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Abstract  The need to monitor the aging process as 
a risk factor for disease and mortality beyond chrono-
logical age (CA) has led to numerous investigations 
into the estimation of the biological age (BA) of 
individuals. However, the accuracy of BA estimation 
tools is often judged by their ability to approximate 
CA, questioning their value in capturing the variance 
in health status and thus correctly estimating BA. 
Their biological relevance is often assessed in rela-
tion to health outcomes or mortality, underexploit-
ing their potential for real-time monitoring of BA. 

Furthermore, their complexity may limit their clini-
cal translation to large populations. Here, we describe 
the gene expression-based age monitoring Clock 
(GamC), a simple biomarker of aging (BOA), and 
characterize its biological relevance with synchro-
nous cardiovascular (CV) health-related functional 
data. GamC is calculated from the expression levels 
of three genes consistently dysregulated with age in 
blood (ABLIM1, CCR7, and LEF1). GamC shows 
moderate but reliable association with CA in three 
independent cohorts, supported by transcriptome-
wide changes. It demonstrates specialized biological 
meaning, as it specifically describes current physical 
activity levels, but poorly correlates with autonomic 
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nervous system function, both age-related factors 
associated with CV health. Finally, it expresses BA 
monitoring capacity by modestly responding to an 
effective exercise-based intervention in centenarians. 
In conclusion, GamC is proposed as a simple and 
affordable candidate BOA for reporting the individu-
als’ current CV health-related BA, thus promoting its 
broad translation and application into measures aimed 
at promoting healthy aging in relation to CV health, 
the leading cause of death worldwide.

Keywords  Biological age · Biomarker of aging · 
Physical activity · Autonomic nervous system 
modulation · Exercise intervention

Introduction

Aging, a major risk factor for disease, is an organis-
mic process resulting from the progressive and cumu-
lative decline in bodily function over time, which is 
built up from the molecular level. The molecular, 
cellular, and physiological changes that occur with 
aging are not uniform within and between individu-
als or populations. Therefore, aging is a much more 
complex biological process than just chronological 
age (CA). Biological age (BA), the age of the individ-
ual defined by the extent of age-dependent biological 
changes [1], captures the effect of both genetic and 
environmental factors acting over time. This effect 
is expressed in the individuals’ aging rate (AR), the 
difference between BA and CA. Fast and slow agers 
with early and late functional decline, respectively, 
translate into different disease susceptibilities and 
mortality risks [2]. Promoting healthy aging aims 
to achieve slow aging rates. Therefore, determin-
ing BA is crucial to gain insight into the role of spe-
cific mechanisms in the aging process, to predict the 
age-related disease/mortality risk of individuals and, 
given its environmentally modifiable nature [3, 4], to 
guide personalized preventive measures and potential 

therapeutic interventions that promote healthy aging, 
but, more importantly, to objectively evaluate their 
efficacy. This has led to a growing interest in the field 
of geroscience in describing biomarkers of aging 
(BOA) to estimate BA.

Many age prediction methods, clocks and pre-
dictors, have been reported to explore the associa-
tion between age and age-related biological markers 
(reviewed extensively in [5]). However, the terms 
clock and predictor are used ambiguously and/or 
include mixed concepts that are difficult to separate. 
For example, their accuracy is often judged by their 
ability to approximate CA, being actually CA predic-
tors, or their biological relevance is usually deter-
mined by their ability to predict mortality or disease, 
making them more appropriate as death/disease tim-
ers rather than current BA indicators [6]. In other 
cases, some methods even include CA as an age-
related marker [2, 7, 8], in which case they are not 
strictly speaking aging clocks. Ideally, an aging clock 
should be an age-related index based on biological 
data, a BOA, related to an individual’s current age-
related health status, their BA. The aging clock can 
also be a predictive biomarker of disease/mortality 
risk and, ideally, a response biomarker able to moni-
tor changes in BA induced by healthy aging interven-
tions. Instead, an age predictor attempts to accurately 
estimate CA using biological data, somehow losing 
its ability to capture the variance in health status of 
individuals and being more useful for other purposes 
such as forensics.

Different types of biological data have been used 
to estimate BA (reviewed in [1, 6]). Among these, 
BA indices based on gene and/or protein expression 
markers may be more sensitive to detect changes in 
the aging rates than, for example, clinical/physiologi-
cal features, due to the rapidity of such changes and 
the sensitivity of the techniques used to quantify them 
[9]. Both protein and RNA-based indices have been 
successfully used to estimate BA [9–11]. Machine 
learning techniques and molecular omics data have 
also emerged as popular options for construct-
ing age predictors and aging clocks, as they offer a 
wide range of applications even across different tis-
sues, organs, and systems [6, 12]. However, they are 
highly complex and costly tools, which may limit 
their clinical translation. Furthermore, comparisons 
of BA estimators within the same [13–15] or inde-
pendent study populations [1] have shown variability 
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in the predictive power and biological information 
explained by each BA estimator, highlighting their 
complementary nature and the need for validation in 
independent populations. This is of concern because 
differences in age ranges, gender, ethnicity, sample 
size, and the data analysis strategy chosen can signifi-
cantly affect the predictions and estimates of model 
performance [16, 17]. In any case, blood biomarkers 
offer significant advantages over current methods in 
terms of simplicity, cost-effectiveness, and scalability 
for clinical translation [18, 19].

Aging is one of the major risk factors for cardio-
vascular diseases (CVD), which are the leading cause 
of death worldwide. Thus, predicting cardiovascular 
(CV) health in relation to biological age could help to 
reduce the socioeconomic burden of CVD. Autonomic 
nervous system (ANS) regulation and physical activ-
ity (PA) levels are significant independent predictors 
of cardiovascular (CV) health and mortality [20, 21]. 
ANS regulation plays an important role during aging, 
leading to a gradual deterioration of body organs and 
functions, disrupting the homeostasis of the CV sys-
tem and subsequently affecting the level of CV health 
of individuals [22]. Heart rate variability (HRV) is 
recognized as a robust method to assess the status of 
the ANS [23, 24] and is also an indicator of arrhyth-
mic complications and a strong predictor of mortality 
and sudden death [25]. Indeed, there is a correlation of 
HRV markers with age, highlighting the intricate rela-
tionship between aging and the ANS [26]. In relation 
to PA, it is well known that PA declines with age, with 
older adults being the most physically inactive popu-
lation group. PA levels are associated with the preva-
lence of risk factors that predispose individuals to the 
development of CV diseases [27] and with all-cause 
mortality [28]. Importantly, age modifies the relation-
ship between PA and mortality, with its inverse asso-
ciation being stronger in the elderly [28]. In addition, 
Grässler et al. demonstrated the improvements in HRV 
markers, CV health, and CV risk factors in response 
to different levels of PA by using data from 26 stud-
ies [24], linking exercise and ANS modulation to CV 
health. Overall, the evidence suggests that indices 
reporting the ANS function and PA levels of individu-
als are relevant age-related phenotypes, so they are 
suitable for assessing the biological significance of 
novel BOAs in relation to CV health. Consequently, 
ANS- and/or PA-related BOAs can adequately moni-
tor the current BA of individuals.

Here, we develop and characterize a novel and 
simple blood gene expression-based BOA, the Gene 
expression-based Age Monitoring Clock (GamC). 
GamC demonstrates an association with CA in three 
independent cohorts supported by whole transcrip-
tome changes, thus confirming its age-related nature. 
Consistently, GamC associates with synchronous 
indicators of CV health of individuals (with differ-
ential sensitivity for variables that quantify the ANS 
activity and PA levels, which is indicative of the spe-
cific biological meaning of GamC) and shows a mod-
erate sensitivity to an effective healthy aging inter-
vention in centenarians, collectively demonstrating 
its biological relevance as an aging clock. Overall, 
this study proposes a simple and affordable BOA that 
gathers information about the current CV health sta-
tus of individuals.

Materials and methods

Identification of consistently dysregulated age‑related 
genes in blood

A literature search was conducted in PubMed to iden-
tify transcriptomic studies that have published lists of 
age-related differentially expressed genes in  human 
blood.  A cross-comparison of the lists resulted in 
the proposal of candidate genes for the construction 
of GamC (Fig. 1).

Donors and samples of the study cohort

The study cohort is formed by a total of 87 Cauca-
sian individuals from the region of Aragón (Spain) 
(Tables  1 and S1). The study was approved by the 
ethical committee for clinical research of Aragón (ID 
of the approval: PI17/0409 and PI18/381), and donors 
signed a written informed consent prior to enroll-
ment. The study was conducted by adhering to the 
Declaration of Helsinki and in compliance with the 
European Union General Data Protection Regulation 
(EU 2016/679).

Subjects self-reported their date of birth and cur-
rent medical conditions and medications. They were 
divided into four age groups (Table 1). Young, adult, 
and elderly individuals were excluded from the study 
if they suffered from acute illness, heart disease (such 
as heart failure or atrial fibrillation), were taking 
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cardiac medication, or had any other clinical condi-
tion that contraindicated exercise. However, centenar-
ians and donors who were overweight, sedentary, or 
had chronic diseases such as hypertension, diabetes, or 
hypercholesterolemia were included in the study, since 
they are representative of extreme longevity or have a 

high prevalence in society, respectively, and thus con-
tribute to the power of GamC. Further demographic, 
clinical, and biometric data are shown in Table S1.

Whole blood samples, electrocardiogram (ECG) 
recordings, and PA data were synchronously col-
lected from each individual along with their CA.

Gene expression analysis by qPCR and generation of 
GamC

Whole blood samples were immediately processed to 
obtain peripheral blood mononuclear cells (PBMC) 
by using standard density gradient centrifugation 
procedures and stored at − 80  °C until use. RNA 
was extracted using the AllPrep DNA/RNA/miRNA 
Universal Kit (Quiagen). Next, 200 ng of RNA were 

Fig. 1   Workflow for the description and characterization of 
GamC. The study cohorts used for GamC calculation, valida-
tion and characterization are described in the yellow boxes, 
indicating the number of individuals, age range, and collected 

material or data. CA: chronological age, ECG: electrocar-
diogram, GEO: Gene Expression Omnibus; GSEA: Gene Set 
Enrichment Analysis, y.o.: years old

Table 1   Individuals in the study cohort: age range in years old 
(y.o.), total number of individuals, and percentage of males

Group Age range (y.o.) Number (% male)

Young 20–30 22 (100)
Adult 40–50 22 (100)
Elder 60–70 21 (100)
Centenarian  > 100 19 (26)
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reverse transcribed using the PrimeScript™ RT Rea-
gent Kit (Takara). Quantitative PCR (qPCR) was per-
formed using the NZYSupreme qPCR Green Master 
Mix Kit (Nzytech) with gene-specific oligonucleo-
tide pairs (Table S2) in a Viia7 instrument (Thermo 
Fisher Scientific). The expression level of each age-
related candidate gene was calculated as 2−ΔCt, where 
ΔCt = CtGene − CtReference, being CtGene the expression 
value of the gene and CtReference the mean expression 
value of two reference genes, namely, UBE2D2 and 
GUSB2.

The GamC of each individual was calculated as 
the sum of the AR and CA [29]. The AR was calcu-
lated according to previously described methods [30]. 
Briefly, the candidate genes with significant Pear-
son correlation coefficient (R) between their expres-
sion level and CA were selected to construct GamC 
(Fig. 1). The AR of each individual (Δi) was obtained 
by linear regression of the expression levels (2−ΔCt) 
of each gene G against CA. The regression analy-
sis returned the residual expression level of gene G 
in each individual  i (σG,i) and the regression factor 
associated with the gene G expression levels (aG). 
The Δi is calculated as the integration of all (N) gene-
specific ΔG,i  (which is in turn obtained as the ratio 
between σG,i and aG) (Fig. 1) (Eq. (1)):

ECG data recording and HRV analysis

ECG recordings were obtained for all individuals in 
the study cohort (Fig.  1). A 12-lead high-resolution 
Holter ECG was acquired at rest with the 10 elec-
trodes placed according to the manufacturer’s instruc-
tions (H12 +, Mortara Instrument, Milwaukee, WI, 
USA) and digitized at a sampling rate of 1000 Hz.

From the ECG recording, the heartbeats were 
detected and the RR interval time series were 
extracted using a multi-lead wavelet-based approach 
[31]. An operator manually verified each beat detec-
tion using a dedicated interface.

The 5-minute (min) RR interval series of each 
young, adult, and elderly subject was trimmed by 
removing 0.5  min from the beginning and the end, 
resulting in a final time series of 4 min. For the cente-
narian series, 4-min windows were defined within the 
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10-min recording in order to select the window with 
the lowest standard deviation (SD).

Linear and non-linear HRV indices were derived 
using algorithms developed and previously published 
in our research. These algorithms were implemented 
in MATLAB version R2021a (MATLAB, Math-
Works Inc., Natick, MA, USA) [31–34]. The HRV 
markers extracted from the ECG are explained below:

Linear domain indices

Temporal domain indices  The time series of nor-
mal RR intervals after correction for ectopic beats 
[32] were denoted as NN and used for subsequent 
analyses. Several temporal HRV indices were derived 
from the NN interval series including mean heart 
rate (MHR) calculated as the inverse of the mean NN 
intervals, standard deviation of NN intervals (SDNN), 
standard deviation of the differences between adja-
cent NN intervals (SDSD), root mean square of 
consecutive differences of adjacent NN intervals 
(RMSSD), and percentage of consecutive NN inter-
vals differing by more than 50 ms (ms) divided by the 
total number of all NN intervals (pNN50). SDNN is 
considered a long-term variability measure of total 
HRV power, representing the variability of the ANS 
activity. RMSSD, SDSD, and pNN50 are short-term 
variability measures of parasympathetic nervous sys-
tem (PNS) activity.

Frequency domain indices  From the NN interval 
series, the instantaneous HR signal (dHR(n)) was 
derived using the integral pulse frequency modulation 
(IPFM) model, taking into account the presence of 
ectopic beats [32], and sampled at 4 Hz. This signal 
was high pass filtered (0.03 Hz) to remove the very 
low frequency components (dMHR(n)) and corrected 
as displayed in Eq.  (2) [33]. This modulating signal 
( m(n )) carries information about the ANS activity.

To estimate the spectral properties of the HRV sig-
nal, the Welch period programme was applied to m(n) 
using a Hamming window of 60 seconds (s) length 
with 30  s overlap. The power in the low frequency 
(LF) band, PLF, and the power in the high frequency 
(HF) band, PHF, were extracted by integrating the 

(2)m(n) =
dHR (n) − dMHR (n)

dMHR (n)
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power in their respective bands: 0.04–0.15  Hz and 
0.15–0.4  Hz, respectively. Normalized PLF with the 
total power, named as PLFn, and the ratio PLF/PHF, 
as an indicator of the activity of both ANS branches, 
were also calculated.

Non‑linear indices

Non-linear HRV indices, as non-stationary meas-
ures, were also derived from the RR interval series 
between the individual heartbeats. Detrended fluctua-
tion analysis (DFA) was performed by extracting the 
correlations between successive RR intervals at dif-
ferent time scales in order to measure fluctuations at 
different scales to detect short- and long-term correla-
tions (α1 and α2, respectively) [35]. These markers are 
used to assess the complexity and adaptability of the 
ANS.

Finally, SD1 and SD2 were extracted from the 
Poincaré plot by plotting each RR interval against 
the previous interval to create a scatter plot. SD1 and 
SD2 measure the short-term and long-term beat-to-
beat variability of the RR interval series, respectively. 
The ratio SD1/SD2 was also calculated, as the ratio 
between the two variabilities in the RR time series 
[35]. These measures are used to investigate the struc-
ture and complexity of the interbeat intervals.

Accelerometer data recording and analysis

Accelerometer data recordings were obtained for all 
individuals in the study cohort (Fig. 1). All individu-
als were asked to wear GENEActiv triaxial acceler-
ometers (ActivInsights Ltd., Cambridgeshire, UK) 
for 24 h over seven consecutive days. These acceler-
ometers were placed on the non-dominant wrist and 
programmed to record accelerations at 10 Hz, a fre-
quency previously validated to classify daily activities 
(Zhang et al. 2012). Initialization of the GENEActiv 
accelerometers and retrieval of data in binary format 
were performed using GENEActiv PC (version 3.2) 
(ActivInsights Ltd., Cambridgeshire, UK).

The GGIR 3.0–2 package of the statistical pro-
gramming language R v.4.3.2 [36] was used to per-
form accelerometer data analysis. Non-wear time 
detection and minimum valid time requirements for 
each accelerometer register were evaluated using 
GGIR default settings to facilitate comparability with 
previous studies. The minimum valid hours per day 

were set to sixteen, while the minimum valid days per 
record were set to two. Table S3 shows the relation-
ship between the nomenclature used in this article 
and the variable names from the GGIR output.

Accelerometer variables were calculated [37], 
including the MX metrics, the average acceleration 
(AA), and the intensity gradient (IG). The MX met-
rics [38] assess the acceleration of the most active X 
min of a participant’s daily activity (e.g., M30 refers 
to the acceleration at which the most active 30  min 
were spent). These metrics can be used to describe 
the distribution of intensities over different time 
periods and allow for direct comparison with health-
related PA guidelines. Intensity levels corresponding 
to the most active 1, 2, 5, 10, 15, 20, 30, 45, 60, 120, 
240, 360, 480, 600, and 720 min were recorded. AA 
reflects the average acceleration throughout the entire 
measurement period and can be used as a proxy for 
total daily PA-related energy expenditure or PA vol-
ume [37, 39]. IG, calculated as the slope (negative) of 
the linear regression between the natural logarithm of 
time and acceleration intensity, captures the distribu-
tion of PA intensity.

Despite knowing the limitations of traditional 
cut-points [40, 41] due to their widespread use, 
the following indices were also calculated: Inac-
tive time (IT: < 3 0  mg), time spent in light inten-
sity PA (LPA: 30–10 0  mg), moderate intensity 
PA (MPA: > 100–400  mg), vigorous intensity PA 
(VPA: > 400  mg), and moderate-vigorous intensity 
PA (MVPA: > 100 mg) [42].

Exercise intervention

For the exercise intervention (Fig.  1), centenarians 
were randomly assigned to the control or interven-
tion group using a computer-generated shuffle list. 
Participants in the control group maintained their 
usual PA. The intervention group performed twice 
per week, non-consecutive, resistance training ses-
sions over 12  weeks (24 sessions in total). All the 
sessions were performed one-on-one in the gym of 
the geriatric nursing home and were supervised by 
an experienced (5  years) strength and condition-
ing trainer (MSc in Sports Science). After the initial 
assessment, participants were enrolled in a resistance 
exercise routine consisting of 8 different exercises 
according to their Functional Ambulation Classifica-
tion (FAC) level [43].
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Each session lasted 40–60 min, including a 10-min 
warm-up and 30–50  min of resistance training. The 
warm-up consisted of one set of eight single-joint 
seated exercises without resistance, 10 repetitions, 
and 30-s rest between exercises. Resistance train-
ing consisted of 1–3 sets of the 8 exercises routine 
adapted to FAC (8–10 repetitions as fast as possible, 
at 50–70% of the one-repetition maximum) with rest-
ing periods of 1 min between exercises and 3–5 min 
between sets [44]. Load, number of sets, and type 
of exercise routine were adjusted to the new level of 
physical capacity every 2 weeks.

Whole blood samples and accelerometer variables 
were obtained at the end of the 3-month intervention 
for both control and intervention groups as described 
above. Biochemical analysis for total cholesterol, 
low-density lipoproteins (LDL), triglycerides, cre-
atine kinase (CK) and glucose levels were conducted 
by Centro Inmunológico de la Comunidad Valen-
ciana (CIALAB). The  accelerometer variables were 
obtained as described before.  For each PA variable, 
biochemical parameter and GamC, the change in the 
value of each parameter after the intervention period 
in each individual  (Pi) was calculated as the differ-
ence between after (II) and before (I) the intervention 
(ΔPi). Then, the median and interquartile range (IQR) 
of ΔPi for each PA variable, biochemical parameter 
and GamC were calculated for the control and inter-
vention groups.

Validation cohorts and transcriptomic analysis

The literature search of point 2.1 and a search con-
ducted in the GEO DataSets database, were filtered 
to extract studies  containing readily accessible bulk 
tissue transcriptomic datasets from PBMC (as the 
study cohort) from young to elder individuals. Three 
independent transcriptomic datasets were obtained 
for analysis: cohort A (study from the USA, two 
age groups being 21–30 and > 70 y.o.) [45], cohort 
B (study from Spain, continuous ages from 19 to 
93 y.o.) [46] and cohort C (study from Finland, two 
age groups being 19–30 and 90 y.o.) [47] (Fig. 1 and 
Table S4). Data were retrieved using the GEOquery 
package in R software, and gene annotation was 
applied to assign biological identifiers and filter out 
unannotated genes. Expression values were normal-
ized and standardized by a quantile method for fur-
ther analysis.

GamC was calculated as described above in 
cohorts A and B, but using the normalized and stand-
ardized expression values of the GamC-building 
genes. Cohort C was excluded from this calculation 
due to the lack of age variability in the older group.

Differential expression analysis (DEA) was per-
formed in cohorts A and B using the Limma package 
in R software. Individuals were ranked by chronologi-
cal age and GamC values, then divided into quartiles: 
young/first quartile (Q1) and elderly/fourth quartile 
(Q4) (Table S4). A linear model was fitted to the nor-
malized and standardized expression data, including 
contrast matrices to define age-based comparisons. 
Log fold-change (logFC) values were estimated, and 
gene set enrichment analysis (GSEA) was performed 
using logFC values to identify enriched or depleted 
biological processes (GO terms) with a false discov-
ery rate (FDR) ≤ 0.05. The top 50 GO terms with the 
highest absolute normalized enrichment score (NES) 
were manually classified into broader functional 
categories.

Statistical analysis

Association analysis between two variables was per-
formed using Pearson correlation analysis for the cal-
culation of GamC [30], its association with CA, and 
the association of AR with CA. Spearman correla-
tion analysis was used for the assessment of the asso-
ciation between independent HRV markers and PA 
variables with CA or GamC and also between HRV 
markers with PA variables.

Comparisons between unpaired observations in 
two independent groups were assessed using the 
Mann–Whitney U test.

As normality could not be assumed in the interven-
tion study due to the small group sizes, the Wilcoxon 
matched-pairs signed rank test was performed in val-
ues of control and intervention groups independently 
to examine differences on ΔPi  of PA variables,  bio-
chemical parameters and GamC. The magnitude 
of the effect size (|r|) was calculated as described in 
Eq.  (3), where Z represents the Z-score for the Wil-
coxon matched-pairs signed rank test and n is the 
total number of observations [48].

(3)�r� =
Z
√

n
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The |r| was considered small if |r|= 0.1, medium if 
|r|= 0.3 and large if |r|= 0.5 [49].

All statistical analyses were performed using 
GraphPad Prism 8.0. The significance level was set 
at P ≤ 0.05 or, when adjusted for multiple-testing cor-
rection, at FDR ≤ 0.05, as conveniently indicated in 
the text and figure legends. The numerical value of P 
or  FDR of every statistical test can be found in the 
supplementary tables.

Results

GamC is associated with CA

The calculation of the BOA started by identifying 
genes whose expression was consistently and sig-
nificantly dysregulated with CA across independent 
study cohorts in PBMC or whole blood (Fig. 1). We 
performed a literature search seeking bulk tissue tran-
scriptomic studies from different geographic origins 
(in some cases of different ancestries), hypothesizing 
that such genes, when combined in the BOA, would 
be able to account for genetic and environmental dif-
ferences, including cultural and lifestyle, in relation 
to CA. A total of five independent studies were iden-
tified, which included variable geographic origins 
and  age ranges from young to centenarians [11, 47, 
50–52] (Table S5). A manual cross-comparison of the 
published lists of age-related differentially expressed 
genes (DEG) revealed four consistently dysregulated 

genes across all studies: ABLIM1, CCR7,  LEF1 and 
NELL2. These were selected as candidates for the 
construction of GamC.

Their potential to define a relevant BOA was eval-
uated in blood samples from a study cohort com-
posed of 87 individuals with varying overall health 
and ages ranging from 20 to over 100 y.o. (Fig.  1 
and Tables 1-S1). In agreement with the studies of 
the identification section of the workflow (Fig.  1 
and Table  S5) [11, 47, 50–52], ABLIM1, CCR7, 
and LEF1 showed a significant negative correla-
tion with CA in the study cohort (R = − 0.41, − 0.33, 
and − 0.55, respectively and all P ≤ 0.05), confirm-
ing their association with age (Fig. 2a and Table S1). 
NELL2 instead was not significantly correlated with 
CA (R = -0.18, P = 0.1) (Fig. S1) and therefore, it 
was excluded from the following steps of the study.

Next, ABLIM1, CCR7, and LEF1 were used to 
construct the AR and GamC for each individual 
(Fig. 1). GamC was positively and significantly cor-
related with CA (R = 0.59). The degree of associa-
tion exceeded that observed for the individual genes 
(Fig.  2b), demonstrating an improved explanatory 
power of this gene combination to describe CA. The 
AR was not significantly correlated with CA (Fig-
ure  S2a), consistent with its expected individual-
dependent nature.

These results indicate that GamC is associated 
with CA and, consequently, that the molecular data 
used to construct it contributes to describing this 
association.

Fig. 2   Evaluation of the relation with age of the candidate 
genes and GamC. a Pearson’s correlation analysis of the gene 
expression  levels in PBMC (obtained by qPCR) of the age-
related candidate genes and CA in the study cohort.  b Pear-

son’s correlation analysis of GamC with  CA. Pearson’s cor-
relation coefficient (R), P-value (P), and linear regression (red 
line) are shown
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Fig. 3   Validation of GamC in independent cohorts and evalu-
ation of its biological relevance at the molecular level. a Evalu-
ation of the association between GamC (constructed from tran-
scriptomic data) and CA in the validation cohorts A (left) and 
B (right). Pearson’s correlation coefficient (R), P-value (P), 
and linear regression (red line) are shown. b Gene set enrich-
ment analysis in the transcriptomic datasets of the validation 

cohorts A and B. Enriched and depleted functional categories 
in the elderly classified by CA or GamC are shown (bold let-
ters are used for categories common between CA and GamC 
and/or cohorts A and B). The number of gene ontologies 
belonging to each functional category is indicated in brackets 
and color coded (CA in yellow or GamC in pink)
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GamC association with age is maintained 
across independent study cohorts and at the 
transcriptome‑wide level

The capacity to describe the age of GamC was ana-
lyzed in independent validation cohorts (Fig.  1). 
As the study cohort was mainly composed of male 
donors (Table  S1), first, the influence of gender on 
this relationship was studied (Fig.  1). Using bulk 
PBMC transcriptomic data from three different 
cohorts of variable geographic origin  (cohorts A 
– 34 % of males-, B - 51 % of males and C - 29 % of 
males) (Table S4) [45–47], a general downregulation 
of ABLIM, CCR7, and LEF1 with CA was observed 
in both genders in each dataset, but also globally. 
The association was significant in all cases except 
for ABLIM1 and CCR7 in the segregated groups of 
cohort B, for which only a moderate non-significant 
correlation was observed (Figure S3 and Table S4). 
Thus, ABLIM, CCR7, and LEF1 were generally asso-
ciated with CA in a cohort- and gender-independent 
manner. Consequently, GamC was calculated with-
out gender segregation for cohorts A and B (Fig. 1). 
Calculation of GamC for cohort C was not math-
ematically possible and was therefore excluded from 
further analysis.

Consistent with the results observed in the study 
cohort, GamC maintained a significant positive cor-
relation with CA in the validation cohorts A and 
B with R = 0.55 and 0.45, respectively (Fig.  3a) 
that was independent of the AR (Figure  S2b-c and 
Tables  S4−S6), demonstrating its age-related rel-
evance across populations.

Then, the biological significance of GamC was 
examined by analyzing its ability to capture age-
related transcriptomic changes (Fig.  1). GSEA 
revealed that, in general, the degree of overlap of 
functional processes dysregulated with CA and 
GamC between cohorts was high. Only the depleted 
processes of cohort B seemed differential, but those 
of GamC mostly matched the depleted ones of cohort 
A, suggesting that GamC in cohort B may better 
describe the age-related changes in gene expression 
than CA itself (Fig. 3b and Table S7). Overall, both 
cohorts retrieved processes previously reported to 
be altered with aging (Table  S4) [53] and/or found 
dysregulated in the studies of the identification sec-
tion of the workflow (Table S5). Enriched processes 
included, for example, defense and response to 

stimuli, immune response, inflammation or metabo-
lism and molecule transport, whereas depleted pro-
cesses related to mitochondrial function, RNA metab-
olism and transcription, translation and proteostasis 
or epigenetics. Therefore, GamC is able to capture the 
transcriptomic changes that occur with CA, confirm-
ing its age-related nature in different cohorts also at 
the molecular level.

Thus, the relationship between GamC and age is 
robust across independent cohorts of different geo-
graphic origin and is supported by a molecular basis. 
Of note, GamC can also be calculated from different 
sources of gene expression data, namely qPCR and 
transcriptomic.

GamC marginally describes age‑related changes in 
the ANS function

Once the relationship between GamC and CA was 
established, we studied the biological relevance of 
GamC. For this, we observed the ability to predict 
the current CV health of individuals in terms of 
ANS function and PA levels (Fig. 1). Because of the 
established relationship between ANS and PA with 
age and, in turn, in defining CV health, we analyzed 
the general relationship between HRV and PA mark-
ers hypothesizing that those correlated would be 
stronger age-related functional indicators. Acceler-
ometer and HRV markers were only partially signifi-
cantly associated (116 out of 308 tested correlations 
had FDR ≤ 0.05). In particular, some frequency 
domain (PLFn, PLF/PHF) and non-linear domain indi-
ces (α1, α2 or SD1 and SD2) had no relationship 
with virtually any of the PA markers (Figure S4 and 
Table S9).

Consistent with this observation and the estab-
lished hypothesis, CA was only significantly asso-
ciated with PA-related HRV markers, especially 
linear temporal and absolute frequency domain 
markers, including SDNN, SDSD, RMSSD, 
pNN50, PLF, PHF, and SD1/SD2 (R around − 0.6 
and FDR ≤ 0.05) (Fig. 4 and Table S10−11). This 
suggests that CA can moderately explain HRV 
data in the study cohort, which are influenced by 
the individuals’ PA levels. GamC largely repli-
cated these findings, but with even weaker power 
than CA (R between − 0.2 and − 0.4) (Fig.  4 and 
Table  S10−11), indicating that GamC marginally 
described the ANS function.
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GamC is associated with PA levels and modestly 
responds to a healthy‑aging exercise intervention in 
centenarians

The relationship of GamC with accelerometer vari-
ables, as a direct measure of PA levels and of CV 
health was then analyzed (Fig.  1). CA was sig-
nificantly correlated with all PA markers (FDR ≤ 
0.05 and R < − 0.4 for most markers) except for IT 
(R = 0.20). GamC largely replicated this relationship, 
with an even stronger significant association with 
IT (R = 0.39) (Fig.  5a and Table  S12−13). CA and 
GamC showed comparable sensitivity with respect 
to short-term metrics (from M1 to M240). However, 
GamC was more sensitive than CA to long-duration 
MX metrics (from M360 to M720), demonstrating a 
better description of the acceleration at longer active 
periods. AA and IG, as standardized variables to 
describe the volume and intensity of PA, also showed 
their moderately negative and significant association 
with GamC (R = − 0.44 and − 0.52, respectively). 
In terms of PA intensities, GamC showed a weaker 
correlation with LPA (R = − 0.33) than with MPA, 
VPA, and MVPA (R = − 0.47, − 0.46, and − 0.46, 
respectively), suggesting that GamC may reflect PA 
of higher intensities with greater precision. This fact 
is also observed in the associations with CA, which 
shows stronger associations with MPA, VPA, and 

MVPA (R = − 0.49, − 0.51, and − 0.48, respectively) 
than with LPA (R = − 0.29). Therefore, GamC is able 
to describe individual PA levels in terms of MX met-
rics, AA, IG, and IT to the same extent as CA, but 
with improved sensitivity in some aspects over CA. 
In addition, the biological nature of GamC is better 
at describing activities of longer duration and higher 
intensity than those of shorter duration and lower 
intensity.

We then examined the potential of GamC to moni-
tor the effect of a healthy aging intervention in cente-
narians (Fig. 1), since the significance of the findings 
in this age group is potentially higher than in younger 
one [54]. Individuals in the centenarian group were 
randomized to follow (intervention group) or not fol-
low (control group) a 3  months of strength exercise 
training. The intervention was based on the fact that 
exercise, including strength training [55], promotes 
CV health and is associated with a lower risk of all-
cause mortality [56], but also that the effects of aging 
are modifiable [4, 57]. The intervention showed a 
global beneficial effect in the trained group (Fig. 5b-c 
and Table S14-15). As expected for the age-related 
physical decline, the PA variables mostly worsened 
after the intervention in the control group with a gen-
eral decrease of the median ΔPi of PA variables (some 
of them being significant) with large average effect 
sizes (|r|= 0.6) (Fig. 5b and Table S13). However, the 

Fig. 4   Evaluation of the association of age with HRV param-
eters. Spearman’s correlation  coefficients (R) of HRV param-
eters with CA or GamC are colour  coded according to the 
scale.  Significant correlations (FDR≤0.05) are marked by an 
asterisk. The groups of HRV parameters  are delimited below 
as linear (time domain or frequency domain) and non-linear 
(MHR: mean  heart rate; SDNN: standard deviation of NN 
intervals; SDSD: standard deviation of the differences between 
adjacent NN intervals; RMSSD: root mean square of consecu-

tive differences of adjacent NN intervals; pNN50: percentage 
of consecutive NN intervals differing  by more than 50 ms 
divided by the total number of all NN intervals; PLF: power 
in the low  frequency (LF) band; PHF: power in the high fre-
quency (HF) band; PLFn: normalized PLF with the total power; 
PLF/PHF: ratio PLF/PHF; α and α: short- and long-term correla-
tions between  successive RR intervals, respectively; SD1 and 
SD2: short-term and long-term beat-to-beat  variability of the 
RR interval series, respectively; SD1/SD2: ratio SD1/SD2)
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intervention group seemed able to buffer and moder-
ately counteract this decline after the exercise-training 
period. Namely, an opposite trend of the median ΔPi of 
the PA variables was observed (general increased val-
ues) that was accompanied by medium average effect 
sizes (|r|= 0.3) (Fig.  5b and Table  S15).  In addition, 

well established biochemical parameters associated 
with increased risk of  CVD, including cholesterol, 
LDL, CK and glucose, also worsened after the inter-
vention in the control group showing moderate  aver-
age effect sizes (|r|=0.4) (Fig.  5c and Table  S15), 
but generally improved in the intervention group. 
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Decreased median  ΔPi values of cholesterol, LDL, 
CK and glucose with large average effect sizes (|r
|=0.5) were observed in the intervened group (Fig. 5c 
and Table  S15). Interestingly, the levels of triglycer-
ides decreased in both control and intervention groups, 
which would need further investigation.

The improvement in the PA metrics  and bio-
chemical parameters in the intervention group was 
translated into an apparent decrease of the GamC 
ΔPi median value (median (IQR) = − 8.2 (12.8) years) 
with a medium effect size (|r|= 0.4), that was greater 
and less dispersed than the differences observed 
in the control group (median (IQR) = − 1.8(31.3) 
years) with a small effect size (|r|= 0.2) (Fig. 5c and 
Table S15).

Overall, GamC describes the current PA levels of 
individuals with some improvements over CA and 
shows a capacity to respond to an effective healthy 
aging intervention in centenarians, highlighting its 
biological relevance.

Discussion

In our aging societies, the need to promote healthy 
aging claims for objective biomarkers that moni-
tor the aging process beyond the simple recognition 
of age as indicated by the date of birth. This need is 
underpinned by the individual AR, which this work 
confirms is consistently not associated with CA. 
Here we report GamC, a simple blood-based BOA 
that describes the current BA of individuals in terms 

of CV health-related markers, specifically those that 
report the PA levels of individuals.

The age-related mechanisms observed in different 
populations may vary considerably [16, 17]. How-
ever, the association between GamC and CA remains 
consistent across study populations of different geo-
graphic origins. This is important because reliable 
BOAs with potential broad translational application 
are expected to demonstrate such consistency [58].

The observed association between GamC and CA 
is not as high as other established age predictors (e.g., 
PhenoAge and GrimAge [2, 8]). However, a partial 
correlation with CA is consistent with an important 
consideration in the development of BOAs. They 
should be strongly, but not perfectly, related to CA in 
order to represent the age-related physiological vari-
ability of each individual [1]. However, the cut-off 
point for this distinction is unknown. Our group previ-
ously reported AppAge, a cardiac transcriptomic BOA 
calculated as GamC, but using almost 3000 genes 
[29]. AppAge had a correlation coefficient value with 
CA similar to that of GamC in the cohorts used in this 
study, namely, R = 0.47, but described age-related car-
diac transcriptomic changes and an aging phenotype. 
Similar but less sensitive results were observed for a 
single gene (CDKN2A) based BOA (R = 0.24 with 
CA), suggesting that even a single functionally rel-
evant age-related gene can describe molecular changes 
of cardiac aging. In other words, a high correlation 
of BOAs with CA does not necessarily imply a bet-
ter ability to explain the biology of aging. Conversely, 
a less-than-perfect association may actually leave 
room for a biologically based personalized descrip-
tion of an individual’s aging status. In this regard, 
GamC, which has correlation coefficients with CA 
ranging from 0.45 to 0.59 in the studied cohorts, but 
which describes both changes in biological processes 
at the transcriptomic level and phenotypes related 
to the CV health of individuals (specifically PA lev-
els), is calculated based on the expression levels of 
only three age-related genes (ABLIM, CCR7, and 
LEF1). These genes are consistently dysregulated in 
CA in all the independent cohorts considered in this 
work [11, 45–47, 50–52]. In addition, our data show 
that they contribute synergistically to the meaning of 
GamC, as their independent association with CA is 
improved by their combination in the BOA. GamC, in 
turn, demonstrates a differential nature, since it does 
not equally describe all age-related functional data of 

Fig. 5   Evaluation of the association of age with parame-
ters of physical activity and healthy aging intervention study 
in  centenarians.a Evaluation of the association between 
accelerometer-derived variables indicative of PA levels with 
CA and GamC by Spearman correlation analysis. Correlation 
coefficients (R) are colour coded according to the scale and 
significant independent associations (FDR ≤ 0.05) are marked 
with an asterisk. b-d  Effect of the healthy-aging intervention 
(strength exercise training for 3  months) in centenarians on 
the b PA levels, c biochemical parameters related to cardio-
vascular heatlh and d GamC in each control and intervention 
group. Box plots and whiskers represent the median and 2.5–
97.5 percentiles of the differences after (II)-before (I) interven-
tion (ΔPi). Significance results from Wilcoxon paired test (P ≤ 
0.05) for each control and intervention groups are marked with 
an asterisk. (M1 to M270: MX metrics from 1 to 720 min; AA: 
average acceleration; IG: intensity gradient; IT: inactive time; 
LPA: light intensity PA; MPA:  moderate intensity PA; VPA: 
vigorous intensity PA; MVPA: moderate-vigorous intensity PA)

◂
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the study cohort. It describes the PA levels even bet-
ter than CA for some PA-related variables, but is only 
marginally sensitive for ANS functional markers. This 
can most likely be explained by the age-related gene-
specific contribution of ABLIM, CCR7, and LEF1 to 
the biological meaning of GamC. Whether GamC can 
describe other age-related functional data requires 
further investigation. But indeed, our results support 
the idea that based on the biological data used to con-
struct BOAs, each BOA is expected to describe differ-
ent and/or complementary aspects of aging [1]. Taken 
together, our data suggest that ABLIM, CCR7, and 
LEF1 are functionally relevant age-related genes able 
to capture different aspects of an individual’s aging 
biology in GamC, specifically PA-related, and, conse-
quently, GamC is able to describe synchronous func-
tional aspects of individuals regardless of (or perhaps 
exploiting) its partial correlation with CA. GamC is 
therefore able to estimate the CV-related BA of indi-
viduals in real time in terms of their PA levels.

Although the significance of the outcome of our 
intervention study in centenarians is limited by the 
small size of the study groups, it encourages further 
research into the ability of GamC to monitor BA in 
response to healthy aging interventions. This is sup-
ported by the non-significant decrease of themedian 
difference of GamC in the intervention group after the 
intervention, which accompanies the overall beneficial 
effect of exercise observed in their PA-related variables 
and biochemical parameters. Therefore, GamC’s sensi-
tivity to exercise training seems remarkable consider-
ing that the size of the effect of the intervention on the 
PA levels is mostly medium too. Whether an interven-
tion with a greater effect size (perhaps a longer train-
ing) would translate in greater changes in GamC in 
centenarians and whether the findings in centenarians 
hold true for other age groups remains to be explored.

For such purpose and beyond, the simplicity and 
consequent affordability of GamC (a blood sample and 
PCR test accessible to any basic molecular laboratory), 
together with the fact that its biological relevance is 
determined in relation to synchronous functional data 
rather than with mortality risk or disease outcome, 
makes GamC a valuable translational tool with potential 
application in real-time clinical decision-making and 
intervention monitoring. GamC is therefore a relevant 
candidate BOA for promoting healthy aging in relation 
to CV health, the leading cause of death worldwide.

Limitations of the study

We show that ABLIM, CCR7, and LEF1 expression is 
related to age in a gender-independent manner; how-
ever, the low presence of females in the study cohort 
may limit our conclusions.

The small number of centenarians in the study lim-
its the conclusions of the healthy-aging intervention, 
which was performed only in this age group.

GamC shows BOA potential in the study in rela-
tion to PA levels, but this needs to be tested in inde-
pendent and larger populations.

Conclusion

We develop and characterize a simple and cost-effec-
tive BOA based on gene expression in blood, GamC, 
which meets capabilities of an aging clock. Specifi-
cally, it is able to describe CA on a biological (molec-
ular) basis in independent cohorts; it associates with 
age-related functional aspects relevant to the current 
CV health status of individuals (PA levels) and shows 
moderate responsiveness to a healthy aging inter-
vention. In conclusion, we propose GamC as a suit-
able candidate BOA for future research to determine 
the CV health risk in relation to BA in real time, as 
well as to monitor the effect of healthy aging inter-
ventions, which is beyond the capabilities of CA. Its 
simplicity enhances its clinical translational value to 
large populations.
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