Waveform Detection in Holter ECG using Dynamic Time Warping
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Abstract

We present Dynamic Time Warping as a real-
time method to detect the onset and end
of the different waves (P, QRS, and T) in
the ECG during operations. The prelimi-
nary results based on an off-line evaluation
using the QT database are compared to the
annotations made by cardiologists and an-
other method based on threshold detection.
The current method gets comparable results
for the mean error, although the standard
deviation is larger than the other reported
method.

1 Introduction

The different wave intervals in ECG recordings (see
Figure 1) contain some relevant clinical information
[1]. This information should preferably be extracted
in a fast and automatic way, so it can also be used as a
source of information for an anesthetist during opera-
tions. There exist automatic, off-line methods based
on thresholds that are used for the classification of
wave onset and offset [1, 2], and here we will compare
the results of the threshold based classifier, as well
as the manual annotations of two independent car-
diologists, with a classifier that uses Dynamic Time
Warping (DTW). Instead of using predefined thresh-
olds, this classifier takes the first labeled period as a
reference, and matches all subsequent periods with
this reference. Essentially, DTW aligns different pe-
riods in a nonlinear fashion, such that the total error
will be minimal. After the alignment has been per-
formed, the matching points (such as P, QRS, or T
wave) will be labeled similarly. So, at the start of an
operation, an anesthetist could be asked to label the
important points of the ECG, and DTW will keep
track of these points during the operation.

In any classification process, there are many types
of error. In the case of labelling Holter ECG record-
ings, most problems are due to noise contaminating
the signals, non-stationary or not well defined wave-
form morphologies, absence of certain waveforms,
ambiguity of the waveform onset or offset, etc..

In order to evaluate the algorithm properly, use
is made of the QT Database [3], which contains 105
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Figure 1: Ezample of an ECG with its different fidu-
cial points. The onset and offset of the different
waveforms are annotated as ‘(’ and ‘)’, respectively.

excerpts of 15 minutes (sampled at 250 Hz), where
30 periods were labelled independently by two cardi-
ologists. Every period contains the onset and offset
of all waveforms that could be located by the car-
diologists, as well as their fiducial points, if present.

2 Method

In order to label the fiducial points of the ECG, the
first step is to extract all possible fiducial points.
This step is performed by taking the Piecewise Lin-
ear Approximation (PLA) of the ECG (§2.1), which
at the same time reduces the amount of data consid-
erably. Instead of reinventing the wheel, a standard
QRS detector is used for the detection of the QRS
wave (§2.2). Next, the periods are extracted, and the
first labeled PLA is used as a reference for subsequent
processing (§2.3). Note that when the waveform mor-
phology changes dramatically, the classification will
be erroneous. However, this problem can be detected
when using the distance measure obtained after the
comparison with the DTW algorithm, as it will be
much larger for different waveforms. Finally, the
DTW algorithm is explained in more detail (§2.4),
and the labels are placed (§2.5).

2.1 Piecewise Linear Approximation

To extract the fiducial points of the ECG, use is made
of the Piecewise Linear Approximation proposed by
Koski in [4]. It is fast, and only two parameters need
to be set: the allowable perpendicular error €, and



the step size s of the algorithm. The general idea is
illustrated in Figure 2. Connect point ¢ with point
i+ s. Compute the perpendicular error of the points
with the line. If the maximum error is smaller than
€, connect ¢ with i+2s, and continue. However, if the
error is larger than €, break the line at the point with
maximum error j and compute the error for the line
between ¢ and j. Continue breaking the line until the
maximum error is smaller than e: the new end-point
of the line will be j.

threshold €

Figure 2: Piecewise Linear Approzimation of a set of
points, where the dotted line represents the maximum
acceptable error. In (a), this error is still acceptable,
and more points can be added. In (b), however, the
line has to be broken at point j.

2.2 QRS Detection

The QRS detection is based on ARISTOTLE [5]. Next,
periods are created by dividing the period between
two subsequent R peaks. Any PLA line that is at the
division of these periods is cut in half as well.

2.3 Reference Period

With the PLA of every period available, the first
annotated period in the QT database is selected as
a reference for further comparisons. All annotated
points are matched to the nearest location in the
PLA. Note that it is not guaranteed that there will
be an end point of a line near the annotation. How-
ever, as the PLA should have detected the fiducial
points in the ECG, it is likely there is one (see Fig-
ure 3. If none is available, one could even decrease
the maximum allowable error of the PLA and start
again, until such a point is found, which is not done
here.

2.4 Dynamic Time Warping

The principal part of the ECG segmentation is per-
formed by Dynamic Time Warping (DTW), which
aligns two different periods in a nonlinear way. Es-
sentially, DTW is a child of a more general optimiza-
tion method called dynamic programming. Its main
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Figure 3: Ezample of two ECG periods (upper fig-
ures), together with the automatically created anno-
tations based on the PLA (lower figures).

strength is in the comparison of different time se-
quences, either for alignment, or for calculating the
distance (also called dissimilarity) between two se-
quences. A major advantage over other methods
(such as the Euclidean distance) is the fact that
the sequences do not need to have the same length.
Sequences of different length are compressed or ex-
panded until they match. Generally, the absolute
values of the samples are used in DTW [6, 7]. Here,
however, use is made of the slope values, which can
be considered as a first-order DTW when compared
to the zero-order DTW based on the absolute val-
ues [8]. The main difference between these two ap-
proaches can be best understood when studying Fig-
ure 4. Standard DTW will generate a dissimilar-
ity when comparing Figure 4a and 4b, as the second
point in (a) will have to be matched to one on the
endpoints in (b). First-order DTW, however, will
compare the two lines of (a), which have the same
slope, with the single line in (b), without generating
a dissimilarity. This is an advantage for the current
problem, as it can often happen that a similar line
segment is broken into two or more lines when gen-
erating a PLA, and first-order DTW allows it to be
remapped to a single line without a large increase in
the dissimilarity.

Given two sequences, the DTW algorithm,
whether it is based on the absolute value or the slope,
computes the optimal (in a certain sense) alignment
in a recursive way. As an example, see Figure 5,
where two short sequences are compared.

This illustrative example can be expressed as:

diy; + % w(i, j)t(a;)
d;j =minq d;1;-1 + PR w(i, j)(t(a; +t(b;))
dij—1  + Fw(i,j)tb))

(1)
Here, d; ; is the distance between the subsequences
until points ¢ and j, w(i,j) is the dissimilarity be-
tween the two points or slopes, and #(a;) is the du-



(a) Two lines (b) Single line

Figure 4: The difference between standard DTW
(based on sample values) and first-order DTW (based
on slopes) is illustrated here: the first will generate a
dissimilarity when comparing (a) to (b), as the mid-
dle point has to be matched to an endpoint. First-
order DTW, however, will match the slopes without
generating o dissimilarity.
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Figure 5: Two short sequences are aligned to each
other, starting in the upper-left corner, and working
its way through to the lower-right corner. The opti-
mal path is shown by arrows.

ration of line ¢ in sequence a. In this example, the
durations of all lines are the same, but for the PLA
this is naturally not the case. Of course, instead of
using the PLA, one could also use the ECG directly,
but this would increase the number of comparisons
considerably. Another implemented reduction in the
number of calculations is the possibility to compute
the two parts of a sequence, one part before the QRS
wave and one part after the QRS wave, indepen-
dently. In that way, we only have to compute half
of the original matrix.

As we are not so much interested in the final dis-
tance between two sequences, but want to know the
alignment, we also have to construct a backtrack-
ing matrix R. This matrix consist of pointers which
show the path followed from cell (1, 1) to cell (m,n),

where every entry in a cell corresponds to the min-
imum solution of (1). For the example given above,
R would look like as is shown in Figure 6, where
the pointers are replaced by arrows to make it more
visual.
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Figure 6: The corresponding R matriz for the se-
quences of Figure 5. Starting from cell (m,n) back-
wards until cell (1,1) gives the optimum alignment.

2.5 Labeling the ECG

The final step, necessary for producing the output, is
easy. Using the backtracking matrix R, trace the ma-
trix back starting from the final segment (m,n) to the
first (1,1). This gives the minimal path, or the opti-
mal alignment between the two periods. Next, look
for those lines in the reference period which were indi-
cators of a fiducial point, and take the corresponding
line of the new period. In the example shown above,
we would label the top of the peak as cell (3,2), so
the time stamp applied would be after the second
line (when we take the horizontal sequence as the
reference). This time stamp together with the corre-
sponding label of the fiducial point, is written to file.

3 Results

The obtained results are strongly influenced by the
settings of the PLA parameters. A large accepted
perpendicular error results in few points, which
makes the precision of the onset and offset detection
low. Therefore, we optimized these settings for differ-
ent values of the parameters on five randomly chosen
ECG records (which were excluded from further test-
ing), The best results were obtained for ¢ = 2.5uV
and s = 48ms. Note that the latter parameter is not
very sensitive. A rule of thumb is twice the mean
line length, which is also related to the compression
ratio of the PLA.

Finally, a suitable function for w(i,j) has to be
chosen. Again, optimization between several options



for this function lead to w(i,j) = (arctan(sa(i)) —
arctan(sp(j)))?, where the s (i) is the slope of line i
of the first sequence. Likewise for sg(j). The use of
the arctan makes the difference between steep lines
smaller, so the QRS wave does not influence the total
comparison too much.

With these settings we analyzed the QT dataset,
excluding the files used for optimization, and the re-
sults are shown in Table 1. The results of the thresh-
old segmentation method used in [2] are also shown
here.

DTW Threshold Car

beats mean SD beats mean SD SD

Pon 2345 -7.53 38.93 2596 10.26 14.08 10.2
P 2356 -5.43 32.02 2626 -0.48 10.96

Pend 2364 -5.85 36.45 2627 -5.73 13.57 12.7

QRSon 2612 -2.79 29.02 3130 -7.82 10.86 6.5
R 2613 0.28 13.05 3130 -9.32 4.41

QRS.pnq 2613 -4.08  30.79 3130 -3.64 10.74 | 11.6
Ton 1065 -14.10 56.83 1241 -16.00 29.82
T 2563 -5.75 58.36 2932 23.26 28.26

Tend 2510 -0.90 65.72 2996 18.68 29.79 30.6

Table 1: The first three columns are produced with

DTW, the second three columns are reproduced from
[2], and the last column shows the standard deviation
for the cardiologists. Mean and standard deviation
are in milliseconds.

4 Conclusions and Discussion

From Table 1 it can be concluded that although the
mean error is smaller when compared to the other
automatic, threshold based annotator, the standard
deviations are much larger. Therefore, improvements
of the current method are necessary before it can be
implemented. Further, tests should be performed to
see whether the method is also suitable during an
operation, where the signal quality can change very
fast.

The fact that the standard deviation is much larger
is probably due to false alignments occurring when
there is much noise present in the signal. Also, the
annotator in [2] used both signals, selecting the one
with the best results compared to the cardiologist.
Here, however, only the first signal was evaluated,
although the cardiologists may have used the second
signal for their annotations, if its signal-to-noise ratio
(SNR) was better. Another possibility is that the
PLA does not select the fiducial points properly, so
the annotated points switch to the beginning and end
of PLA line.

Several possibilities exist to improve the method:
as in [1], we can also first try to filter the signal to im-
prove the SNR, although the PLA already acts, more
or less, as a low-pass filter. A decrease of the thresh-
old around the fiducial points, so there is more detail
around the important areas, could also make the de-
tection more accurate. Further, the DTW can be
constrained, so not all possible paths are evaluated,
but only the more promising ones. Another improve-
ment can be to compare the annotations provided

by the cardiologist with the PLA of both signals, se-
lecting that signal which fits the annotations best.
Finally, one could switch between the two signals de-
pending on their dissimilarity with the reference pe-
riod, which is a byproduct of the DTW anyway. So, if
the dissimilarity between the current period and the
reference is smaller in signal 1, annotate this signal.
Else, select the other.
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