
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 56, NO. 4, APRIL 2009 1005

Discrimination of Sleep-Apnea-Related Decreases
in the Amplitude Fluctuations of PPG Signal

in Children by HRV Analysis
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Abstract—In this paper, an analysis of heart rate variability
(HRV) during decreases in the amplitude fluctuations of photo-
pletysmography (PPG) [decreases in the amplitude fluctuations of
photopletysmography (DAP)] events for obstructive sleep apnea
syndrome (OSAS) screening is presented. Two hundred and sixty-
eight selected signal segments around the DAP event were extracted
and classified in five groups depending on SaO2 and respiratory
behavior. Four windows around each DAP are defined and tempo-
ral evolution of time–frequency HRV parameters was analyzed for
OSAS screening. Results show a significant increase in sympathetic
activity during DAP events, which is higher in cases associated with
apnea. DAP events were classified as apneic or nonapneic using a
linear discriminant analysis from the HRV indexes. The ratio of
DAP events per hour rDAP and the ratio of apneic DAP events per
hour ra

DAP were computed. Results show an accuracy of 79% for
ra

DAP (12% increase with respect to rDAP ), a sensitivity of 87.5%,
and a specificity of 71.4% when classifying 1-h polysomnographic
excerpts. As for clinical subject classification, an accuracy of 80%
(improvement of 6.7%), a sensitivity of 87.5%, and a specificity
of 71.4% are reached. These results suggest that the combination
of DAP and HRV could be an improved alternative for sleep ap-
nea screening from PPG with the added benefit of its low cost and
simplicity.

Index Terms—Children, decreases in the amplitude fluctuations
of photopletysmography (PPG), heart rate variability (HRV), pulse
PPG, sleep apnea, time–frequency.

I. INTRODUCTION

OBSTRUCTIVE sleep apnea syndrome (OSAS) is one of
the most common sleep pathologies with high prevalence
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among the general population, with levels reaching values as
high as 4% for men, 2% for women, and 3% for children [1].
Generally, sleep apnea goes undiagnosed as painful symptoms
do not appear and patients do not seek medical aid. The most
common sleep apnea indicators are daytime sleepiness, irri-
tability, tiredness, low concentration, and impaired learning [2].
These factors generally have more serious consequences such as
social problems and job and traffic accidents. In addition, OSAS
produces hyperactivity and reduced capability to perform men-
tal tasks during childhood [3]. Severe OSAS generates diurnal
hypertension and many other potentially fatal cardiovascular
effects [4], [5].

OSAS consists of an interruption of the airflow to the lungs
produced by an upper airways occlusion. This is accompanied
by a decrease of blood oxygen over time and mechanical respira-
tory efforts that are intensified in order to reopen upper airways.
If these efforts are not sufficient and the hypercapnia level is
dangerous, an arousal is generated to reactivate all the periph-
eral systems and respiration is restored. This episode may recur
hundreds of times in a single night, with serious health implica-
tions [6].

Polysomnography (PSG) is the gold standard procedure for
sleep apnea diagnosis. PSG consists of an overnight recording
of different electrophysiological signals. The most common sig-
nals recorded are electroencephalogram, electromyogram, elec-
trooculogram, electrocardiogram, airflow, and oxygen satura-
tion. The acquisition and analysis of these signals require human
experience and specialized equipment. The latter requirements
and the reduced number of sleep centers make sleep diagnosis a
very expensive procedure. In addition, sleep diagnosis produces
a psychological impact in case of child patients [7]–[9].

In the last decade, application of different techniques for home
sleep apnea monitoring has been extensively developed [10].
These techniques range from the most sophisticated technol-
ogy, such as video recording, to simple measures such as pho-
topletysmography (PPG) signal. PPG waveform and its rela-
tion with physiological systems have been widely studied for
clinical physiological monitoring, vascular evaluation, and au-
tonomic behavior. PPG is an easily acquired measurement and
provides a measure of the tissue blood volume, which is related
to arterial vasoconstriction or vasodilatation generated by the
autonomic nervous system (ANS) and modulated by the heart
cycle. Indeed, PPG envelope amplitude decreases as a conse-
quence of vessel constriction generated by the activation of
the sympathetic nervous system. Amplitude reduction in PPG
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occurs when an apnea event takes place due to sympathovagal
balance changes [11], [12].

On the other hand, another electrophysiological signal very
broadly studied for apnea diagnosis is heart rate variability
(HRV). HRV represents fluctuations in the heart rate related
to ANS control. HRV exhibits frequency components from
0 to 0.5 Hz, which could be associated to the ANS branches. The
frequency components between 0.15 and 0.5 Hz represent the
vagal tone; frequencies in this band are known as high-frequency
(HF) components. Frequencies from 0.04 to 0.15 Hz manifest
the activation of both parasympathetic and sympathetic nervous
systems and these are labeled low-frequency (LF) components.
Finally, frequencies between 0.0033 and 0.04 give information
of the slow processes such as thermoregulation. Since the rela-
tive participation of parasympathetic and sympathetic nervous
in the LF component is uncertain, the ratio between HF and LF
is defined as the sympathovagal balance [13].

Detection of sleep apnea from PPG [14] and HRV [15]–[18]
have been explored independently in the literature. Decrements
in the amplitude fluctuations of PPG [decreases in the amplitude
fluctuations of photopletysmography (DAP)] events are markers
of sympathetic discharge, because sympathetic activity increas-
ingly produces vasoconstriction that is reflected in the PPG sig-
nal by decreases in the signal amplitude fluctuation [19], [20].
When apnea occurs, sympathetic activity increases [11], [12];
therefore, DAP events could indirectly quantify apneas dur-
ing sleep. However, other physiological events such as move-
ments and deep inspiratory gasp produce sympathetic activation,
and consequently, decrements in PPG envelope amplitude [21],
which are unrelated to apnea. As respiration modulates HR, an
HRV analysis could be useful in distinguishing whether DAP
events are related to apnea or to other different events. So, the
apnea identification by applying detection of decrements in the
amplitude fluctuations of PPG DAP as reference point and fur-
ther spectral parameters analysis of the HRV around this point
could offer an integrative procedure that represents an alterna-
tive solution to define apnea episodes and obtain more specific
apnea screening.

The aim of this study is to analyze the sympathovagal bal-
ance during DAPs related and not related to airflow reductions,
oxygen desaturations, and no apnea episodes in normal and
pathologic children. The dynamics of the sympathovagal bal-
ance is obtained by the analysis of spectral parameters of the
HRV applying a time–frequency representation called smooth
pseudo-Wigner–Ville distribution (SPWVD). Furthermore, a
comparison between apnea screening using only PPG and the
combination of PPG and HRV is carried out. Section II intro-
duces materials and methods. Section III presents the results
that are discussed in Section IV. Finally, Section V gives the
conclusions.

II. MATERIALS AND METHODS

A. Data

One complete night PSG recordings from 21 children were
used in this study. Age of the children ranged around 4.47 ± 2.04
years. Children were referred to the Miguel Servet Children’s

Hospital in Zaragoza for suspected sleep-disordered breathing.
EEG with electrode positions C3, C4, O1, and O2, chin elec-
tromyogram, ECG with leads I and II, eye movements, airflow,
and chest and abdominal respiratory efforts were recorded by a
digital polygraph (BITMED EGP800), according to the standard
procedure defined by the American Thoracic Society [22]. PPG
and arterial oxygen saturation (SaO2) were measured continu-
ously using a pulse oximeter (COSMO ETCO2/SpO2 Monitor
Novametrix, Medical Systems). Signals were stored with a sam-
ple rate of 100 Hz, only ECG signals were sampled at 500 Hz.
OSAS evaluation from PSG data was scored by clinical experts
by using the standard procedures and criteria [1]. Ten children
were diagnosed with OSAS and 11 were diagnosed as normal.

B. Decreases in Amplitude Fluctuation of PPG
(DAP) Detection

During sleep, apnea or arousal events increase sympathetic
tone generating arterial vasoconstriction. Transient sympathetic
activations are reflected as DAP [19], [23]. In order to iden-
tify DAP events, we applied a detection algorithm based on
detecting the envelope reduction of the PPG [14]. A summary
of the algorithm steps is presented next. PPG signal (xp(n))
is detrended (xp

d c
(n)) by removing the mean value obtained

with a moving average filter. Artifacts were detected in xp
d c

(n)
by an algorithm based on Hjorth parameters, and the artifacted
signal segments were rejected. The envelope x

E
(n) of xp

d c
(n)

is obtained at the artifact-free signal segments by

x
E
(n) =

√√√√ 1
Np

n∑
k=n−(Np −1)

x2
p

d c
(k) (1)

where Np is the number of samples in two cardiac cycles. This
was selected according to the results in Gil et al. [14]. A DAP
event is identified at time n when x

E
(n) is lower than a prede-

fined adaptive threshold and this situation has a minimum dura-
tion. This adaptive threshold is updated when neither DAP event
nor artifacts are present and is calculated as a percentage of the
mean of the last Lp nonartifacted samples of the envelope x

E
(n).

C. DAP Clustering Criteria Related to Apnea Signs

Medical diagnosis consisted of classifying the available
records in the database in two groups: normal or pathologic.
DAP events for each recording were detected with the procedure
described in Section II-B and [14] at the PPG signal. Segments
from ECG, PPG, SaO2 , air flow, and abdominal effort centered
at the DAP event onset and lasting 5 min were extracted and
from hereon, were denoted as DAP events. From these events,
those who had clear signatures were taken to obtain five dif-
ferent groups with uniform patterns based on the gold standard
criterion for defining sleep apneas [1]. DAP event is classified
into following five groups. Group 1 (G1) when SaO2 decreases
by at least 3% and there is not a clear reduction in airflow sig-
nal. Group 2 (G2) when airflow decreases by at least 50% with
respect to the baseline for a minimum duration of 5 s. Group 3
(G3) when airflow reduces by more than 50% from baseline and
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Fig. 1. DAP events examples. The DAP event onset and end (as given by the detector) are marked with dashed lines. (a) G1 . (b) G2 . (c) G3 . (d) G4 . (e) G5 .

is accompanied by a reduction in SaO2 of at least 3%. Group 4
(G4) when DAP event correlated neither to airflow reduction nor
SaO2 decrement. Finally, Group 5 (G5) when DAP events are
related neither to apneas nor SaO2 decrements but a change in
respiration occurs. Fig. 1 shows typical examples of airflow, ab-
dominal efforts, SaO2 , PPG, and ECG for the different groups.
G1 , G2 , and G3 can be merged in a single group named Ga
(apneic group) as well as G4 and G5 can also be regrouped in

a single set, Gn (nonapneic group). A total of 268 DAP events
were extracted. Table I shows a summary of the DAP events in
each group.

Note that G2 group has a comparable number of events be-
longing to subjects clinically classified as normal or OSAS,
while more could have been expected for OSAS. The reason
could be that oxygen desaturation is a leading parameter for
clinical diagnosis, so these G2 events, which do not have a
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TABLE I
NUMBER OF DAP EVENTS IN EACH GROUP

strong impact on SaO2 , do not necessarily lead to OSAS label
explaining this apparent inconsistency.

D. HRV Analysis

Inverse interval function dIIF(tj ) [24] denoting the heart rate
time series was extracted from the ECG segments by an auto-
matic QRS detector [25] providing the tj beat location for every
jth beat. dIIF(tj ) series were resampled at 2 Hz by cubic spline
interpolation. Resulting time series were detrended by subtract-
ing the mean value. Subsequently, analytic signals from each
segment were obtained by applying the Hilbert transform to the
detrended series. After that, time–frequency representation was
used to decompose the signals in their different frequencies at
each time. Then, the time evolution of the HRV indexes was
evaluated: total power from 0.0033 to 0.5 Hz (PT ), very LF
power from 0.0033 to 0.04 Hz (PVLF ), LF power from 0.04
to 0.15 Hz (PLF ), HF power from 0.15 to 0.5 Hz (PHF ), and
low to HF ratio (RLF/HF ). The representations and the spec-
tral indexes were obtained by using the absolute values of the
time–frequency distributions.

Time–frequency analysis presents interesting mathematical
features to analyze short time series with high time–frequency
resolution. In our study, a good time resolution is required be-
cause apneas in children present rapid changes. Therefore, Co-
hen’s class time–frequency distributions were considered. This
class obeys the property of time- and frequency-shift invari-
ance [26]. Cohen’s class is defined by

Cx(t, f)=
∫∫

φ(t − t′, τ)x
(
t′ − τ

2

)
x

(
t′ +

τ

2

)
e−2πf τ dt′ dτ

(2)
where φ(t − t′, τ) is a function labeled kernel and x(t) is the
analytic signal to be analyzed. The kernel properties define the
distribution properties. A specific kernel univocally defines a
distribution. The kernel is a bidimensions filter, the purpose of
which is to eliminate noisy energy components generated by
the quadratic nature of the distribution. These spurious compo-
nents are known as cross terms and disturb the energy signal
interpretation in the time–frequency plane. In this study, the
kernel used for minimizing the cross-term errors effect was the
SPWVD. This distribution was introduced by Martin and Flan-
drin in 1985 [27] and is characterized by independent smooth-
ing functions in time and frequency, originated by ϕ(t) and
η(τ/2)η∗(−τ/2) windows, respectively

φ(t, τ) = ϕ(t)η
(

τ

2

)
η∗

(
− τ

2

)
. (3)

The SPWVD parameters were selected in order to allow us to
evaluate the spectral components of the HRV with high time and

Fig. 2. dI IF mean ± S.D. for apneic (Ga≡ G1 +G2 +G3 ) and nonapneic
(Gn≡ G4 +G5 ) DAP events. Analysis windows (r: reference, d: DAP episode,
and p: post DAP event). Dashed line at reference time indicates DAP onset.

frequency resolution [28], and on the basis of recommendations
and experimental results reported in previous studies [29], [30].
For smoothing in time ϕ(t), a Hamming window of 10.5 s
was selected, whereas for smoothing in frequency η(τ/2), a
Hamming window of 64.5 s was used.

E. Statistical Analysis and Classification

1) Statistical Analysis: In order to quantify the evolution of
autonomic variations when a DAP event is associated or not
associated to airflow decrements, SaO2 reductions, or to noth-
ing; four time windows were defined in specific time intervals
related to DAP events onset. Fig. 2 shows the mean of the
dIIF sequences when DAP is related or not related to an ap-
neic episode, as well as the windows defined in relation to DAP
event. Time 0 s is assigned to DAP onset. The time windows
are defined as follows: 1) reference window (wr ) is located 15 s
previous to the DAP event onset with a duration of 5 s; 2) DAP
episode window (wd ) is found 2 s before the DAP onset and
lasting 5 s; 3) post-DAP event window (wp ) located 15 s after
DAP onset and lasting 5 s; and 4) global window (wg ) starting
at 20 s prior to the DAP onset, lasting 40 s and containing the
other windows. Mean absolute values in the time windows were
computed for dIIF sequences, PVLF , PLF , PHF , and RLF/HF
as well as for the normalized versions with respect to the total
power PVLFn

, PLFn
, and PHFn

. Kruskal–Wallis nonparametric
statistic approach was performed in two cases: one, to compare
the time variations among windows of HRV parameters, and the
other, to compare differences among groups for each parameter
and window. Posthoc analysis was applied to determine pairs
that had statistic differences (p < 0.05).

2) Features Sets: From the grouped groups were extracted
a series of features in order to select a set of them that could
provide separation between normal (apneic-unrelated) and ap-
neic (apneic-related) DAP events. The set of features is formed
by the mean and the variance within the four different windows
(wr , wd , wp , and wg ) referred to as the DAP detection of dIIF ,
PLFn

, PHFn
, RLF/HF indexes. In addition, for each index, the

difference between reference wr and DAP episode window wd

as well as between wr and post-DAP event window wp was
computed. In order to reduce the biovariability in dIIF temporal
indexes, signal was first normalized by subtracting the mean
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value and dividing by the variance during the complete (5 min)
DAP event. Spectral indexes normalized with respect to the to-
tal power were used. Features are denoted as either X

w
n , σX w

n
,

or ∆X
w 1 −w 2
n , where the overline and σ denote the mean and

variance, respectively, X the main index with X ∈ {dIIF , PLF ,
PHF , RLF/HF}, the subscript n the normalized version and the
superscript w the analysis window (wr for reference, wd for
DAP episode, wp for post-DAP event, and g for global), and ∆
indicates a differential index and in this case w1 and w2 denote
the two windows involved. A total of 34 features were extracted.

3) Classifier: A linear discriminant (LD) analysis was used
to separate between DAP events related and not related to apnea
episodes (Ga and Gn ). Let yi = [y1i , y2i , . . . , ydi ] be a row
vector with d values where each column represents a feature
value from ith DAP. And suppose we wish to assign yi to class
k of the c possible classes, then the discriminant value fk for
each class is evaluated from the following equation:

fk = µkΣ
−1yT

i − 1
2
µkΣ

−1µT
k + log(πk ) (4)

where T represents the transpose and µk is the row mean vector
obtained from the whole Nk training vectors belonging to class
k. In order to evaluate µk , let N be the total number of yi in the
training set, then µk is obtained by

µk =
1

Nk

Nk∑
i=1

yik . (5)

For a LD classifier, Σ represents the pooled covariance and
it is evaluated as

Σ =
1

N − c

c∑
k=1

Nk∑
i=1

(yik − µk )T (xik − µk ). (6)

πk represent the prior probability that yi belongs to a class k. A
practical way to evaluate πk is

πk =
Nk

N
. (7)

Finally yi is assigned to the class k with higher fk .
4) Selection and Transformation of the Features: Feature

selection can be addressed in different ways, it being possible
to evaluate it by statistical analysis of features, wrap methods,
principal component analysis, or factor analysis. Wrap methods
consist of selecting the features based on the classifier perfor-
mance by gradually adding one more feature and selecting the
combination that provides the highest classification accuracy.
The wrap method was used in this paper.

F. Clinical Study

To evaluate the improvement of adding HRV information for
OSAS diagnosis based on PPG, a clinical study was carried out.
The available one night PSG recordings described in Section II-
A were split into 1-h length fragments. These 1-h PSG fragments
were labeled as control, doubt, or pathologic based on SaO2
desaturation in order to later be able to evaluate the classifier
accuracy for these fragments. To establish this separation, a
baseline level β, corresponding to the SaO2 signal mode of the

TABLE II
PSG FRAGMENTS CLASSIFICATION

entire night recording, was considered [14]. In all recordings
β ≥ 97%. Total time intervals with SaO2 signal below β − 3%,
tβ−3 was calculated for each fragment. PSG fragments were
classified according to the following criteria:

tβ−3 < 0.9 min control

0.9 min < tβ−3 < 3 min doubt

tβ−3 > 3 min pathologic. (8)

This implies a minimum of 5% of the time with evident
oxygen desaturation to be considered as pathologic, which cor-
responds to a severe OSAS criteria in children [31] of 18 apneas
per hour having a mean duration of 10 s. For control group, the
threshold corresponds to five apneas per hour. Table II shows
the classification for these PSG fragments.

Now, the objective is to classify these 1-h fragments based on
the DAP per hour ratio. This classification will be done both just
with the DAP coming from the DAP detector in Section II-B,
rDAP , and with those classified as apneic DAP events with the
methodology presented in Section II-E, ra

DAP . For training the
classifier, DAP events in Section II-C selected from groups G1–
G5 were used. Receiver operating characteristic (ROC) curves
were calculated for both indexes and the optimum thresholds
in terms of maximizing sensitivity (Se) and specificity (Sp)
were established. In addition, Wilcoxon nonparametric statisti-
cal analysis was carried out for both indexes in order to evaluate
their discriminant power between groups.

Since we are interested in having a label attached to a patient,
we need a rule to determine when a patient with a given number
of pathological fragments is considered as a pathologic subject.
For that, the percentage of time under pathologic fragments
based on rDAP and ra

DAP was analyzed. The threshold for this
percentage was selected for maximizing Se and Sp. From the
total of 21 children, six subjects were excluded because only
less than 4 h had ECG and PPG signals of acceptable quality, so
15 registers were included in this study corresponding to eight
OSAS and seven normal according to clinical diagnosis.

III. RESULTS

A. Statistical Analysis Results

Table III shows Kruskal–Wallis analysis results of statistical
comparison among groups for each feature. First row is the p-
value test. The remaining rows show a number (or numbers)
indicating which group (or groups) has statistical differences
with the group defining the row.

Fig. 3 shows mean and standard error of dIIFn , σdI IF n
, and

spectral indexes obtained by SPWVD. Letters refer to the tempo-
ral windows analyzed during DAP (r: reference, d: DAP episode,
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TABLE III
KRUSKAL–WALLIS ANALYSIS RESULTS OF STATISTICAL COMPARISON AMONG GROUPS FOR EACH FEATURE

Fig. 3. dI IF n ± SE, σd I IF n
± SE, and spectral indexes obtained by SPWVD. Window refers to the temporal windows analyzed during DAP (r: reference, d:

DAP episode, and p: post DAP event). From top to bottom, mean heart rate (dI IF n ), standard deviation heart rate (σd I IF n
), LF (PLFn ), HF (PHFn ), and LF

to HF ratio (RLF/HF ) of heart rate. All the spectral parameters were normalized with respect to the total power at each time. (*) refers to p < 0.05 between
windows wr and wd and § to p < 0.05 between windows wd and wp .
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TABLE IV
PSG FRAGMENTS CLASSIFICATION RESULTS

Fig. 4. ROC curves for rDAP (dashed line) and ra
DAP (solid line). Bullet dots

indicate the points where the global results are presented.

and p: post DAP event). From top to bottom shown are mean
heart rate (dIIFn ), standard deviation heart rate (σdI IF n

), LF
(PLFn

), HF (PHFn
), and LF to HF ratio (RLF/HF ) of heart rate.

All the spectral parameters were normalized with respect to the
total power at each time. (*) refers to p < 0.05 between win-
dows wr and wd and § to p < 0.05 between windows wd and
wp .

The best features to classify between Ga and Gn ob-
tained by the wrap method were Pwg

HFn
, Rwg

LF/HF , σd
w d
I IF n

, and

∆dIIF
wr −wd

n , having an accuracy of 68.77%, a Se = 70.5% and
a Sp = 68.46%.

B. Clinical Study Results

Results regarding PSG fragments and subject classification
are shown in Table IV. The inclusion of HRV information im-
proves the PSG fragments classification accuracy in 12.3%,
reaching a 79%, and obtaining values of 72.7% and 80% for sen-
sitivity and specificity, respectively. In addition, the Wilcoxon
statistic analysis shows a higher discriminant power between
pathologic and normal for ra

DAP (p = 0.0061) than for rDAP
(p = 0.0225). ROC curves in Fig. 4, varying thresholds in rDAP
and ra

DAP , demonstrate the advantage of including HRV infor-
mation. As for subject classification, the improvement in accu-
racy is 6.7%, reaching a 80%, and obtaining values of 87.5%
and 71.4% for sensitivity and specificity, respectively.

IV. DISCUSSION

Analysis of autonomic control during decreases in the am-
plitude fluctuation of PPG signal in children was presented.
Table III shows statistical differences among G1 , G2 , and G3
(Ga ) with respect to G4 and G5 (Gn ) for most of the features,
confirming the association made in Section II-C based on the
apnea physiology. As for time features, ∆dIIF

wr −wd

n evidence
a higher rise in dIIFn

for DAP associated with apneic events
(Ga ) than DAP without apnea connection (Gn ). Respiration

modulates HR, HF being the component that mainly reflects
the respiratory process. Our hypothesis is that this modulation
is different among groups and at the different temporal win-
dows, these differences being the parameters used to distinguish
among groups. Results show that differences (higher PLFn

and
lower PHFn

values) appear in frequency features for all groups
with respect to G4 during all time references (wr , wd , wp , and
wg ), indicating a predominance of the sympathetic system dur-
ing apnea, in agreement with [11], and the fact that different
respiratory patterns appear. As PHF presents higher values in
G4 and important significant statistical differences with Ga , the
feature Pwg

HFn
was the first selected by the wrap method for

feature selection (Section II-E4).
Fig. 3 shows increments in dIIF signal during the DAP event

window for all groups, except G4 . Time evolution of frequency
features shows similar patterns in all groups, an increase in
PLFn

and RLF/HF and a decrease in PHFn
during DAP, in-

dicating an activation of the sympathetic branch of the ANS
followed by a recovery period. However, increments in the dIIF
signal during the DAP event window turn out to be statisti-
cally significant with respect to reference and post DAP event
window only for groups 1–3. This means that changes are better
marked for apneic events as indicated ∆dIIF

wr −wd

n in Table II-F.
PLFn

reveals significant increments only during the DAP event
window in G1 and G2 with respect to reference window and
G1 , G4 , and G5 with respect to the post DAP event window.
DAP event window shows reduction in the PHF for all groups;
however, significant are found in G1 , G2 , and G5 . RLF/HF also
presents significances differences in these groups, but with an
increment in the DAP event window.

Our main findings were: an increase in sympathetic activ-
ity occurs during DAP events in concordance with [19]. When
DAP events are not associated to either respiratory events or
SaO2 decrements, HRV shows just a slight alteration and its
spectral power is more shifted to the HF component. On the
contrary, DAP events associated to apnea produce a stronger
variation in the heart rate, and spectral power is concentrated in
the LF range. These results suggest that sympathetic activation
is deeper in case of association with apnea. The statistical dif-
ferences between DAP events associated with apnea and those
without association indicate that HRV analysis is useful to dis-
criminate between these two groups of events. This has led
to better specificity in apnea detection, as corroborated by the
clinical study in Section III-B.

PPG signal carries information related to the cardiovascu-
lar function as well as blood gases concentration. This signal
presents interesting characteristics that can be used to detect ap-
neic episodes. However, its high sensitivity could produce mis-
detections and overestimate apneic episodes. Generally, in most
of the studies, PPG has been directly related with the cardiac
function, giving as a result, a measure of the pulse transit time
(PTT) [32]–[34]. PTT gives a quantitative measure of the time
that a pulse wave needs for passing from one arterial to another,
and is evaluated as the time interval between the ECG R peak and
the start of the corresponding PPG wave. PTT decreases after an
apneic event due to a sympathetic activation related to arousal
that produces heart rate increment, higher stroke volume, and
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vasoconstriction, which, in turn, generate pulse wave acceler-
ation [35]. However, some other physiological events such as
slow-paced breathing [36] and deep inspiratory gasp [37] also
induce variation in the PTT that could be mistaken for sym-
pathetic activations. However, this integration loses important
information that could be obtained from the heart rate spectral
parameters. Heart rate dynamics and spectral parameters of-
fer time and frequency information that discriminates between
small cardiovascular variation and more severe ones, as when
an apneic episode occurs.

Heart rate control oscillates in a specific range of frequencies.
These frequencies characterize ANS control, which is activated
or inhibited as a result of feedback mechanisms. Under constant
conditions such as rest, autonomic control is very regular and
RR sequence shows a stationary pattern. This situation allows
the application of techniques such as Fourier transform to ob-
tain the spectral components of the time series. However, under
conditions of rapid change such as sit to stand and sleep ap-
nea, autonomic control adapts speedily to satisfy the system re-
quirements, so the RR sequence shows nonstationary behavior.
Under such conditions, more sophisticated techniques of signal
processing are required to analyze the time evolution of the auto-
nomic control mechanism. Different approaches have been de-
veloped to deal with this problem. Time–Frequency [26], Time-
Varying [38], and Time-Scale [39] analysis are some of the most
powerful tools. In our study, a good time resolution is required
because apneas in children present rapid changes. Therefore,
Cohen’s class time–frequency distributions were considered.
For minimizing the cross-term errors effect of these quadratic
distributions, the SPWVD was used. The smoothing functions
defining the kernel were selected in order to allow us to evaluate
the spectral component of HRV with high time and frequency
resolution [28].

This methodology could be evolved if the spectral parame-
ters of the heart rate could be extracted from the PPG. In this
way, only acquisition of one signal could be enough to analyze
sleep apnea episodes. Since PPG signal is a very simple, cheap,
and easy to acquire measure, PPG presents great potential for
home apnea monitoring, reducing the cost of wearable devices
and complex technology for analysis. Processing of PPG sig-
nals could be implemented in real time and with a very low
computation cost.

Our results fall within the reported interrater reliabilities for
sleep scoring [40], where the mean epoch by epoch agreement
between five scorers was 73%, and within the interobserver
agreement on apnea–hypopnea index (AHI) using portable mon-
itoring of respiratory parameters [41], where the AHI agreement
scored by eight physicians was 73% measured by intraclass cor-
relation coefficient.

Many studies have been carried out for OSAS screening at-
tempting to reduce PSG cost and complexity. Different tech-
niques have been proposed, oximetry-based screening being one
of the most widely suggested for both the adult and pediatric
population. Although these methods have high sensitivity, they
tend to have very low specificity [42]. In addition, a confound-
ing factor in children is that obstructive events frequently do not
lead to significant oxyhemoglobin desaturation. Pulse oximetry
in children has the same limitation as in adults [43]. Brouillette

et al. [44], in an extensive study involving 349 children, obtained
a positive predictive value of 97%, but the negative predictive
value was only 53%. Other approaches based on ECG [15] have
shown very good results for adults, achieving perfect scores
of 100% in accuracy for subjects classification. However, few
ECG-based studies are aimed at children, for which physiol-
ogy is different and important differences in sleep disorders
exist [22], [31]. Shouldice et al. [45] reported a sensitivity of
85.7% and a specificity of 81.8% in an ECG-based study on chil-
dren by adapting previous research on adults where information
of ECG-derived respiratory signal was included. Cardiorespi-
ratory sleep studies that typically include two or more signals
have also been considered. These studies have been shown to
be sensitive to OSAS, but mostly in adults [46]. Some other
alternatives such as nap studies, clinical history, sonography, or
videography exist [43].

In summary, in terms of sensitivity and specificity, the results
of our proposed method are similar to [45] or better than [3],
[43], [44] currently investigated alternatives for OSAS screening
in children. However, performance improvement to reach the
accuracy of adult methods would be desirable, and extended
studies are needed to corroborate the potential of our method in
diagnosing sleep disorders in children.

V. CONCLUSION

In conclusion, our results suggest that an increase in sym-
pathetic activity occurs during DAP events. When DAP events
are not associated to either respiratory events or SaO2 decre-
ments, HRV shows slight alterations, and its spectral power is
more shifted to the HF component. On the contrary, DAP events
associated to apnea produce strong variation in heart rate, and
spectral power is concentrated in the LF range. These results
suggest that sympathetic activation is deeper in case of associ-
ation with apnea.

The ratio ra
DAP present an increase of 12% in accuracy

for classifying 1-h polysomnographic segments with respect
to rDAP , reaching 79% and obtaining values of 72.7% and 80%
for sensitivity and specificity, respectively. As for subject clas-
sification, the improvement in accuracy is 6.7%, reaching 80%,
obtaining values of 87.5% and 71.4% for sensitivity and speci-
ficity, respectively. Consequently, HRV analysis improves the
utility of PPG signal in sleep disorder diagnosis so that the
combination of DAP and HRV could be an alternative for sleep
apnea screening with the added benefit of low cost and simplic-
ity. Nevertheless, extended studies are needed to corroborate
the potential of PPG signal in conjunction with HRV analysis
in diagnosing sleep disorders.
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Ricerca (MIUR) Project and an European IP Project in the area of biomedical
signal processing.

Dr. Bianchi is a member of the IEEE Engineering in Medicine and bi-
ology Society and a reviewer of many international journals on Biomedical
Engineering.

Pablo Laguna (M’92–SM’06) was born in Jaca,
Spain, in 1962. He received the M.S. and Ph.D. de-
grees in physic science from the Science Faculty,
University of Zaragoza, Zaragoza, Spain, in 1985 and
1990, respectively.

From 1987 to 1992, he was an Assistant Professor
of automatic control in the Department of Control En-
gineering, Politecnic University of Catalonia (UPC),
Barcelona, Spain and a Researcher in the Biomed-
ical Engineering Division, Institute of Cybernetics
(UPC–CSIC). From 1992 to 2005, he was an As-

sociate Professor at the University of Zaragoza, where he is currently a Full
Professor of signal processing and communications in the Department of Elec-
trical Engineering, Engineering School, and a Researcher at Aragón Institute
for Engineering Research (I3A). Together with L. Sörnmo, he is the author
of Bioelectrical Signal Processing in Cardiac and Neurological Applications
(Elsevier, 2005). His current research interests include signal processing, in
particular, applied to biomedical applications.

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on May 18, 2009 at 05:40 from IEEE Xplore.  Restrictions apply.


