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Abstract

Any ST-T segment was here represented by using the
Principal Component Analysis, or Karhunen-Loéve
Transform (KLT). A representative KL basis set was
built from a database containing more than 97000
normal and abnormal ST-T segments. So it was possible
to concentrate the 90% of the ST-T signal energy in the
Jirst KL coefficients. For the evaluation, the ST-T
European Database was chosen, because of its large
amount of ischemic episodes. The baseline was removed
by using a cubic spline and an adaptive filter was
applied in order to improve the signal-to-noise ratio in
the final KL series, delivering an improvement of about
10 dB. Then a 3-layers feedforward neural network,
trained with Back Propagation, was applied to the KL
series to recognize ST-T level changes. Each input
pattern consisted of 28 features, representing 7 ST-T
segments, each one described by means of its first 4 KL
coefficients. 3 output units were designed, one to
describe ST depression, one ST elevation, and one to
represent artefacts. The use of Principal Component
Analysis and of Artificial Neural Networks allowed us to
obtain a sensitivity of 77% and a Positive Predicitive
Accuracy of 86% on the test set.

1. Introduction.

Analysis of long term ECG represents a significant
diagnostic tool for early detection and therapeutic
control of several cardiac diseases. Myocardial ischemia,
as evidenced by the alteration of the ventricular
repolarization waveform of the ECG, is particularly
important, because of the associated potential
complication of myocardial infarction as well as for the
large amount of subjects at risk.

Ischemic changes of the ECG generally affect
the entire repolarization wave shape and  are
inadequately characterized by isolated features, such as a
few measurements of the ST segment amplitude
changes, even if these are obtained as an average of
several signal samples. Whereas in the last years some
algorithms have been developed, they are not sufficiently
reliable yet, because of the artefacts and of the slowly ST
change phenomenon in ECG measure trends. The
artefacts, produced by any electrical cardiac axis shift,
for example due to a postural change of the patient, can
be easily confused with ischemic ST changes. On the
other hand, sometimes the slow ST evolution does not
allow the detection of the weakest episodes, while early
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diagnosis and treatment can prevent a sudden death due
to infarction.

In order to improve the sensitivity value in
automatic recognition of ischemic ST level changes, we
used the Principal Component Analysis, or Karhunen-
Loéve Transform for the ECG signal transformation and
an Artificial Neural Network for the ST-T change
detection.

This combination of Principal Component
Analysis and of Neural Classification allowed us to
obtain good results (80% around of sensitivity and PPA
on the test set), better than those obtained by commercial
system and comparable with physician’s performance on
the same ST database we used.

2. Principal component analysis or Karhunen-Lodve
transform (KLT)
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Figure 1. Reconstruction of a pattern x with KL basis ®;.

The KL Transform is a transformation of the
current coordinate system in a new one more able to
represent a given input space. It describes the original
vectors according to the directions of maximum
information in the training set, derived from the data
covariance matrix. In fact, the orthogonal eigenvectors
of the covariance matrix are chosen as basis functions,
@, to perform the KLT, and the corresponding
eigenvalues, Ay, represent the average dispersion of the
projection of input vectors onto the corresponding basis
functions. If the eigenvectors are sorted in order by their
respective eigenvalues such that Ay is greater than Ay 4,

the corresponding basis functions @, are arranged in
order of representational strength. If the mean vector m
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is zero, the eigenvalue Ay of the covariance matrix
represents the average energy of the projection of input
vectors onto the associated basis function @y, instead of
its average dispersion. The reconstruction process of a
vector x by using the KL basis functions is shown in
figure 1.

We chose to represent the ECG signal with the
KL transform, because in that way it is possible to
recover maximum information from any pattern x by
using only the most representative basis functions @,
associated to the highest eigenvalues A, and then for a
given set of basis waveforms a minimum number of KL
coefficients are necessary.

3. KL basis functions

To obtain a representative training set of normal and
abnormal ST-T waveforms, we selected 105 fifteen-
minutes ECG records. For each QRS complex, detected
and labeled by using ARISTOTLE software, the ST-T
segment was defined as the vector of samples beginning
85 ms following the R peak and ending 240 ms prior to
the next R peak. If the RR parameter, defined as the
interval between two following R peaks, was less than
720 ms, the end of the window was located at 2/3 of the
way from the initial R peak to the following one.

To avoid the effects of ectopic and other
abnormal beats, we accepted only ST-T segments placed
between two QRS complexes labeled as normal by
ARISTOTLE. We estimated the isoelectric level as the
average signal value during the 20 ms interval,
beginning 80 ms prior to the R peak. Beats, for which
the estimated isoelectric level was different by more than
0.2 mV from that of the previous or of the following
beat, were excluded from the training set. We then
manually rejected a small number of ST-T patterns, that
we judged subjectively to be particularly noisy. The
remaining 97663 ST-T patterns constituted the training
set [1].

We corrected also those beats for baseline
variation, using cubic splines and a high pass filter.
Moreover the effects of heart rate on ST-T segment can
be corrected by using the Bazett’s formula, that within
the ST-T window resamples the ECG signal at the
original sampling frequency (250 Hz) divided by the
square root of the previous RR interval, that is:

err-m{ )

From the described training set, we obtained the
KL basis functions, the first ones of which are shown in
figure 2. The solid lines show basis functions derived
without Bazett’s correction, while the dashed lines show
basis functions derived with Bazett’s correction. We
have got that this representation permits about the 90%
of the ST-T signal energy to be represented by the first 4
KL coefficients. Since most heart rates exceed 60
beat/minute, the correction was applied to the most ST-T
segments and tended to stretch them.

214

The first basis function, and to a lesser extent
the second one, represents the dominant low frequency
components of the ST-T segment, concentrated in the
first 400 ms after the QRS. The next few basis functions
contain more high frequency energy, and contain energy
more evenly distributed across the entire ST-T segment.
These functions represent components being in
abnormally prolonged ST-T segments and in U waves,
when they happen to be within the time window. The
remaining higher order basis vectors contain almost
exclusively high frequency content related to noise in the
training set. Then by inspection of these basis vectors,
we could predict that the first two KL coefficients should
be already a good tool for detecting ischemic ST-T
changes, since they contain virtually all of the low
frequency energy.

[} ]
(13}

hasis &

" \ /,f\ ———
@ S\ ST 0

L Nl s

= N

v M 1 T
. 100 300 ™ a0 300 s L] i

Figure 2. KL basis functions set.

4. KL series

For the evaluation we used the European Society of
Cardiology ST-T database, containing 100 ECG
annotated records, sampled at 250 samples/s and lasting
2 hours each one. That was chosen because of its large
amount of annotated ischemic ST-T episodes.

We performed several experiments for
observing the correctness of the ST-T segment
reconstructions [1} and 4 KL coefficients were chosen to
represent our data, because they were supposed to be
sufficient to reconstruct the most ST-T segments in the
test set. So the ST-T dynamics was characterized by the
study of 4 KL cocfficient time series. We assigned to
each QRS fiducial point the KL coefficients extracted
from the corresponding ST-T segment, by means of its
inner product with the KL basis functions. If the ST-T
secgment had no as many components as the basis
functions had, it was corrected with the zero-padding
technique. A cubic spline baseline removal was applied
to every ST-T scgment.

Further noise in the KL time series was reduced
using an adaptive filter that removed noise uncorrelated
with the ST-T segment. In fact, an adaptive estimation
of quasi-periodic signal, such as the ST-T segment,
permits reduction of noise uncorrelated with the signal,
with attendant improvements in the ability to track
subtle dynamics variations in these signals. The
designed adaptive filter made use of the recurring



features of the signal and it was based on an adaptive
linear combiner.

Here we present the results of estimating and
monitoring the KL series on some ECG records from
European ST-T database.

The first figure reports the time series for the
first and the second lead of 0103 record, obtained
respectively using the adaptive filtering and not using it.
With the adopted adaptive filtering we obtained a Signal
Noise Ratio improvement of about 10 dB. The figure
clearly shows 8 ischemic episodes, corresponding to the
8 KL series peaks. Only 5 of them are reported in the
database reference annotations, since 3 of these episodes
(first, second, and seventh) are below the standard
thresholds for marking ischemic ST-T episodes. Here
these subthreshold episodes are unambiguously
identified.

The second figure shows the first and the
second KL components for the first lead of the €0105
record. In this case, each one of the seven peaks
corresponds to an ischemic ST-T episode, marked in the
database reference annotations.
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Figure 3. KL series with and without adaptive filtering.

S. Artificial neural network.

To detect ST ischemic episodes, we could apply a simple
threshold criterion to the time series, because of their
good quality. On the other hand that would not be able
to avoid artefacts and to recognize weak ST episodes. It
is necessary to yield also morphological information
from the ST-T episodes in such a way to distinguish
artefacts and to appreciate even subthresholds episodes.
For that we need information from a sequence of beats
instead of a single beat and a new decision criterion.

We decided to use the Artificial Neural
Network approach, because it was applied in other ECG
automatic analysis problems, obtaining very good results
[6]. So, a three-layer feedforward neural network,
trained with BackPropagation, was applied to the KL
series for each record, to recognize the ST-T level
changes.

Each input pattern consisted of 28 features,
characterizing a 7 beat signal window, and each beat
was described by the first 4 KL coefficients of its ST-T
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segment. 3 output units were introduced to indicate
respectively ST depression, ST elevation, and artefacts,
with a mutually exclusive code. Thus a normal ST-T
segment was coded with a [0 O O] target vector. The
hidden layer, after several experiments, was chosen to
have 10 units. All units of the network had the sigmoidal
activation function.

The training set was built by using only 10 out
of the 100 ST-T database records and the test was
performed on the remaining 90 ones. From the 10
records used for the training set, a subset of
representative artefacts, normal, and abnormal beats,
almost equally distributed, was extracted, for a total of
around 2,000 ST-T segments.

7 beats x 4 KL

Figure 4. Neural network structure.

For each record, the first 60 ST-T segments
were used to calculate the average level of its KL series,
so that we could regard every ST episode as a change
from the O level. For the training set, only records with a
stable baseline level were chosen. In the test set, the
average level, calculated at the beginning, was updated
on every point by using a moving average algorithm.
This operation was interrupted when either an ST
episode or an artefact was detected and after that the
new average KL level was calculated.

The input and output values were normalized to
fall in the range [0,1]. During the learning process of the
network we adopted two possible stopping criteria: either
if the epoch number is greater than 2,000 or if the Root
Mean Square error, calculated on the output layer, is less
than a threshold value, heuristically fixed at 1,000.

To avoid too slow convergence of the learning
process and at the same time too many oscillations of the
RMS error function, the learning rate was adaptive, with
0.1 as initial value. The momentum term was fixed set to
0.01 for the entire learning process.

For final diagnosis, a threshold criterion was
applied to the network outputs. During the training
process, the network learnt very fast to give symmetric
answers for ST depression and ST elevation outputs, so
that the usual uncertainty criterion of refusing diagnosis
with closc outputs was not too helpful.

After the network processing, a duration
criterion was introduced, to reject too short ST episodes.



In fact, physicians, usually, take care only of the ST
episodes lasting at least 15 seconds, then a duration
threshold of 15 seconds was adopted. Moreover two
subsequent ST episodes were considered only one if the
time distance between them was shorter than 5 seconds.
The ST episode detection was performed on each ECG
lead separately, to obtain a more accurate detection and
a more reliable comparison with the annotated ST
episodes of European database. In fact sometimes the
ECG records show ST level changes only in one lead.

6. Results,

For the evaluation of the complete system performance,
we defined the sensitivity as the percentage of correctly
detected ST episodes among all ST episodes in the
database and the Positive Predictive Accuracy (PPA) as
the percentage of correctly detected ST episodes respect
to all the detected ST episodes. An ST episode was
regarded as correctly detected if its duration overlapped
the duration of the corresponding annotated ST espisode
at least for the 50%, otherwise it was considered as a
false positive.

Table 1. System performance for different training sets.

sensitivity PPA

600 ST+
600 ST-
0 artefacts

73% 66%

600 ST+
600 ST-
400 artefacts

77% 82%

600 ST+
600 ST-
600 artefacts

77% 82%

800 ST+
800 ST-
800 artefacts

77% 86%

Several detection thresholds were tested on the
network output layer with values around 0.5. The best
one is resulted that one with value 0.7, even more to
reject ambiguous artefacts and then to have good values
for PPA. In the table 1, some results are reported,
considering several training set compositions and the
best value of detection threshold (0.7).

Of course, it is hard to evaluate the system
performance about artefact detection, because they are
not annotated in the European ST-T Database. We can
only observe that when the number of artefacts in the
training set increased, the PPA increased too. That
means that the network got able to correctly recognize
artefacts.

7. Conclusions.

We can observe that this combination of Karhunen-
Loé¢ve transform for information representation and
Artficial Neural Network for final classification gives
good results, around 80% for both sensitivity and
Positive Predictive Accuracy. These performances are
better than those given by the commercial systems on the
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European database. Moreover these performance figures
are very close to those of a trained cardiologist, as it is
reported in literature[2]. The system sensitivity is quite
high and it is interesting to note that several weak ST
episodes not annotated in the database are quite well
recognized by our system, which improves the system
sensitivity. The network is able too to correctly detect
artefacts, at least with an adequate training set. On the
other hand it is impossible to describe in the training set
every kind of artefacts, because their features are not
uniform at all, for depending on too many factors.
Neverthless we tryed to extend the training set even to
new shapes of artefacts, but in that case the convergence
of the learning process was not guarranteed.

Someones of these problems could be likely
solved by introducing more information into the system.
It is possible that lack of information is already in the
ECG signal having only two leads. We should
investigate possible improvements derived from adding
further ECG leads to the analysis. It could be interesting
also to investigate a new transform operator able to
distinguish all the artefacts from any ST episode.

In any case, these results show how a good
preprocessing technique, as the Karhunen-Lodve
transform, and a non-linear decision process, as neural
networks, can extract very complicate rules even from a
reduced training set, with only 10 records out of 100!
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