 
camera noise level by averaging a greater number of pixels (Verkruysse et al 2008). Another explanation related 
to physiology could be the higher skin pulsatility of the forehead. In the future, it would be desirable to develop 
a fusion technique including signals from different ROIs and adding a weighting factor depending on the SNR. 
Another possibility may be the use of skin segmentation techniques that avoid the selection of the best ROI and 
perform vPPG signal extraction on the whole available face.

The performance of the vPPG system improves if the tracking signal is used in combination with pulse-to-
pulse methods (see figures 4(b) and (c)). Note that a motion-based system is sensitive to subject motion while 
vPPG-based systems promises motion robustness. Thus, factors concerning expected BRs and movement should 
be considered in the vPPG system design depending on the final application. We should look for other sources of 
respiratory information to improve the BR estimation made by the algorithm. Therefore, as shown in Nam et al 

Table 3. Relative error εR in database II, expressed as median and IQRs.

fPPG CvPDR CvPDR+TR

Phase εR (%) IQR (%) nOUT10%
εR (%) IQR (%) nOUT10%

εR (%) IQR (%) nOUT10%

Spont. 0.07 1.46 2 1.10 6.36 5 0.43 2.11 2

Recov. 0.27 1.63 1 1.01 10.12 4 0.46 4.81 1
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(2016), in future works the optical reflectance induced by respiratory abdominal motion could be be taken under 
consideration.

Finally, the proposed data fusion technique has shown some limitations in the estimation of BR with the 
vPPG system. Indeed, the method was tuned to present a higher accuracy estimation with respiratory frequencies 
in the center of the respiratory range; as a drawback, the relative error increases considerably at the boundary of 
the respiratory frequency range. Therefore, another aspect to consider is the use of machine learning tools, such 
as neural networks, which could result in a more robust combination of input information.

6. Conclusion

The present work has shown the possibility to estimate instantaneous BR from vPPG. The method derives 
respiration from the beat-to-beat PPG rate and morphology changes in amplitude and width driven by the 
physiological relationships between vPPG and respiration. Moreover, respiratory-induced head movements 
were used as an additional source of information for the vPPG system. Results of a combination of these methods 
show that respiratory frequencies in the central range (0.2–0.4 Hz) may be estimated using the vPPG system 
with a low relative error, εR < 2% and IQR of the order IQR < 5%. However, the vPPG system showed a drop 
in performance at respiratory range boundaries, around 0.1 Hz and 0.5 Hz, which shows that respiratory 
modulation of the vPPG signal is affected by BR. Therefore, vPPG-based systems should consider the effect of the 
BR in the estimation, mainly in applications where the respiratory rate is out of the 0.2–0.4 Hz range.
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