
                                                                  

 

Journal                                                                                                            

DOI: xxxxx                                                                                                                                                        www.techscience.com 

The Radial Point Interpolation Mixed Collocation (RPIMC) Method For The 

Solution Of The Reaction-Diffusion Equation In Cardiac Electrophysiology 

Konstantinos A. Mountris1,* and Esther Pueyo1,2 

1Aragón Institute of Engineering Research, University of Zaragoza, IIS Aragón, Zaragoza 50018, Spain. 

2CIBER in Bioengineering, Biomaterials & Nanomedicine (CIBER-BBN), Spain. 

*Corresponding Author: Konstantinos A. Mountris. Email: kmountris@unizar.es. 

Summary 

The Radial Point Interpolation Mixed Collocation (RPIMC) method is developed 

for the solution of the reaction-diffusion equation in cardiac electrophysiology 

simulations. RPIMC is an efficient and purely meshfree technique which is 

expected to be a valuable alternative to the Finite Element Method (FEM) for 

cardiac electrophysiology applications where models with a large number of 

degrees of freedom and high geometric complexity are commonly employed. We 

apply the operator splitting technique to decouple the reaction-diffusion equation 

so that the reaction (cardiac cell dynamics) and diffusion (electrical propagation) 

terms are solved independently. We evaluate the RPIMC in a simulation of the 

cardiac action potential (AP) propagation in a two-dimensional human ventricular 

epicardial square tissue with cell dynamics described by the O´Hara-Rudy model. 

AP propagation simulated using the RPIMC method is compared against AP 

propagation simulated with FEM using isoparametric bilinear elements. 

Comparable results between RPIMC and FEM are obtained for both planar and 

spiral wave AP propagation, the latter being of interest for investigation of cardiac 

arrhythmias. The convergence of the RPIMC solution to the FEM solution is 

evaluated for varying nodal spacing and varying dilatation coefficient during 

support domain nodes identification. 

Keywords: radial point interpolation; mixed collocation; meshfree; cardiac 

electrophysiology 

 

Introduction 

The propagation of the electrical impulse in the human heart is a complex 

multiscale phenomenon [1] that can be described mathematically by the 

following reaction-diffusion equation (1a) and boundary condition 

equation (1b): 

 𝜕𝑉 𝜕𝑡⁄ = −𝐼𝑖𝑜𝑛 𝐶⁄ + 𝜵 ∙ (𝑫𝜵𝑉)      𝑖𝑛 𝛺, (1a) 

     𝒏 ∙ (𝑫𝜵𝑉) = 0                                𝑜𝑛 𝜕𝛺, (1b) 

where 𝛺  and 𝜕𝛺  are the domain of interest and its boundary, 𝒏  is the 

outward unit vector to the boundary, 𝑉 is the action potential (AP), 𝐼𝑖𝑜𝑛 is 

the sum of the cardiac cell ionic currents, 𝐶 is the cell capacitance and 𝑫 is 

the diffusion tensor, commonly defined by: 

 𝑫 = 𝑑0[(1 − 𝜌)𝒇⨂𝒇 + 𝑟𝑰],   (2) 

where 𝑑0 expresses the conductivity coefficient, 𝜌 ≤ 1 is the transversal to 
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longitudinal conductivity ratio, 𝒇  is the fiber direction vector, 𝑰  is the 

identity matrix and ⨂ denotes the tensor product operation. The diffusion 

term 𝜵 ∙ (𝑫𝜵𝑉) describes the propagation of the transmembrane voltage in 

the tissue, while the reaction term −𝐼𝑖𝑜𝑛 𝐶⁄  describes the cellular electrical 

response (action potential, AP). Due to the high complexity of cardiac cell 

dynamics, realistic AP models are usually defined by a large number of 

“stiff” ordinary differential equations modeling cardiac ion channel gating 

and intracellular ionic concentrations [2]. The “stiffness” of the reaction 

term requires a sufficiently small time integration step to ensure stability 

and accuracy of the numerical solution of the reaction-diffusion equation 

(1). To allow for a larger time step without reducing numerical stability 

and accuracy, the problem can be decoupled by using the operator splitting 

technique [3] so that the two terms of the reaction-diffusion equation are 

solved sequentially. A larger time step can then be used for the integration 

of the diffusion term while the reaction term can be integrated adaptively 

using a smaller time step. Most state-of-art numerical solvers in cardiac 

electrophysiology employ the operator splitting approach and use the 

Finite Element Method (FEM) to derive the numerical solution. However, 

due to the complexity of the human heart geometry, meshfree methods that 

alleviate the mesh requirement are of great interest. In this work, we 

propose the Radial Point Interpolation Mixed Collocation [4] for the 

simulation of AP propagation in cardiac electrophysiology. 

Methodology 

The Radial Point Interpolation Mixed Collocation (RPIMC) method is a 

purely meshfree method based on the Meshless Local Petrov Galerkin 

(MLPG) method [5, 6], where the Radial Point Interpolation (RPI) is used 

to construct trial functions and the Dirac delta function is used to construct 

test functions. Using RPIMC, the weak form of equation (1) is evaluated 

directly on the discretization nodes of the domain of interest and is given 

by the following equation (3), while the use of the Dirac delta function to 

construct test functions reduces the spatial integration of the weak form to 

nodal summation over the support domain nodes: 

 ∑ 𝜙𝑖(𝒙𝑰) 𝜕𝑉𝑖 𝜕𝑡⁄

𝑛

𝑖=1

= −𝐼𝑖𝑜𝑛(𝑉𝐼) 𝐶⁄ + ∑ 𝜵 ∙ (𝑫𝜵𝜙𝑖(𝒙𝑰))𝑉𝑖

𝑛

𝑖=1

, (3) 

where 𝜕𝑉𝑖 𝜕𝑡⁄  is the time derivative of the action potential at the 𝑖𝑡ℎ 

neighbor node, 𝑛 is the number of nodes in the support domain of the 𝐼𝑡ℎ 

discretization node and 𝜙𝑖(𝒙𝑰)  is the 𝑖𝑡ℎ component of the RPI basis 

function given by: 

 𝜙𝑇(𝒙𝑰) = {𝒓𝑇(𝒙𝑰)  𝒑𝑇(𝒙𝑰)}𝑮(𝒙𝑰)−1, (4) 

where 𝒓(𝒙𝑰) = {𝑟𝐼1
5   𝑟𝐼2

5  …  𝑟𝐼𝑛
5 }

𝑇
 is the polyharmonic radial basis (RBF) 

vector proposed in [7], with 𝑟𝐼𝑛 being the radial distance between the 𝑛𝑡ℎ 

support domain node 𝒙𝒏  and 𝒙𝑰  and 𝒑(𝒙𝑰) = {1  𝒙𝑰}𝑇 , where 𝒙𝑰 =
{𝑥𝐼   𝑦𝐼}, denotes the linear polynomial basis. 𝑮(𝒙𝑰) is composed by the 

RBF and polynomial basis moment matrices, 𝑹(𝒙𝑰)  and 𝑷(𝒙𝑰) 
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respectively: 

 𝑮(𝒙𝑰) = [
𝑹(𝒙𝑰)   𝑷(𝒙𝑰)

𝑷(𝒙𝑰)𝑇         𝟎
]. (5) 

The matrices 𝑷(𝒙𝑰) and 𝑹(𝒙𝑰) are defined as:  

𝑹(𝒙𝑰) = [
𝑟11

5   𝑟12
5   …  𝑟1𝑛

5

⋮
𝑟𝑛1

5   𝑟𝑛2
5   …  𝑟𝑛𝑛

5
]                 𝑷(𝒙𝑰) = [

1  𝑥1  𝑦1

⋮
1  𝑥𝑛  𝑦𝑛

]                    (6) 

Explicit time integration is performed using the forward Euler method. The 

operator splitting technique is applied to decouple the solution of equation 

(3) and, in this way, the solution of equation (3) at a time step 𝑘 is obtained 

by:   

a. Solving 𝜕𝑉𝐼
𝑘′ 𝜕𝑡⁄ = − 𝐼𝑖𝑜𝑛(𝑉𝐼

𝑘−1) 𝐶⁄ , and then 

b. Solving ∑ 𝜙𝑖(𝒙𝑰)𝑛
𝑖=1 𝜕𝑉𝑖

𝑘 𝜕𝑡⁄ = ∑ 𝛻 ∙ (𝐷𝛻𝜙𝑖(𝒙𝑰))𝑉𝑖
𝑘′𝑛

𝑖=1 . 

In this study, we consider electrical propagation in a two-dimensional 

human ventricular epicardial tissue. The O’Hara Rudy model [2] is used to 

describe cell dynamics in step a. of the decoupled RPIMC solution.   

 

Numerical examples 

In the first example, we consider a 5 cm x 5 cm human ventricular 

epicardial tissue. The cardiac fibers direction is considered perpendicular 

to the X-axis ( 𝒇 = [1   0]𝑇 ). We use a conductivity coefficient 𝑑0 =
0.0013 𝑚𝑆 𝑐𝑚⁄  and transversal to longitudinal conductivity ratio 𝜌 =
1 4⁄ .  Periodic stimuli with period 𝑡𝑇 = 1 𝑠 , duration 𝑡𝑑 = 2 𝑚𝑠  and 

amplitude (A) of twice diastolic threshold are applied on the left side of the 

tissue (𝑥 = 0 𝑐𝑚). The AP propagation is simulated for time 𝑡𝑠 = 3 𝑠. We 

validate the solution of the RPIMC method by comparing it with a FEM 

solution using bilinear isoparametric elements. We consider regular nodal 

discretizations and quadrilateral meshes with nodal spacing ℎ =
{0.2, 0.1, 0.05, 0.025} 𝑐𝑚. The support domain size 𝑠𝑑 = 𝛼 ℎ, with 𝛼 =
2.8, is used for the support domain construction in RPIMC. A comparison 

of the generated APs by RPIMC and FEM in the time interval 𝑡 = [0 3] 𝑠 

for all the tested nodal discretizations is given in Figure 1. To further 

evaluate the simulated APs we measure the AP duration (APD) for 90%, 

50% and 20% repolarization. The APD90 metric denotes the duration 

between the time corresponding to the maximum derivative of 

transmembrane voltage and the time to complete 90% repolarization. The 

APD50 and APD20 metrics are defined similarly for 50% and 20% 

repolarization. The highest value of the percentage difference between the 

RPIMC APD compared to the FEM APD is found to be 0.45%, 2.25%, and 

2.27% for APD90, APD50, APD20 and nodal spacing ℎ = 0.2 𝑐𝑚 . The 

percentage error is reduced monotonically when diminishing the nodal 

spacing and is equal to zero for nodal spacing ℎ = 0.025 𝑐𝑚 . We  

investigate the effect of the dilatation coefficient 𝛼  by computing the 

Normalized Root Mean Square (NRMS) error between the RPIMC and 

FEM solutions at 𝑡 = 2.2 𝑠 for a nodal discretization with ℎ = 0.04 𝑐𝑚 

and varying dilatation coefficient 𝛼 =  {1.2, 1.6, 2.0, 2.4, 2.8}. 
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Figure 1. Comparison of simulated APs in the time interval 𝒕 = [𝟎 𝟑] 𝒔 for nodal 

spacing (a) 𝒉 = 𝟎. 𝟐 𝒄𝒎, (b) 𝒉 = 𝟎. 𝟏 𝒄𝒎, (c) 𝒉 = 𝟎. 𝟎𝟓 𝒄𝒎, (d) 𝒉 = 𝟎. 𝟎𝟐𝟓 𝒄𝒎. 

 

The NRMS error is computed using the formula: 

 
𝑁𝑅𝑀𝑆 =

(∑ (𝑉𝑅𝑃𝐼𝑀𝐶 (𝒙𝒋) − 𝑉𝐹𝐸𝑀(𝒙𝒋))
2

𝒙𝒋∈Ω )
1 2⁄

𝑚𝑎𝑥|𝑉𝐹𝐸𝑀(𝒙𝒋)| − 𝑚𝑖𝑛|𝑉𝐹𝐸𝑀(𝒙𝒋)|
, 

(7) 

where 𝒙𝑗 is the jth node in the discretization of the domain Ω, 𝑉𝑅𝑃𝐼𝑀𝐶(𝒙𝑗) 

is the RPIMC solution at 𝒙𝑗, and 𝑉𝐹𝐸𝑀(𝒙𝑗) is the FEM solution at 𝒙𝑖. The 

NRMS error convergence plot with respect to 𝛼 is given in Figure 2. 

 

Figure 2. Normalized Root Mean Square (NRMS) error convergence for varying 

dilatation coefficient 𝒂 = {𝟏. 𝟐 𝟏. 𝟔 𝟐. 𝟎 𝟐. 𝟒 𝟐. 𝟖} and nodal spacing 𝒉 =
𝟎. 𝟎𝟒 𝒄𝒎 

 

In the next example, an S1-S2 cross stimulation protocol [8] is simulated 

to investigate the ability of RPIMC to generate and maintain spiral wave 

dynamics, of high interest for investigation of cardiac arrhythmias. The 

same tissue geometry and parameter values as in the previous example are 

used, being nodal spacing ℎ = 0.025 𝑐𝑚 . An initial stimulus (S1) is 

applied at the left edge of the tissue (𝑥 = 0 𝑐𝑚) at time 𝑡 = 50 𝑚𝑠. A 

second stimulus (S2) is applied at a square region located at the left bottom 

corner of the tissue with a width of 1.25 𝑐𝑚 and height of 2.50 𝑐𝑚 at time 

𝑡 = 290 𝑚𝑠. If spiral waves generated due to the interaction of the S2 wave 

front with the S1 wave tail are such that at least 2 spirals are generated until 

time 𝑡𝑠 = 1 𝑠 , the spiral wave is considered to be sustained. Results 

obtained using RPIMC and FEM at different time intervals are plotted in 
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Figure 3. Sustained spiral waves of high similarity are generated both for 

RPIMC and FEM. The degradation of the similarity between RPIMC and 

FEM spiral waves with time may be associated with the slightly slower 

conduction velocity of the AP in the FEM simulation as compared to 

RPIMC simulation. 

 

 

Figure 3. Spiral wave propagation at different instants in the time interval 𝒕 =
[𝟎 𝟏] 𝒔 for the S1-S2 cross stimulation protocol. 
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