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Abstract 

In this paper we present a particularization of the adaptive linear combiner (ALC) filter structure, that results in 
a linear time-invariant comb filter suitable for the estimation of periodic signals and repetitive time-locked signals. The 
ALC is used in its transversal form, and the reference input is a periodic unitary-impulse train signal. When the LMS 
algorithm is used we show that the structure results in a simple and efficient linear time-invariant comb filter, taking as 
output the output of the ALC. This comb filter has lobe widths proportional to the p gain parameter of the LMS 
algorithm, and the separation between lobes is controlled by the period L of the periodic impulse train. We have also 
analyzed this filter when applied to estimate repetitive signals time-locked to a stimulus, and we show that the effect of 
a temporal misalignment in the determination of the stimulus results in a low-pass filtering effect, with cut-off frequency 
inversely proportional to the dispersion of the impulse estimation. This effect is specially important when the time 
occurrence of the stimulus is not directly accessible and needs to be estimated from some ‘noise affected’ procedures, as in 
Electrocardiographicsignals. The filter is also shown to be equivalent to a time-sequenced adaptive filter with one weight. 
Finally, an application to somatosensory evoked potentials estimation is presented. 

Zussammenfassung 

In diesem Aufsatz stellen wir eine Spezialisierung der “adaptiven linearen Kombinier”- (ALC-) Filterstruktur vor, die 
auf ein lineares zeit-invariantes Kammfilter hinausliuft. welches geeignet ist, periodische und repetierende, zeitlich 
gekoppelte Signale zu schSitzen. Der ALC wird in seiner Transversalform benutzt, und der Referenzeingang besteht aus 
einem periodischen Einheitsimpulszug. Wir zeigen, dal3 die Struktur bei Verwendung des LMS-Algorithmus’ in einem 
einfachen und wirksamen zeit-invarianten Kammfilter resultiert, wenn man als Ausgang den ALC-Ausgang betrachtet. 
Dieses Kammfilter besitzt DurchlaBbBnder, deren Breiten zum Adaptionsfaktor p des LMS-Algorithmus’ proportional 
sind, und der Abstand zwischen ben Btindern wird durch die Periode L des periodischen Impulszuges festgelegt. Wir 
haben dieses Filter such in der Anwendung zur Schgtzung repetierender Signale analysiert, die zeitlich mit einem 
Stimulus gekoppelt sind, und wir zeigen, daJ3 die Wirkung zeitlicher Fehlanpassung bei der Stimulusbestimmung in 
einem TiefpaD-Filtereffekt resultiert mit einer Grenzfrequenz, die zur Dispersion der Impulsschltzung umgekehrt 
proportional ist. Dieser Effekt ist besonders wichtig, wenn der Zeitpunkt des Stimulus nicht direkt zugHnglich ist und 
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mittels irgendwelcher, durch Rauschen beeintrtichtigter Prozeduren (wei etwa bei EKG-Signalen) zu schltzen ist. Es wird 
such gezeigt, daR unser Filter einem adaptiven sequentiellen Filter mit einem Koeffizienten entspricht. Zum Schlulj wird 
eine Anwendung auf die Schgtzung somatosensorischer Potentiale vorgestellt. 

Dans cet article nous prtsentons une structure particulikre du filtre combineur 1inCaire adaptatif (CLA), qui donne un 
filtre en peigne lintaire appropriCt g l’estimation de signaux ptriodiques et de signaux rCpttitifs fix& en temps. Le CLA est 
utilisk dans sa forme transverse, et I’entrCe de rtfkrence est un train d’impulsions pkriodiques unitaires. Quand 
l’algorithme LMS est utilisk, nous montrons que la structure se rksume $ un filtre en peigne 1inCaire simple et efficace, 
prenant comme sortie la sortie du CLA. Ce filtre en peigne a des largeurs de lobes proportionnelles au paramktre de gain 
p de l’algorithme LMS, et la skparation entre lobes est controlbe par la ptriode L du train d’impulsions ptriodiques. Nous 
avons kgalement analysC ce filtre lorqu’il est appliqut g l’estimation de signaux r6pCtitifs fix&s en temps B un stimulus, et 
nous montrons que l’effet d’un mauvais alignement temporel dans la ditermination du stimulus rksulte en un effet de 
filtrage passe-bas, avec une frtquence de coupure inversement proportionnelle ti la dispersion de l’estimation de 
l’impulsion. Cet effet est particuliirement important quand l’occurrence temporelle du stimulus n’est pas directement 
accessible et doit ttre estimie g partir de prockdures “affect&es par le bruit”, comme pour les signaux Clectrocardio- 
graphiques. On montre aussi que le filtre est Cquivalent $ un filtre adaptif stquencC en temps avec un facteur de 
pond&ration. Finalement, une application g l’estimation des potentiels tvoquCs somatosenseurs est prksentke. 

Keywords: Adaptive filters; Periodic signals; Comb filters; Electrocardiogram (ECG); Evoked potentials (EP) 

1. Introduction 

Adaptive filtering technique is a wide-spread tool 
for estimating signals embedded in uncorrelated 
noise [lS]. Adaptive filters have a structure that 
allows the filter to ‘learn’ the input statistics and to 
track them when they are time-varying. To achieve 
this property they make use, in addition to the 
primary input signal, of one or more auxiliary in- 
puts, called reference inputs, that contain noise- 
correlated signals [lS, 17, 7, 81. Very often, the 
performance of adaptive systems depends on the 
adequate selection of the primary and reference 
inputs, and the availability of the reference inputs 
correlated with the noise but not with the signals of 
interest. These filters are time-varying and self- 
adjusting, allowing the separation of signals and 
uncorrelated noise even if they appear in the same 
frequency band. 

One special structure of adaptive filters, the 
adaptive linear combiner (ALC), using as reference 
inputs two sinusoids with a phase difference of 90”, 
has been shown to become a linear notch filter [ 181 
when the LMS algorithm [ 193 is used in the adapta- 
tion process. Particularization of this notch to 
a high-pass comes from taking the reference input 

as a unitary constant [18]. The advantage of this 
filter is its simple implementation together with the 
control possibility of the notch bandwidth directly 
from the p gain constant of the LMS algorithm. 

In this paper we present another particulari- 
zation of the ALC structure that becomes a linear 
comb filter. The interest of a comb filter lies in its 
capacity to estimate periodic signals [12]. This 
feature can be used to estimate signals of an in- 
trinsic periodic nature, or to eliminate noise of 
periodic characteristics. In the first case many ap- 
plications have been found until now. In [3] one 
application is presented to separate solar and lunar 
components from ionospheric measurements of 
electron concentration. Other applications have 
considered the suppression of the clutter from fixed 
objects in moving-target indicator (MTI) radars 
[ 143. In biomedical signal processing, many signals, 
even those that are not strictly periodical, are finite- 
length repetition signals time-locked to a stimulus. 
The detection of the stimulus allows the signal to 
be studied as a periodic signal composed of the 
concatenation of subsequent recurrences. Among 
these signals we found the electrocardiographic 
signal (ECG) that is time-locked to an internal 
stimulus [16] generated at the heart. In this case 
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the detection of the stimulus is performed through 
a QRS detector [6] that locates the more promin- 
ent wave (called QRS complex) in the signal be- 
longing to each cardiac cycle. Other biomedical 
signals that fulfill this requirement are the evoked 
potentials (EP) [16]. In this case the stimulus is 
external (visual, auditory, or electrical) and the 
signal is the brain’s electrical response to these 
external stimuli. In these cases we have a precise 
estimation of the time stimulus, given that it is 
externally controlled by the user. Among the noise 
rejection applications the most characteristic is the 
rejection of powerline (50/60 Hz) harmonics 
through a comb filter structure. 

The filter that we analyze in this paper is based 
on the ALC with two inputs: the signal to be 
estimated (primary input) and the reference input 
that consists of a periodic unitary-impulse train 
with period of that of the signal to be estimated. 
The length of the transversal filter matches the 
period of the impulse train. We will see that this 
structure (Fig. 1) belongs to a linear time-invariant 
comb filter when the LMS algorithm is used in the 
adaptation process, with the advantage of its easy 
implementation and the direct controlling of the 
width lobes through the p factor. Also, by simple 
inspection, we show that this filter has the same 

$1 = s[lc] + np] +-WI 

X[k] 

cc 

Fig. 1. Filter structure using the transversal adaptive linear 
combiner. d [k] = s [k] + n [k] is the periodic signal to be esti- 
mated (primary signal), composed of a strictly periodic signal 
s [k] = s [k + L] plus additive noise n [k] not correlated with 
the signal x[k] is the periodic unitary-impulse train 
x [k] = .x [k + L], and y [k] is the filter output. 

behavior as the time-sequenced adaptive filter pre- 
sented in [4], using one weight in each weight 
vector. 

This filter was previously applied to biomedical 
signals [ll] (ECG and EP), where we showed its 
tracking capability of time-varying signals. In this 
paper we present the filter study and we show that 
the filter is a linear time-invariant comb filter. We 
also study the effect of a dispersion or misalignment 
in the synchronization (periodicity) of the impulse 
train with respect to the periodic signal showing 
that this results in a low-pass effect controlled by 
the deviation of the alignment dispersion. 

2. The filter structure 

The filter structure is based on the transversal 
adaptive linear combiner (Fig. 1) with L taps, where 
the primary input (d [k] = s [k] + n [k] ) is the noise 
contaminated periodic signal (in the case of perio- 
dic signals) or the consecutive linking of recurren- 
ces (in the case of event-related signals). Thus, d [k] 
is considered to be composed of a strictly periodic 
signal s[k] = s[k + L] to be estimated, plus addi- 
tive noise n [k] not L-periodic and so not correlated 
with s[k]. If there is noise L-periodic, obviously 
this filter will not reject it since it will be indistin- 
guible from the signal s[k]. The reference signal 
(x[k]) is a periodic unitary-impulse train with 
L sample period (the period of the signal to be 
estimated), 

x[k]= ,f 6[k-mL-11, (I) 
m=O 

where S [k] = 1 for k = 0 and 6 [k] = 0 otherwise. 
The output of this filter is taken at y [k], and e [k] is 
the error signal between the estimated signal y[k] 
and the input signal d[k]. 

The construction of the impulse train will depend 
on the application. In those cases where the period 
of s[k] is well-known a priori (solar and lunar 
ionosferics components [3], radar applications 
[14] (maybe with time delay estimates), 50/60 Hz 
interferences, etc.) the construction of x[k] is im- 
mediate. In those cases where the signal d [k] is the 
consecutive linking of finite time recurrences of 
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a time-locked signal, the impulse generation comes 
from the time occurrence determination of the 
event that generated the signal. If the event is ex- 
ternal (evoked potential) again the generation of 
x [k] is immediate from the generator of the event, 
but if the event is internal (ECG signals) a time 
occurrence detector [6] or a more sophisticated 
alignment method [lo] will be required. The effect 
of a misalignment error at the impulse determina- 
tion will be analyzed in Section 4. 

In case of event-related signals the d [k] signal, 
by itself, loses the actual timing of recurrences that 
can contain a valuable information. However, it is 
presented in this way for convenience to analyze 
the filter behavior, as evidenced in following sec- 
tions. The primary input d [k] has been converted 
to a pseudo-periodic deterministic component plus 
added noise not correlated with the former. In real 
situations the signal d(t) does not need to be gener- 
ated, instead we arrange the filter to activate when 
the recurrence detector gives a mark and to act 
only during the determined signal window. After 
that the filter is inhibited until the next recurrence 
mark appears. In this way we keep the valuable 
timing information. The two situations are exactly 
equivalent from the filter point of view, being the 
former much more suitable for filter performance 
analysis. 

A careful analysis of the time-sequenced adaptive 
filter [4, 151 verified that the filter proposed in this 
work presents the same behavior as the time- 
sequenced one restricted to have only one weight at 
each LMS filter as described in [4]. 

2.1. The adaptive jilter behavior 

Here, we briefly study the behavior of the filter 
through the well-known adaptive theory. More de- 
tailed analysis can be found in [ll]. The filter 
output can be expressed as 

y[k]= 5 wi[k]x[k-i+l]=WzXk, 
i=l 

(2) 

where W, = (wl [k] w2 [k] . . . wJk])’ and X, = 
(x[k] x[k- l] . . . x[k-L + 1-j)’ are the 
weight vector and the reference vector, respectively. 
The mean-square error 5 between the signal under 

study d [k] and the estimated one y[k], can be 
expressed by 

< = E{e2[k]} = E{(s[k] -y[k])‘) + E{n’[k]} 

=E(d’[k]) + WTRW-2PTW, 

R = E{X,X,T}, P= E{dCklX,}, (3) 

where R and P are the input correlation matrix and 
the cross-correlation vector, respectively. Note that 
even if x[k] is not a stochastic signal the calcu- 
lations can also be done since the expectations are 
taken as time averages; see [ 181. Considering in this 
case that the reference signal x[k] is a periodic 
unitary-impulse train uncorrelated with the noise, 
we obtain a simple expression for R and P: 

R=;I, P=~(s[l]s[2] . ..s[L])‘. (4) 

The optimum weight vector [18] that minimizes 
the 5 from (4) is 

W* = R-‘P = (s[l] s[2] . ..s[L])‘. (5) 

In the steady state the optimum filter output y* [k] 
becomes 

L 

y*[k]= W*X,= 1 w:x[k-i+ l] 
i=l 

= dh_i (k/L) = S WI 2 (6) 

where 

mod(k/L) = 
modul(k/L), k # m’L, 
L 

> k=m’L. 

So, we see that, when the weight vector has con- 
verged to the optimum, the filter behaves like an 
ideal comb filter, estimating only the periodic signal 
s [k]. However, the misadjustment M of the adapta- 
tion algorithm, that represents the excess of 5, leads 
the filter out of this behavior. The minimum mean- 
squared error (tmin) takes the value 5min = 
E{d2[k]) -PTW* = E{n2[k]}. 

Using the LMS algorithm [19] wk+, = 
wk + 2pe[k]Xk, the convergence condition is [S] 

o<p< 1 1 

3=7= 
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and the time constant (r,,,) for the convergence of 
the 5 is r,,, = 1/4pLi = L/4p, where ;2 = l/L is the 
eigenvalue of the matrix R (zmsc is measured in 
number of sampling periods). The misadjustment 
M takes the approximated value [18] 

M= 
E((s[kl - YCkl)‘; 2: ptr[R] = ~ 

E-(n[k]‘) 

which implies 5 = E {n” [k] ] (1 + p). (9) 

Note from this expression that M can be inter- 
preted as a normalized estimate of the residual 
noise at the filter output. The signal-to-noise ratio 
improvement ASNR, at the filter output after con- 
vergence is 

ASNR, = 2 = ~~s2Ckl}lWW -431’~ 
d E b2 WI I/E b’ WI 1 

1 1 z--=- 
M P. 

(10) 

In this study, we have shown the convergence of 
the filter output y [k] to the periodic signal s [k] 
that we want to estimate. Here, the well-known 
trade-off for the selection of p value appears. Large 
p values make the convergence time (r,,,) smaller 
in exchange for a higher misadjustment and hence 
a lower signal-to-noise improvement. Eventual 
period-to-period variations of the s [k] periodic 
signal will be tracked by this filter if r,,, = 
1/4~ < L, that gives (l/3 > p > l/4). These p values 
at the upper band of convergence imply higher M at 
the output. 

This is the analysis that can be made with the 
adaptive study. We corroborate that the filter is 
suitable to estimate periodic signals but we do not 
have information about residual noise (n’[k]) 
characteristics at the output signal (n’ [k] = 
y[k] -s[k]), and how this residual noise depends 
or not on the input noise, given that adaptive 
formalism considers expected values losing any 
other useful information of the signals. In the next 
section we will analyze this filter without consider- 
ing the LMS adaptive approximation. This will be 
possible because of the special simplicity of the 
.X [k] reference signal. 

2.2. TheJilter output as an exponential!v 
weighted averager 

In this section we show that the filter output y [k] 
is exactly equivalent to an exponentially weighted 
average of the preceding periods of the primary 
input signal, with a forgetting factor multiplying 
each period. From these results we will show in 
Section 3 that this linear filter is a comb filter. 

To show this equivalence, we make use of the 
LMS algorithm expression for each weight i of the 
vectorial equality. Considering the expression of 
the error e[k], we can write 

\Vi[k + l] = \ci[k] + 2,u(d[k] -y[k])X[k -i + 11, 

i= l,...,L. (11) 

Given that x [k] is a periodic unitary-impulse 
train the weight Wi [k] will only be actualized once 
in each period. We will denote WY the value of the 
weight Wi when the filter is processing the period 
m + 1 of the d [k] signal (d [k] = d [mL + i], 
i=l7 , &, . . . , L). With this notation (11) can be writ- 
ten as 

$“+i = WY + 2p(d[mL + i] -y[mL + i]), 

i=l 3 ..‘1 L. (12) 

From (6) we know that y[mL + i] = u‘,,~~~~+~~~~~ 
[mL + i] = wi[mL + i] = WT. Then (12) results in 

,vm+i 1 = WY + 2,u(d[mL + i] -WY), 

i=l 2 ..’ > L. (13) 

This equation is a recursive equation for the 
weights where it is shown that the weight wi is only 
affected by the samples ith of each signal period in 
d [k]. If we express the recursive relation (13) as 
a function of the initial weight w:, which is 
initialized to be zero (wj = 0), then 

WLy+l = i 2p(1 - 2p)N-“d[mL + i]. (14) 
??I=1 

Considering again that y [mL + i] = WY we. obtain 
the expression of the output signal y [k] as 

y[(N + l)L + i] = 5 2~(1 - 2,u)N-md[mL + i]. 
Ill=1 

(15) 
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From expression (15) we see that y [(N + 1)L + i] 
(output of the filter after processing N periods) is 
a weighted average of the ith samples of previous 
signal periods m. The weight factor 2~(1 - 2~)~~” 
decreases when N - rn increases as long as 
11 - 2~1 < 1 (convergence condition of the LMS). 
This equivalence with the weighted averager im- 
plies that the studied adaptive filter using the LMS 
algorithm is a linear time-invariant filter (15). How- 
ever, this fact is not true in general for all adaptive 
filters. Regarding Eq. (15) the output at time instant 
i of the (N + 1)th period depends only on the pre- 
vious d [mL + i] (m = 1, . . . , IV) noise samples at 
the same time instant i. Thus, the requirement of 
the noise to be filtered is that it must be uncor- 
related between the signal recurrences. It does not 
need to be white noise to satisfy the theoretically 
predicted filter performance, since LMS theory as- 
sumes white noise to study M behavior [IS]. This is 
very important in signals such as evoked potentials 
in which it is well known that the noise, usually the 
background electroencephalogram (EEG), is a 
highly correlated signal in each record [l]. 

In [ 1 l] we show that the exact estimation of the 
signal-to-noise ratio improvement ASNR, when 
N + cc (steady state in adaptive formalism) is 

1-P lim ASNR, = -. (16) 
NdO2 P 

This is in disagreement with the previous result 
with the adaptive approximation. This comes from 
the approximated M N p tr [R] = p approxima- 
tion. However, considering the estimation of1Mpre- 
sented in [8] or the estimation for this particular 
case presented in [ll] we see that the misadjust- 
ment takes the value M = p/(1 - p), and then the 
ASNR, estimated with the adaptive formalism or 
with the exact deduction are identical. 

3. The filter structure as a comb filter 

In this section we study the frequency behavior 
of the filter. To study the frequency response of the 
filter we will express the fitter output given in (12) as 
a function of the y [k] and d [k] signals, considering 
that the weight w is the signal y [k] at times k, 

Eq. (6). With this substitution we have 

y[k-tL]=y[k](l-2p)+2pd[k]. (17) 

Taking the z transform of this equation we obtain 

y(z)z’. = Y(Z) (1 - 2~) + %W, (18) 

and thus the z-transform transfer function of the 
filter is 

H(z) =v(z)= 
2/CL 

d(z) 1 + (2~ - l)z+ 

and the Fourier transform 

H(w) = 
2pe-hL 

1 + (2~ - Z)e-jwt’ 

(19) 

(20) 

where w is the normalized frequency. 
This filter is a comb filter in which lobes repeat at 

frequencies which are multiples of the fundamental 
normalized frequency f0 (f,, = 27r/L). It includes 
a time delay factor of L samples, due to the fact that 
in a given period of the signal the filter ouptut is the 
weights, actualized last time at the previous period. 
This is evident at the first period k = 0,. . . , L where 
the output will be zero (assuming weight initializa- 
tion as zero) independent of the signal input. 

The - 3 dB cut-off frequency of each lobe is 
(p/x)fO far from the central frequency of the lobe. 
Analyzing this fact in detail we found that wider 
lobes (higher p) implied more non-periodic signal 
component (noise) at the output. This is in agree- 
ment with the result from adaptive study that gives 
lower ASNR, for higher p values. We can interpret 
the misadjustment as the residual noise that passes 
through the lobes spread. 

In Fig. 2 we present the transfer function module 
for a sampling frequency offs = 1000 Hz, L = 1000 
samples (fO = 1 Hz) and p = 0.05. This implies 
a cut-off frequency of each lobe with respect to the 
central frequency of fC = 0.016 Hz. 

Recovering the adaptive and linear points of 
view we have already interpreted the misadjust- 
ment as the noise passed through the lobes spread. 
The convergence time can be interpreted as the 
time the filter needs to identify a signal as a periodic 
signal with L period. This is easy to visualize at the 
beginning (note that we have assumed d [k] = 0 for 
k < 0) of the filter operation. Even if the signal is 
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Fig. 2. Transfer function of the filter for a sampling frequency of 
1000 Hz, L = 1000 samples, and p = 0.05. 

strictly periodic (d [k] = d [k + L] for k > 0) at the 
first period the filter has the information of 
an infinite null signal k < 0 and one period of 
some values d[k]; this is not at all a periodic 
signal and the filter response is near zero. Going 
further the signal input d[k] takes more periods 
(its spectrum concentrates more around the lobes) 
and the estimation approaches the periodic com- 
ponent. The same reasoning can be used with 
a sudden change in the periodic signal that will 
require a time o,,, to recover this change at the 
output signal. 

From another point of view, this fact can be 
explained by the impulse response h[k] that ex- 
tends from zero to co, but with an exponentially 
decreasing weighted factor that makes the signifi- 
cant contribution no longer than z,,,: 

h[k] = 2pe-(-41rL u[k-L] f 6[k-mL] 
IPI=-‘X 

(21) 

So the filter considers the periodicity of the input 
signal mostly by ‘looking’ at the last rL time. Again 
this reasoning justifies the convergence time from 
the adaptive point of view. 

This filter can also be compared to a classical 
averaging over the last N periods of the d [k] signal. 
In [13] the frequency behavior of such a procedure 
is presented, which also results in a comb filter 
where the lobe width is inversely proportional to 
the number N of averaged periods. The advantage 
of the filter analyzed here is the implementation 
efficiency, low memory requirements, and the sig- 
nal tracking capability. 

4. Effects of misalignment at the unitary impulse 
location 

In this section we will analyze the effect of a mis- 
alignment at the impulse location with respect to 
the period of d[k]. This problem will not appear at 
signals that are of a periodic nature by itself, since 
the period L of the impulse train will be fixed by the 
user at the frequency he wants to filter the incoming 
signal. If this value is not adequately selected the 
output will reflect the periodic input signal compo- 
nents at the new fundamental frequency. This pro- 
cedure can be used to estimate periodic signals of 
unknown period. The variation of L will allow us to 
find out what the period of the incoming signal is. 

The application of a comb filter to repetitive 
time-locked signals, mentioned in the introduc- 
tion, needs to estimate the occurrence time of the 
repetitive signal [lo] to generate the d [k]. In real 
practice the filter works L samples after the trigger 
activates the filter and waits until a new trigger 
signal appears. This is equivalent to considering the 
filter as continuously working with d[k] built as 
described in the introduction (continuous linking of 
the different recurrences). In these cases timing 
errors can appear. When an error of ( + 6) appears 
in these estimations the unitary-impulse train re- 
mains periodic with period L, but the signal s[k] 
will change its period to s [k] = s [k i L f S]. The 
value of 6 will be of random nature and so will vary 
from period to period. We will study the effect of 
this misalignment at the filter output through the 
adaptive formalism, particularizing a previous 
study on this topic when the inputs to the ALC are 
orthogonal functions [9]. 

The effect of these errors on the estimated signal 
will be reflected through the effect on the P vector. 
The optimum weight vector W* = R‘- ‘P will be 
affected through P vector modifications (R does not 
change). Then we will analyze the P vector in this 
case: 

P = E{d[k]X,} = E{s[k]X,) + E{n[k]X,). (22) 

As noise n [k] is supposed to be not correlated with 
the stimulus the second term of P in (22) is null and 
P is reduced to become P = E{s[k]Xk}. 

If we assume that the errors of the occurrence 
time determination (6) are expressed in sample 
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values and have a probability distribution p [S], the 
P vector can be expressed as 

P = E{s[k]X,j 

P=; i X, f s[k+6]p[h]. 
k-l d=-cc 

(24) 

From this result we observe that the P vector ele- 
ments are (s’ [i]/L) where s’ [i] are the components 
of a signal s’[k] to where the filter converges, and 
takes the value 

co 

s’[k] = c s[k + S]p[S]. (25) 
6=-a, 

Calculating the Fourier transform of this s’[k] 

signal (S’(Q)) we have 

S’(i2) = S(Q) f ejnd p [S], (26) 
6=-m 

where S(n) is the Fourier transform of s [k]. So the 
effect of the error in the occurrence time estimation 
makes a filtering effect on the signal s[k] at the 
estimated y[k]. The transfer function C(Q) of this 
filter (S’(a) = C(LL?)S(n)) is the characteristic func- 
tion of the 6 distribution [2] 

C(a)= 5 ejRdp[6]. 
6=-CC 

(27) 

In the case that p [S] is a Gaussian distribution 
with standard deviation 0, the characteristic func- 
tion is [13] 

C(Q) = f e -(R - 2nn)2oZ/2 
(28) 

that consists of a low-pass filter with a cutoff fre- 
quency (fJ at - 3 dB of fc = 132.5/o, where fc is 
expressed in Hz and (T in ms. Thus, the estimation 
of W * will be the coefficients s’[k] of a low-pass 
filtered deterministic signal component, whose 
cutoff frequency depends on the error distribution. 

The effect should be taken into consideration 
when estimating signals of high-frequency compo- 
nents [lo] around the limit reached in this study. 
This limitation results in the same effect that was 
observed in [13] for classical signal averaging. So, 
we can state that the improvement in implementa- 
tion efficacy and tracking capability of this filter with 
respect to the classical averaging is continued by 
maintaining the misalignment effect. These advant- 
ages are at the expense of a limit in the SNR im- 
provement given by the lobe width (misadjustment). 

4. I. Simulation study 

In order to test the previous results we have 
taken 150 ms of a deterministic signal that belongs 
to a real QRS complex from an ECG signal (Fig. 3), 
sampled at 1000 Hz. We have extended this signal 

a) I\ 

Fig. 3. Output of the filter (lower signals) after processing 500 periods of the upper signal with a Gaussian (u) distributed delay at the 

impulse filter input: (a) u = 1 ms that implies fC = 132.5 Hz; (b) D = 5 ms that gives fe = 26.5 Hz. 
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to 200 ms with a 25 ms flat line of the left and 
another 25 ms on the right. The time domain exten- 
sion includes a step at the 190 ms of the total signal 
(upper signals of Fig. 3). With this signal we have 
generated the signal in study dk as composed of the 
succession of 500 recurrences of the same signal. In 
this way we can consider that all the signal is 
deterministic and there is not noise (n [k] = 0). We 
have estimated the deterministic signal with the 
filter, considering that L = 200. Then all the deter- 
ministic signal can be represented. In the estimation 
we have started the adaptation of each recurrence 
with a Gaussian distributed delay (a) with respect 
to the exact occurrence point of each realization. In 
Fig. 3 we have the original deterministic signal and 
below the estimated after processing 500 recurren- 
ces for g = 1 ms (Fig. 3(a)) and for 0 = 5 ms (Fig. 
3(b)). From the cutoff frequency obtained in the 
theoretical study we know that fC = 132.5 Hz for 
r~ = 1 ms, and fC = 26.5 Hz for 0 = 5 ms. Figs. 3(a) 
and 3(b) are in accordance with these results, where 
we can see that filtering effect (f) occurs at lower 
frequencies for higher g, according to the expres- 
sion fC = 132.5/g. 

5. Application to the estimation of event-related 
somatosensory evoked potential signals 

In this section we briefly present the filter estima- 
tion of a real somatosensory evoked potential 

(SEP) signal [l] that records the brain response to 
an electrical stimulus. In this case the electrical 
stimulus is a current of 20 mA given at the rate of 
5.9/s. The response is recorded from 40 ms before 
and 40 ms after the stimulus with a sampling fre- 
quency of 3200 Hz. Thus, in each SEP, we have the 
first part with only the EEG signal and the second 
part with the EEG + SEP. After 1420 recurrences, 
etomidate (0.2 mg/kg) was administrated to the 
subject and an additional 1420 SEP recurrences 
were recorded. The SEP response changed as a re- 
sult of the etomidate administration, and we can 
see in Fig. 4 how the filter estimates the dynamic 
changes. In this figure we have in the first row 
different periods (N) of the SEP that compose the 
primary input dk to the filter. In the second row are 
the results after classical averaging of the previous 
N SEP that can also be seen as the output of 
a linear comb filter [13] whose lobe width gets 
narrower as N increases. These characteristics 
made the classical averaging unable to follow the 
dynamic changes of the signal that occurs after the 
etomidate administration. In the following rows are 
the comb filter estimates for different values of the 
,U parameter. We can note how a low p value gets 
a fast amplitude detection of the EP change at the 
cost of a poor SNR, as a result of having a wide 
lobe spread. As the .LJ value decreases the SNR 
improves as a result of the decrease in the lobe 
spread. However, at this special time-varying sig- 
nal, smaller p requires higher time to manifest the 

Fig. 4. Application to time-varying somatosensory evoked potentials (2840 recurrences) from a subject with application of etomidate in 

the 1420 recurrence. The records extend 80 ms, 40 ms previous to the electrical stimulus (20 mA) and 40 ms after the stimulus. The first 

row displays the SEP recurrences. In the second row are the results after classical EA of N records. The following rows are the filter 

output after processing N records for different p values. 
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EP amplitude changes as a result of the well-known 
trade-off of the adaptive systems between speed of 
convergence and misadjustment at the steady state. 

6. Conclusions 

In this paper we have presented an efficient comb 
filter implementation from the adaptive linear com- 
biner. This filter results from the particularization 
of the adaptive linear combiner using the LMS 
algorithm and a periodic impulse-train reference 
input. Also it is remarked that it obtains the same 
behavior than the time-sequenced adaptive filter 
with only one weight. We have presented the filter 
from the point of view of adaptive theory and we 
have shown that its behavior results in a linear 
time-invariant comb filter suitable for: estimation 
of periodical signals, selection of signal components 
(should they exist) of a given periodicity, rejection 
of periodical noise and estimation of repetitive 
time-locked signals. The misadjustment and con- 
vergence time from the adaptive theory has been 
interpreted in the linear frequency domain, show- 
ing that both are different interpretations of the 
same fact as expected. The width of the comb lobes 
has been shown to be proportional to the p LMS 
gain allowing a direct and simple control of the 
lobe width. The period of the signal to be estimated 
(fundamental frequency of the comb) is directly 
adjusted through the period of the impulse train 
that we use at the reference input and the length of 
the filter: both should match the period of the signal 
to be estimated. 

We have also studied the effect of applying the 
filter with an error at the synchronization time 
given by the occurrence of the impulse. This is 
specially important at event-related signals with no 
direct access to the event. We have shown that this 
error results in a low-pass effect at the estimated 
signal whose cut-off frequency is inversely propor- 
tional to the dispersion of the errors. This effect 
should be taken into consideration when estimat- 
ing signals of relatively high-frequency components 
with the filter, and noise estimation of the occur- 
rence event. 

In conclusion, we have presented a linear comb 
effect, with a simple and stable implementation 

through the adaptive linear combiner structure. 
Direct lobe width control with the p parameter of 
the LMS algorithm is allowed. The filter is suitable 
for real-time implementation with wide-spread pos- 
sibilities of applications, some of them briefly enu- 
merated in this work. Results are presented in the 
case of somatosensory evoked response estimation 
of the brain response to an electrical stimulus. 
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