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Abstract

With the increasing use of the electrocardiographic signal (ECG) as a diagnostic tool in cardiology, there exists
a requirement for e!ective ECG compression techniques. The goal of any data compression system is to maximize
compression while minimizing distortion. Orthogonal expansions is a tool widely used because of its compression
capacity in recurrent signals. In this paper we analyze the e!ect of noise in orthogonal expansions of ECG signals. When
the observed signal is embedded in additive noise, distortion measurements, such as the mean-square error, are not
a monotonic decreasing function of the number of transform coe$cients, due to the noise presence. We analyze and
compare two di!erent ways to estimate the transform coe$cients: inner product and adaptive estimation with the LMS
algorithm. For stationary signals, we demonstrate and quantify the superior performance obtained by the adaptive
system when low values of the step-size are used k(k

-*.
. For non-stationary signals, we propose, based on experimental

results, values of the LMS step-size k depending on the noise characteristics and the signal-to-noise ratio. Theoretical
results are contrasted with a simulation study with actual ECG signals from MIT-BIH Arrythmia database and three
kinds of noise: simulated Gaussian white noise, and two records of physiological noise that essentially contains electrode
motion artifacts and muscular activity. ( 1999 Elsevier Science B.V. All rights reserved.

Zusammenfassung

Mit ansteigender Benutzung des elektrocardiographischen Signals (ECG) als diagnostisches Hilfsmittel in der Kar-
diologie besteht ein Bedarf an e!ektiven ECG Kompressionstechniken. Das Ziel einer jeden Systems zur Datenkompres-
sion ist die maximale Kompression bei minimaler BeeintraK chtigung der Daten. Die orthogonale Entwicklung ist ein
weitverbreitetes Tool aufgrund ihrer KompressionsfaK higkeiten fuK r periodische Signale. In dieser Arbeit untersuchen wir
den Ein#u{ von Rauschen in der orthogonalen Entwicklung von ECG Signalen. Bei Beobachtung von additiv mit
Rauschen uK berlagerten Signalen sind Ma{e zur Beschreibung von Kompressionsfehlern, wie der erwartete quadratische
Fehler, aufgrund des Rauschens nicht mehr monoton abfallende Kurven in AbhaK ngigkeit von der Anzahl der Trans-
formationskoe$zienten. Wir untersuchen und vergleichen zwei Wege zur SchaK tzung der Transformationskoe$zienten:
Betrachtung innerer Produkte und die adaptive SchaK tzung mit dem LMS-Algorithmus. FuK r stationaK re Signale demon-
strieren und zeigen wir das hoK here LeistungsvermoK gen von adaptiven Systemen, wenn kleine Schrittweiten von k(k

-*.
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benutzt werden. FuK r nichtstationaK re Signale schlagen wir auf Basis experimenteller Resultate LSM Schrittweiten k in
AbhaK ngigkeit von den Rauschcharakteristika und dem Signal-zu-Rausch-VerhaK ltnis vor. Theoretische Resultate werden
einer Simulationsstudie mit aktuellen ECG Signalen vom MIT-BIH Arrythmia Database und drei Arten von Rauschen
gegenuK bergestellt: simuliertes, Gau{'sches wei{es Rauschen sowie zwei Aufnahrmen von physiologischem Rauschen, das
hauptsaK chlich Artefakte durch Elektrodenbewegung und muskulaK re AktivitaK ten beinhaltet. ( 1999 Elsevier Science
B.V. All rights reserved.

Re2 sume2

Avec l'usage croissant de signaux d'eH lectrocardiographie (ECG) comme outil diagnostique en cardiologie, il existe une
demande pour des techniques de compression d'ECG e$caces. Le but de tout système de compression de donneH es est de
maximiser la compression tout en minimisant la distorsion. Les expansions orthogonales sont un outil largement utiliseH
à cause de ses capaciteH s de compression pour des signaux reH currents. Dans cet article, nous analysons l'e!et du bruit sur
les expansions orthogonales de signaux ECG. Lorsque le signal observeH est inclus dans du bruit additif, des mesures de
distorsion, telles l'erreur quadratique moyenne, ne sont pas une fonction monotone deH croissante du nombre de
coe$cients transformeH s, à cause de la preH sence du bruit. Nous analysons et comparons deux fac7 ons di!eH rentes d'estimer
les coe$cients transformeH s: le produit interne et l'estimation adaptative avec l'algorithme LMS. Pour des signaux
stationnaires, nous deHmontrons et quanti"ons la performance supeH rieure obtenue par le système adaptatif lorsque le pas
utiliseH est petit. Pour des signaux non-stationnaires, nous proposons, sur la base de reH sultats expeH rimentaux, des valeurs
pour le pas du LMS deH pendant des caracteH ristiques du bruit et du rapport signal sur bruit. Des reH sultats theH oriques sont
compareH s avec des reH sultats de simulations faites avec de vrais signaux ECG de la base de donneH e d'arythmies MIT-BIH,
pour trois types de bruits: un bruit blanc gaussien simuleH et deux enregistrements de bruit physiologisque qui contiennent
essentiellement des artefacts de mouvement d'eH lectrodes et d'activiteH musculaire. ( 1999 Elsevier Science B.V. All rights
reserved.
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1. Introduction

The great amount of data obtained when record-
ing ECG signals leads to the need of data compres-
sion techniques for storing, transmitting and
analyzing the data, without loss of clinical informa-
tion. For example, a typical Holter recording (two
leads, 24 h long, 500 Hz of sampling rate and 12 bits
of precision) needs more than 123 MBytes of mem-
ory for storing the data. Therefore, data compres-
sion systems will be very useful if they can reduce
this volume of data removing redundancies from
the signal.

Jalaleddine presented in [23] a very good review
of lossy data compression techniques for ECG sig-
nals and he classi"ed them into three major groups:
(a) direct methods, (b) transformation using ortho-
gonal functions and (c) parameter extraction. The
most used techniques for ECG signals concern with
the two "rst ones, because they permit a subsequent
reconstruction of the signal for later analysis. Many
algorithms based on direct methods were proposed

in the "rst years of ECG data compression
[1,3,19,22,45] because they are quite simple and
can be implemented easily on real time systems.
With the increasing calculation power of com-
puters many algorithms for ECG data compression
using orthogonal transforms have been designed
during the last decade [6}9] showing its superior
performance respect to direct methods.

In this work we analyze the e!ect of additive
noise on orthogonal transform-based compression
of ECG signals. An increase of the number of basis
functions in the orthogonal transform representa-
tion reduces distortion, or equivalently, improves
the signal quality. When the observed signal is
corrupted by noise, not only the reconstructed sig-
nal energy increase for larger values of the number
of basis functions but also the noise energy increase
[41]. If all the signal-space basis functions are used
by the transform coder, the distortion, evaluated as
the di!erence between the reconstructed signal and
the original clean signal, will be equal to the noise
energy. In consequence, there will be an optimum
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number of coe$cients (and then of basis functions)
that will minimize the distortion. Quadratic error
indexes [30], such as the mean-square error (MSE),
have become standard in order to quantify distor-
tion. When we compress noisy signals we want to
extract only the information from the original clean
signal. If we use the MSE index between the recon-
struction and the observed noisy signal we can get
high values of MSE due to the presence of the
unwanted noise, that do not represent the actual
distortion between the original clean signal and its
reconstruction. In this work we propose a simula-
tion study where we generate noisy signals from
actual ECG records from MIT-BIH Arrythmia
database [35]. Three di!erent noise sources are
considered: simulated Gaussian white noise and
two records of physiological noise that essen-
tially contains electrode motion artifacts and mus-
cular activity. The MSE index will be measured
between the reconstruction and the original clean
signal.

In Section 2 a brief review of orthogonal trans-
form compression systems is presented. In next
sections we describe and compare the performance
of two classical ways to estimate the transform
coe$cients: the inner product and an adaptive es-
timation with the LMS algorithm. Expressions for
the MSE for clean and noisy ECG signals are
derived for both estimation methods. The LMS
algorithm steady-state performance for stationary
signals is analyzed and compared with the classical
inner product in Section 5. For the selection of the
LMS step-size k we give an expression of the limit
value k

-*.
that gets same steady-state performance

than inner product. The operation of the LMS
algorithm in a non-stationary environment is also
analyzed in Section 6 with a new criteria for the
optimum step-size k selection. Finally, theoretical
results are contrasted in a simulation study with
actual ECG signals from MIT-BIH Arrythmia
database.

2. Truncated orthogonal expansions of ECG signals

In order to apply an orthogonal transform to the
ECG signal it is necessary to make some prepro-
cessing steps in order to segment the signal in

vectors. Each heartbeat is treated as a separated
vector. This requires that the position of each
heartbeat be determined prior to the compression
phase. The heartbeat detection alignment and de-
tection is usually made on the QRS complex (ECG
signal corresponding to the ventricular activation
at each beat), because it has the highest SNR in the
beat cycle. QRS complexes are detected and labeled
using ARISTOTLE software [34]. Each detected QRS
complex was marked at a "ducial point corre-
sponding to the center of gravity of the signi"cant
peaks of the convolution of the QRS complex with
the QRS detection function, a matched "lter char-
acterized by a W-phased impulse response. The
QRS "ducial point generally coincide with the R-
wave peaks of monophasic QRS complexes and lie
between QRS major positive and negative de#ec-
tions of biphasic QRS complexes. The beginning of
the heartbeat vector is established with di!erent
criteria for di!erent detected morphologies. For
normal beats, the beginning of the window was
de"ned 250 ms prior to the QRS "ducial point. All
signal vectors are zero-padded to the maximum
heartbeat length (N samples). Fig. 1 shows one
example of the ECG signal segmentation. More
details of the segmentation for other morphologies
can be found in [39].

The operation of an orthogonal transform data
compression system is illustrated in Fig. 2. The
ECG signal vector X"[x

0
,x

1
,2,x

N~1
]T is oper-

ated on by the orthogonal transform T, to produce
the transform vector C"[c

0
,c
1
,2,c

N~1
]T. The

elements of C are the magnitude of the projections
of X vector onto the basis formed by the rows of T.
The purpose of the transformation is to convert
the data vector X into a transform coe$cient
vector which can be optimally quantized. Typi-
cally the components of X are correlated and the
transformation T tries to decorrelate the signal
samples and also to pack the signal energy in a few
transform coe$cients. The reconstructed signal
XR can be obtained applying the inverse transform
T~1 to the quantized p coe$cients. In this work we
will not consider the quantization step Q, and we
will only analyze the e!ect of noise on truncated
orthogonal expansions of ECG signals. The
mean square error between the rank p approxima-
tion XR and X is the energy represented in the
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Fig. 1. Beat segmentation for ECG data compression.

Fig. 2. Block diagram of an orthogonal transform data com-
pression system.

discarded coe$cients

MSE
p
"

1

N

N~1
+
i/p

c2
i
. (1)

In order to outperform the compression ratio the
transform coe$cient series corresponding to the
subsequent heartbeats can be di!erentially quan-
tized using some algorithms like DPCM or LPC
[25]. To reduce the transients in the series of coe$-
cients originated by ECG morphology changes we
independently apply the transform coder to each
heartbeat series with the same morphology. The
heartbeat morphologies (normal beats, ventricular
beats and so on) are labeled with the software
ARISTOTLE [34].

Data compression systems have a general trade-
o! between distortion and compression ratio.
When transform coding schemes are applied it is
very important to select the orthogonal transform
T that can represent the maximum amount of sig-
nal energy with the minimum number of coe$-
cients. Several orthogonal transforms T have been
applied to ECG signals: Discrete cosine transform
(DCT) [2], Legendre transform (LT) [40], Hermite
transform (HT) [24], Karhunen}Loève Transform

(KLT) [6,29]. In this work we have selected the
KLT, but equivalent results, in terms of noise be-
havior, can be obtained for the other orthogonal
transforms. The KLT minimizes the cost function

m"EMDe[k]D2N"EMDx!x( [k]D2N, (2)

where x( [k] is the approximation of x[k] with a lin-
ear combination of p orthogonal functions. The
KLT is optimal in the sense that it needs the min-
imum number of coe$cients for a given MSE
[17,44]. The KLT is a signal-dependent transform
and its basis functions are calculated as the eigen-
vectors of the covariance matrix of a training set of
signals. In the KL domain the transform coe$-
cients are uncorrelated (the covariance matrix is
diagonal), thus redundancies are removed. The eig-
envalues of the covariance matrix are the expected
values of the squared KL coe$cients at the training
set, giving a measure of the importance of each
function in the linear combination for representing
the signals at the training set. Sorting the basis
functions (eigenvectors) in decreasing order of eig-
envalues and selecting the most signi"cant ones we
can get a good representation of the signal with
a reduced number of coe$cients. Therefore, the
KLT de"nes the domain where the signal energy is
more concentrated.

The KL basis functions for the ECG signal were
calculated from a large training set with over
110.000 beats from MIT and European ST-T
databases, and some records from people non-car-
diac diagnosed. If we consider independent signal
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Fig. 3. The "rst three KL basis functions for normal beats.

vector series from individual beat morphologies in
order to estimate the covariance matrix and calcu-
late the KLT basis functions, we get a better perfor-
mance than only considering one basis set for all
kinds of morphologies. This result is because we
need lower number of functions for representing a
homogeneous pattern space than a non-homogene-
ous one. The morphologies of the "rst KL basis
functions for normal beats are quite similar to the
most frequent morphologies of normal beats (see
Fig. 3). The sampling rate was 360 Hz and the
maximum heartbeat length was 1194 ms (N"430
samples).

We have recently demonstrated that truncated
orthogonal expansions of recurrent signals, like
ECG, are equivalent to apply a linear time-variant
periodic "lter to the input signal [37]. The time-
variant transfer function of the system can be easily
calculated from the basis functions used in the
expansion. In next sections we analyze the perfor-
mance of two classical methods to estimate the
transform coe$cients: inner product and adaptive
estimation with the LMS algorithm.

3. Inner product estimation

If noise N"[n
0
,n

1
,2,n

N~1
]T is added to the

input ECG signal X, the MSE between the original
clean signal X and the reconstructed signal XR will
have now two components [41]:

MSE$*3%#5
p

"

1

N

N~1
+
i/p

c2
i
#

1

N

p~1
+
i/0

a2
i
, (3)

where a
i

are the coe$cients of the noise in the
transformed domain. The "rst component of (3)
is the truncation signal error (the same as in
Eq. (1)), and the second one comes from the
noise represented in the approximation. If we are
interested in the reconstruction with p basis func-
tions we obtain a contaminating noise energy
given by

NOISE$*3%#5
p

"

1

N

p~1
+
i/0

a2
i
. (4)

Three di!erent kinds of noise have been con-
sidered in this work: simulated Gaussian white noise,
muscular noise and motion artifact noise. White
noise is arti"cially generated, but more realistic
sources of noise present in ECG signals are also
considered as electrode motion and muscular noise.
Noise data was obtained from two records of
MIT-BIH database (noise stress test database)
[35]. These records were obtained using a Holter
recorder on an active subject, with leads placed so
that the subject's ECG is not visible. Record &em'
contains electrode motion artifact (usually the re-
sult of intermittent mechanical forces acting on the
electrodes), with signi"cant amounts of baseline
wander and muscle noise as well. Record &ma' con-
tains primarily muscle noise (EMG), with a spec-
trum that overlaps that of the ECG, but extends to
higher frequencies. In Fig. 4 there is an excerpt of
these two noise records.

In order to represent the noise energy distribu-
tion in the KL domain, we averaged the square
KL coe$cients representation from 500 contiguous
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Fig. 4. Excerpts of noise records.

Fig. 5. MSE$*3%#5
p

noise component in the KL domain for three
kinds of noise.

windows (1194 ms long) of noise (equivalent to
597 s). The noise windows were not aligned with
any criteria, because we considered that noise was
uncorrelated with the ECG signal.

The MSE$*3%#5
p

component due to the presence of
noise in the KL domain is represented in Fig. 5
(values of MSE are normalized to the noise energy).
White noise presents a linear behavior as it was
expected since its contribution is equally distrib-
uted at any domain. In contrast, the energy of em
and ma noise is more concentrated in the "rst KL
functions, so their representations in the KL-do-
main will be more overlapped with the ECG signal
than white noise.

In Fig. 6(a) it is shown the total MSE$*3%#5
p

and its
two components (signal error and noise error)
when Gaussian white noise is added to the original
signal with a signal to noise ratio of SNR"10 dB.
The SNR was measured as the classical ratio be-
tween signal and noise power. The values of

MSE$*3%#5
p

were obtained using Eq. (3), taking the
eigenvalues of the covariance matrix which repres-
ents the ECG signal at the training set (they are the
squared expected values of the coe$cients) and the
noise representation in Fig. 5. Due to the presence
of white noise in the input signal, reconstructions
with p"35 KL functions have lower values of
MSE than those with p"80 functions. Thus the
number of coe$cients must be selected carefully
and accordingly to the amount of noise present in
the signal. In Fig. 6(b) we represent the values of the
total MSE$*3%#5

p
for white noise with several values

of SNR. It can be seen that there is an optimum
value of p (pH) that minimizes the MSE$*3%#5

p
of noisy

signals. The optimum value depends on the trans-
formed representation of both signal and noise, and
the SNR of the input signal. It is clearly shown that
the optimum number of coe$cients (pH) decreases
as the SNR also decreases. Moreover, the selection
of the optimum number of coe$cients has di!erent
sensitivity because of the error curve slope.

The SNR of the reconstructed signal will be

SNR$*3%#5
p

"

+p~1
i/0

c2
i

+p~1
i/0

a2
i

"

+p~1
i/0

c2
i

pp2
, (5)

where the last equality holds for the case of white
noise with variance a2

i
"p2.

Similar results of MSE$*3%#5
p

can be also obtained
for physiological colored noise. The MSE$*3%#5

p
values for physiological noise are higher than for
white noise because now signal and noise repres-
entations are more overlapped in the KL domain
(see Fig. 7). Also an optimum pH value can be
obtained that minimizes MSE$*3%#5

p
.
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Fig. 6. MSE$*3%#5
p

for ECG signals contaminated with simulated Gaussian white noise.

Fig. 7. MSE$*3%#5
p

for ECG signals contaminated with &em' and &ma' noise with several values of SNR.

4. Adaptive coe7cient estimation with
the LMS algorithm

Adaptive estimation of quasi-periodic signals,
such as ECG, is a wide spread technique for estima-
ting signals embedded in uncorrelated additive
noise [20,48]. This technique has been applied to
the analysis of ECG signals [43,27] and evoked
potentials [42]. It makes use of the recurrent be-
havior of the signal and it is based on the adaptive
linear combiner (ALC) [48]. Fig. 8 shows this pro-
cess in schematic form. The adaptive "lter input
signal (the primary input, d[k]) consists of sub-
sequent concatenated noisy observed heartbeats.
Short beats are lengthened by appending zeroes
as necessary, so that a new beat begins every N

Fig. 8. Adaptive linear combiner for estimating the KL coe$-
cients.

samples. The adaptive system dynamically esti-
mates the amount of each reference input UI

i
[k]

present in the input signal. The reference inputs
MUI

i
[k] (i"0,2,p!1)N!1)N are the periodic
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extension of the basis functions used to represent
the ECG signal. In [28] the reference inputs were
the orthonormal Hermite functions, in [27,10] unit
impulses, and in [42,46] sine, cosine and Walsh
functions. In the present study, the reference inputs
are the KL basis functions of the ECG signal. The
output of the adaptive "lter, y[k], is the signal that
we want to be an estimate of s[k], and e[k] is the
error signal e[k]"s[k]#n[k]!y[k] with

y[k]"
p~1
+
i/0

=
i
[k]UI

i
[k]. (6)

When any adaptive algorithm is used to minim-
ize the mean square error m"EMDe[k]D2N and the
input signal is stationary, the weight vector W con-
verges to the Wiener optimal solution WH"R~1P
[48], where

R"EMUI [k]UI T[k]N and P"EMd[k]UI [k]N (7)

and UI [k] denotes the vector of reference signals at
instant k,

UI [k]"[UI
0
[k],UI

1
[k],2,UI

p~1
[k]]T. (8)

In this case, given the orthonormality conditions of
the basis functions and the lack of correlation
assumed between the noise n[k] and the basis
functions UI

i
[k], the mean value over a signal occur-

rence of R and P reduce1 to

R"

1

N
I and P"

1

N
[c

0
,c
1
,2,c

N~1
]T, (9)

being c
i
the transform coe$cients of the s[k] signal.

The optimal weight vector, WH, that minimizes the
mean square error is WH"[c

0
,c
1
,2,c

N~1
]T. This

result means that the steady-state value of each
weight =H

i
is an estimation of the ith transform

coe$cient of s[k]. Thus the steady-state weight
vector is a characterization of the deterministic
signal component in the transformed domain, and
the output signal y[k], in the optimum case, takes

1A more detailed analysis with the actual time-variant behav-
ior of R[n] can be found in [36,38]. In consequence, all the
results obtained (steady-state misadjustment, convergence time,
etc.) with this approximation must be interpreted as mean values
over a signal occurrence.

the value

yH[k]"
p~1
+
i/0

=H
i
UI

i
[k]"

p~1
+
i/0

c
i
UI

i
[k], (10)

i.e., the projection of s[k] onto the subspace span-
ned by MUI

i
[k]; i"0,2,p!1N with p)N. There-

fore, yH[k] is the rank p transformed domain
representation of s[k], and yH[k]"s[k] when
p"N (i.e., if all of the basis functions are used in
the expansion).

The minimum mean-square error, m
.*/

, will be

m
.*/

"EMd2[k]N!PTWH

"

1

N

N~1
+
i/p

c2
i
#EMn2[k]N. (11)

The remaining noise due to the misadjustment (M)
depends upon the adaptive algorithm used to ad-
just the weight vector [48]. In this study, we use the
LMS algorithm for updating the coe$cients,
W[k#1]"W[k]#2ke[k]UI [k], because it gets
the best trade-o! between simplicity and conver-
gence time. More complex algorithms, such as
RLS, give similar steady-state performance since
the reference input signals are already orthonormal
[15,20]. The advantage of the RLS is a faster initial
convergence, that can be also obtained with
a proper initialization in the LMS [15]. The condi-
tion that assures the convergence of the LMS algo-
rithm following [13] is 0(k(N/(p#2). The time
constant for the convergence of the MSE is
q
.4%

"1/(4kj)"N/(4k) samples where j"1/N is
the eigenvalue of the matrix R (all the eigenvalues
are identical). Thus, the gain constant k controls
the stability and the speed of convergence.

To measure the steady-state excess of mean
square error m

%9
we calculate the misadjustment,

which for the LMS algorithm can be approximated
by [48]

M"

m
%9

m
.*/

K

k tr[R]

1!k tr[R]
"

kp

N!kp
. (12)

The steady-state mean square error m is

m"m
.*/

#m
%9
"m

.*/
(1#M)

KA
1

N

N~1
+
i/p

c2
i
#EMn2[k]NBA1#

kp

N!kpB. (13)
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But in this application we are interested in
evaluating the energy of the di!erence signal be-
tween the original clean signal and the recon-
struction e@[k]"s[k]!y[k]. From the ex-
pression of e[k] we get that e[k]"e@[k]#n[k]"
s[k]!y[k]#n[k] and taking square expected
values we get

m"EM(s[k]!y[k])2N#EMn2[k]N

#2EM(s[k]!y[k])n[k]N

"MSELMS
p

#EMn2[k]N#2EMy[k]n[k]N. (14)

The ALC with deterministic reference inputs is
equivalent to a linear system [37], and therefore
the output signal, y[n], can be decomposed as
the sum of the outputs y

s
[k] and y

n
[k] correspond-

ing to the inputs s[k] and n[k], respectively.
The output y

s
[k] is deterministic because in

these case both inputs (s[k] and UI [k]) are deter-
ministic. Thus the last term in Eq. (14) can be
evaluated as

EMy[k]n[k]N"EM(y
s
[k]#y

n
[k])n[k]N

"EMy
n
[k]n[k]N. (15)

In the particular case of white noise, this
term is null as it was demonstrated in [36,38].
Therefore, the mean-square error between the
original clean signal and the reconstructed
signal with the LMS algorithm for white noise
will be

MSELMS
p

"m!EMn2[k]N

K

1

N!kp

N~1
+
i/p

c2
i
#

kp

N!kp
p2. (16)

Two di!erent terms can be considered in (16): the
"rst one is due to the truncation signal error and
the second one is due to the presence of noise in the
input signal and misadjustment of the adaptive
algorithm. There is a clear trade-o! in the selec-
tion of the number of functions p, in a similar way
than for inner product in Eq. (3): high values of
p reduces the "rst term, but also increases the
second one. The noise in the reconstruction will be,

analogous to Eq. (4),

NOISELMS
p

"

kp

N!kp

1

N

N~1
+
i/p

c2
i
#

kp

N!kp
p2. (17)

The SNR of the estimated signal y[k] after conver-
gence can be calculated as

SNRLMS
p

"

1

N
+p~1

i/0
c2
i

kp

N!kp A
1

N
+N~1

i/p
c2
i
#p2B

. (18)

Eqs. (16)}(18) are derived after the convergence
of the weights with stationary signals and white
noise. Experimental results with non-stationary
signals will present some di!erences.

5. Comparison of inner product versus
the LMS algorithm

In this section we compare the performance of
the two methods for estimating the coe$cients:
inner product and adaptive estimation. Both tech-
niques have some advantages and some drawbacks.
The inner product follows the dynamic changes of
the signal because it is the beat-to-beat projection
of the signal vector onto the subspace of analysis.
The dynamic changes of the ECG signal are dir-
ectly shown in the evolution of the coe$cients in
the transformed domain. The main drawback of the
inner product is that both signal and noise com-
ponents are projected in the same way, so the
reconstructed signals will be noisy. In contrast, the
adaptive estimation of the coe$cients can attenu-
ate the noise uncorrelated with the signal achieving
an improvement of the signal to noise ratio. But in
this case the adaptive algorithm needs a period of
time for the convergence. This is the well-known
adaptive algorithms trade-o!: signal to noise ratio
improvement at steady state (related to k value)
versus time of convergence.

In order to compare both techniques we calcu-
late the value of the step-size parameter of the LMS
algorithm k"k

-*.
that gets the same value of

SNR at the output signal than the inner product.
Using Eqs. (5) and (18) the improvement of SNR of
the LMS algorithm versus inner product
at the reconstructed signal in the case of white
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noise will be

*SNRLMS@$*3%#5
p

"

SNRLMS
p

SNR$*3%#5
p

"

pp2/N

(kp/(N!kp))Ap2#
1

N
+N~1

i/p
c2
i B

(19)

and doing *SNRLMS@$*3%#5
p

"1 we get the value of
the step-size

k
-*.

"

Np2

(N#p)p2#
1

N
+N~1

i/p
c2
i

. (20)

It can be seen from Eq. (19) that when the complete
expansion is used (p"N) then *SNR

N
"

(1!k)/k"1/M, and this factor is equal to one for
k
-*.

"0.5. This result can be corroborated in Eq.
(20). When the noise energy is much more impor-
tant than truncation signal error, the LMS algo-
rithm has more advantages because it attenuates
more e$ciently the noise energy than direct estima-
tion. As a consequence of that, the value of k

-*.
for

noisy signals (low values of SNR) is higher than for
cleaner signals. The convergence condition must be
accomplished for convergence of the algorithm.
For low values of p, signal truncation error be-
comes more important, and the value of k

-*.
de-

creases. If a value of k(k
-*.

is selected the
adaptive estimation of the coe$cients gets cleaner
reconstructed signals (18) than inner product (5) for
stationary signals. If the step-size is selected as
k"k

-*.
, it can be demonstrated that after some

manipulation on Eqs. (3), (16) and (20) the recon-
struction error (MSE

p
) for inner product and the

LMS algorithm will be the same,

MSELMS
p

yk/k-*.
"MSE$*3%#5

p
. (21)

The values of k
-*.

for the KLT of the ECG training
set with various levels of white noise are shown in
Fig. 9.These values have been calculated from Eq.
(20) and the eigenvalues of the covariance matrix.

The performance of both estimation techniques
can be compared in Fig. 10. We consider two di!er-
ent values of SNR (15 and 10 dB) and three di!er-
ent values of step-size k (0.1, 0.3 and 0.75) for the
LMS algorithm. We can see in Fig. 9 that for

Fig. 9. Value of k
-*.

in LMS for white noise.

SNR"15 dB, k
-*.

"0.75 at p"31 and 131. More-
over, using Eq. (21) for these values of p we should
obtain the same value of MSE for inner product
and the LMS, as it can be seen in Fig. 10(a). Sim-
ilarly, for SNR"10dB, k

-*.
"0.75 at p"16 and

140, and these values get the same MSE for both
techniques with k"0.75 (see Fig. 10(b)). In addi-
tion, the LMS algorithm gets lower values of MSE
than inner product always that k(k

-*.
for any

value of p.
In order to compare the performance of both

estimation methods, we calculate the ratio
MSELMS@$*3%#5

p
that will be

MSELMS@$*3%#5
p

"

MSELMS
p

MSE$*3%#5
p

"

N

N!kp

kpp2#+N~1
i/p

c2
i

pp2#+N~1
i/p

c2
i

. (22)

Fig. 11 shows this ratio for two values of SNR (10
and 15 dB) and for k"0.1, 0.3, 0.5 and 0.75. When
the whole basis is used (p"N) the MSE improve-
ment is equal to the misadjustment

MSELMS@$*3%#5
N

"

k
1!k

"M. (23)

The maximum MSE di!erence between the LMS
and direct estimation will occur at relatively low
values of p. This behavior is appropriate for data
compression systems, where a few values of func-
tions are used. When the SNR is lower (more noisy
signals) the optimum number of functions p is
smaller too and the improvement of LMS versus
direct estimation is larger.
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Fig. 10. MSE
p

for inner product and LMS of signals in white noise.

Fig. 11. Values of MSELMS@$*3%#5
p

for white noise.

In summary, the analytic results show that the
LMS algorithm with a value of k(k

-*.
gets lower

values of steady-state MSE than inner product for
stationary signals. It can be seen that when the
whole basis is used (p"N) the MSE

N
improvement

ratio of LMS versus direct estimation is k/(1!k),
but larger improvement can be achieved at lower
values of p. For signals with low values of SNR, the
performance of the LMS algorithm can get a great
improvement over the inner product estimation if
a low value of k is selected.

From the stationary analytic results it is con-
cluded that the best selection of the step-size k will

correspond to as low as possible values. However,
the choice of a very small k could have problems
with the dynamic ECG changes and would increase
the value of MSE. Then a study with real non-
stationary signals is required.

6. The LMS algorithm with non-stationary signals

The non-stationary behavior of the ECG signal
can be understood as beat-to-beat morphology
changes. In this situation, the LMS algorithm has
the task of not only seeking the minimum point of
the error performance surface but also tracking the
beat-to-beat changing position of the minimum
WH. The optimum weight vector will be "xed dur-
ing the N samples of every heartbeat (ECG signal
occurrence), and it will suddenly change with every
new heartbeat.

The selection of the step-size k will have now
a trade-o! between noise reduction capability (re-
quiring low values of k) and speed of adaption to
track the time variant optimum weight vector (re-
quiring high values of k). In this situation we do not
have in"nite time for updating the weights as it
was in Sections 4 and 5. We update the weight
vector during N samples (heartbeat duration) and
then we will reconstruct the signal with the value of
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the weight vector at the end occurrence time
W [iN].

The convergence analysis of the LMS algorithm
has been previously analyzed by many authors,
being an active research area. Some of the papers
deal with stationary signals (in"nite adaptation
time is available) with either random inputs
[11,13,14,20,21], or deterministic inputs [4,46].
Other papers deal about slow time-varying signals
where the signal dynamics is modeled with random
walk [16,18,31,33,47] or Markov chains [32].
However, very few authors have analyzed the MSE
of the LMS algorithm after a "nite number of
iterations [5], as it is the actual situation in many
applications.

In our application we are interested in evaluating
the mean square error between every occurrence
i of the original signal and the reconstruction using
the p]1 weight vector at the end of the occurrence
W[iN], i.e.,

J
p
"

N~1
+
k/0

(s[(i!1)N#k]!y@[(i!1)N#k])2,

(24)

where y@[(i!1)N#k]"WT[iN]UI [k]. This
cost function di!ers from standard m[k]"
EMe2[k]N, because J

p
is a global distortion meas-

ure over the whole ith signal occurrence when
the signal is reconstructed with the weight vector
at the end occurrence time W[iN], while m[k]
is an instantaneous distortion measure using the
instantaneous output signal y[k]. We use vec-
tors (bold letters) to denote signals, like s"
[s

0
s
12

s
N~1

]T. Then the cost function can be
written as

J
p
"(s!y@)T(s!y@)

"(s!MTW[iN])T (s!MTW [i N]), (25)

where M is the p]N matrix of orthogonal basis
functions M"[UI [0] UI [1]2UI [N!1]].

The weight vector at the end of the occurrence
can be calculated applying N times the weight
vector update equation of the LMS algorithm
W [k#1]"(I!2kUI [k]UI T[k])W [k]#2k d[k]

]UI [k], giving

W [N]"A
N~1
<
k/0

(I!2kUI [k]UI T[k])BW [0]

#2k
N~1
+
k/0

d[k]A
N~1
<

i/k`1

(I!2kUI [i]UI T[i])BUI [k],

(26)

where the time origin has been selected at the
beginning of the signal occurrence for simplicity.
W[N] only depends on the step-size k, the primary
input signal d and the initial weight vector W[0].
The terms <

k
(I!2kUI [k]UI T[k]) of Eq. (26) can be

calculated a priori because they only depend on the
basis functions. Given an initial weight vector W[0]
and the primary input signal d, the weight vector at
the end occurrence time W[N] is an N-degree poly-
nomial of k (see Eq. (26)) where the coe$cients are
matrices and vectors, respectively,

W [N]

"(I!2kA
1
#(2k)2A

2
!(2k)3A

3
#2)W [0]

#2kB
1
!(2k)2B

2
#(2k)3B

3
!2. (27)

The matrices A
i
depend only on the basis functions

while the vectors B
i
also depend on the primary

input signal d.
Looking at one signal occurrence, we will have

an initial weight vector W[0] (result of the previous
occurrence adaptation) that is far from the opti-
mum weight vector WH of the current occurrence,
maybe due to abrupt signal changes. In this situ-
ation the adaption time is "nite (N samples) and we
would like to select the optimum value of the LMS
step-size k that minimizes the cost function J

p
.

Firstly, we consider the special case of complete
expansions (p"N) as an introduction, and after-
wards the more general case of non-complete
expansions case is discussed.

6.1. Complete expansions

This particular case is not interesting for data
compression because there is no rank reduction,
but several authors have studied it for "ltering
applications using impulses as basis functions
[10,12,26,27]. When all basis functions are used

108 S. Olmos et al. / Signal Processing 79 (1999) 97}115



in the expansion (p"N), Eq. (27) can be greatly
simpli"ed because A

1
"+N~1

i/0
UI [k]UI T[k]"I,

A
2
"A

3
"2"A

N
"0 because of the ortho-

gonality property of the basis functions
UI T[i]UI [j]"d

ij
being d

ij
the Kronecker delta func-

tion) and B
1
"Md, B

2
"B

3
"2"B

N
"0 (due

to the same orthogonality property), giving the
equation

W [N]"(1!2k)W [0]#2kMd. (28)

Now we can study the selection of the optimum
value of k that minimizes J

N
. In this case the cost

function will be

J
N
"(s!y@)T(s!y@)

"(s!MTW [N])T(s!MTW [N]), (29)

where W [N] is given in (28). The value of the step-
size k that minimizes J

N
is found forcing zero at the

"rst derivative LJ
N
/Lk obtaining

k
015

"

1

2

(W [0]!Ms)T(W[0]!Ms)#(W [0]!Ms)TMn
(W [0]!Md)T(W [0]!Md)

.

(30)

If we calculate the second derivative we obtain

L2J
N

Lk2
"8(W[0]!Md )T(W [0]!Md ), (31)

that is always positive, thus k
015

is the minimum of
the cost function J

N
. Eq. (30) can be geometrically

interpreted as the ratio of inner products of the
transform domain vectors shown in Fig. 12.

When the observed signal d is equal to the
desired signal s (we do not need adaptive "ltering
at all because there is no noise) the optimum
value is k

015
"1

2
. This value of the step-size

makes the LMS algorithm equivalent to the inner
product because W [N]"Md according to Eq.
(28). Moreover, the mean-square error J

N
is

zero, because all the basis functions are used in the
expansion.

When noise is present n"d!s, we have
a trade-o! between tracking capability and mis-
adjustment. When the noise vector norm (noise

Fig. 12. Geometric interpretation of k
015

.

energy) is much larger than the beat-to-beat
morphology changes (Fig. 12(a)), k

015
will be much

lower than 0.5 in order to reduce the noise energy.
In this case a good initialization of the weight
vector W[0] is the weight vector from the last signal
occurrence (like in the classical LMS) that contains
information of previous signal occurrences. The
opposite case will be when the noise energy is low
compared with the morphology signal change (Fig.
12(b)), and the optimum value will be near to
k
015

"0.5. In this case a good initialization of the
weight vector of every signal occurrence is the inner
product of the noisy observed signal occurrence
W[0]"Md. The LMS algorithm will try to reduce
the noise energy during the adaptation time (N
iterations). If all basis functions are used for up-
dating the coe$cients with the LMS algorithm
the weight vector at the end occurrence time
will be

W[N]"(1!2k)Md#2k Md"Md, (32)

that is the same as the inner product coe$cient
vector, independently of the value of the step-size k.
When both, noise and non-stationarities coexist
and have similar magnitudes nothing can be said
a priori, and Eq. (30) should be evaluated with the
actual vectors (signal occurrences).

In Section 2 it was announced that the ortho-
gonal compression system is independently applied
to each morphology in order to improve compres-
sion applying di!erential coders like DPCM or
ADPCM to the coe$cient time series. Thus we
have independent weight vectors for normal beats,
ventricular beats, and so on. In this situation each
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weight vector time series will have smaller changes
(only due to variations from beats of the same
morphology that may be non-contiguous in
time).

6.2. Non-complete expansions

When non-complete expansions (p(N) are
used, we will obtain a similar conceptual behavior
but with a more complex description. Eq. (27)
cannot be simpli"ed as it was on the complete
expansions case. The linear terms on k (A

1
and B

1
)

are the same as for complete expansions case
(A

1
"I, B

1
"Md), but now the other terms

are di!erent to null vector (A
2
, A

3
,2, A

N
O0 and

B
2
,B

3
,2,B

N
O0). For example, the matrix A

2
will

be a sum of terms of the form

(UI [i]UI T[i])(UI [ j]UI T[ j])"r
ij
UI [i]UI T[ j], (33)

where the scalar value r
ij
"(UI T[i]UI [ j])Od

ij
for

non-complete expansions. In the same way, the
matrix A

3
will be a sum of terms of the form

(UI [i]UI T[i])(UI [ j]UI T[ j])(UI [k]UI T[k])

"r
ij
r
jk
UI [i]UI T[k]. (34)

The terms B
2
, B

3
,2 also have a similar behavior.

The analysis of the optimum value of the
step-size k

015
for non-complete expansions is

now troublesome due to the non-null inter-
action between basis functions. Alternatively, we
propose a experimental study to "nd the values
of k

015
in a training set of simulated noisy ECG

signals.

7. Experimental study

In order to study the e!ect of noise in estimating
the coe$cients of orthogonal transforms it is pro-
posed the following simulation study represented in
Fig. 13. Three di!erent kinds of noise have been
added to ECG records from the MIT-BIH Arryth-
mia Database: simulated Gaussian white noise,
and two records of physiological noise: electrode
motion (&em') and muscular activity noise (&ma').
The level of noise added is much higher than the
unavoidable noise present in original records.

Fig. 13. Simulation of additive noisy signals.

A data compression system based on truncated
orthogonal expansions is applied to the simulated
noisy ECG signals. The MSE index is evaluated
between the reconstruction X

R
and the clean orig-

inal signal S. We propose this simulation because in
actual applications we can not get access to the
clean signal S.

7.1. Simulated stationary ECG signals in white noise

In the "rst step, a simulation is proposed to
evaluate the steady-state performance of inner
product and the LMS algorithm only considering
stationary ECG signals and white noise. We
simulated a 100 heartbeats ECG segment repeating
an average beat of record 103 from MIT-BIH Ar-
rythmia Database. This signal is perfectly periodic
and also deterministic. The length of 100 heartbeats
is long enough to the convergence of the LMS
algorithm and the steady-state MSE analysis. We
added to it white noise with several values of SNR
(0, 5, 10 and 15 dB). Both transform coe$cient
estimation methods were applied with a variable
number of basis functions. The results obtained for
SNR"15 dB are shown in Fig. 14. Theoretical
values (sub"gure (a)) were calculated using Eqs. (3)
and (16) for the selected beat. There was a very
small di!erence between the selected beat and the
mean performance for the whole ECG training set.
For the experimental analysis we made 20 trials.
Mean values and standard deviation of the steady-
state MSE

p
are shown in Fig. 14(b). The experi-

mental results for white noise are very close to
predicted values. The reason is that the hypothesis
made in the derivation of theoretical expressions
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Fig. 14. Theoretical/experimental values of MSE
p

for white noise with SNR"15 dB.

Fig. 15. Theoretical/experimental values of MSE
p

for white noise with SNR"5 dB.

(stationarity of signal and noise, and mutually un-
correlated) were true in this simulation. Experi-
mental results of the ratio MSELMS@$*3%#5

p
are

compared in Fig. 14(c) with theoretical values de-
rived in Eq. (22). It can be seen that experimental
results are well predicted, especially for low values
of the step-size k.

If the noise energy is larger, the value of MSE
p

will be also higher for both estimation methods,
inner product and the LMS algorithm. However,
both methods do not increase with the same law.
The equivalent results are illustrated in Fig. 15 for
SNR"5 dB. We can observe in Fig. 15(c) that the
maximum improvement of the LMS algorithm ver-
sus inner product is a bit higher than in the case of
SNR"15 dB (Fig. 14(c)), and also this maximum
di!erence is found at lower values of the number of
functions. When complete expansions are used
(p"N"430), it is corroborated that the improve-
ment of the LMS algorithm versus inner product is

independent of the SNR and only depends on the
value of the step-size k (see Eq. (23)).

The selection of the step-size k in the LMS algo-
rithm should be selected according to the SNR of
the original signal and the number of functions p.
For white noise and stationary ECG signals, the
best way for estimating the transform coe$cients is
the LMS algorithm with very low values of k be-
cause it can attenuate the uncorrelated noise with
a low value of steady-state misadjustment. The
limitation is that the convergence time is high. In
actual applications with time-varying ECG signals,
the LMS algorithm will have to track the dynamic
signal.

7.2. Actual ECG signals contaminated by noise

In order to calculate the optimum value of the
LMS step-size k

015
for non-complete expansions

with non-stationary noisy ECG signals we select
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Fig. 16. Mean values of k
015

with actual ECG noisy signals.

Fig. 17. Mean value of the ratio MSELMS@$*3%#5
1

.

the "rst 5 min. of 20 records from MIT-BIH Ar-
rythmia database. For every heartbeat and for all
values of the number of functions p, we "nd the
value of the step-size k that minimized the cost
function (29) using a numerical minimum search.
We show in Fig. 16 the mean values of k

015
ob-

tained for the three kinds of noise with several
values of SNR.

It can be seen that the mean value of k
015

is lower
when the noise energy is higher for all kinds of
noise. This behavior is reasonable because when
the impact of the noise energy is higher than beat-
to-beat morphology changes, the most e$cient
choice of the step-size is low values of the LMS
step-size k to attenuate the uncorrelated noise with
low values of misadjustment. In contrast, when the
e!ect of the noise energy is lower than beat-to-beat
morphology changes, higher values of the step-size

should be used to increase the convergence speed to
track the dynamic changes.

Once the optimum value of the step-size k
015

is
determined, we can calculate the MSE obtained
with the LMS algorithm and compare it with to
inner product. We show in Fig. 17 the MSE im-
provement obtained with the LMS algorithm re-
spect to inner product MSELMS@$*3%#5

1
. We observe

that now the improvement is less important than
for stationary signals. Even in some conditions
(high values of SNR and white noise) the inner
product obtains lower values of distortion.

We can conclude that the adaptive estimation of
the transform coe$cients with the LMS algorithm
is more appropriate than inner product for low
values of SNR. Moreover, the improvement of the
LMS algorithm is higher for the case of physiolo-
gical noise than for white noise for p(50. Using
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Fig. 18. Example of ECG signal reconstructions from record
103 with em noise SNR"10 dB and p"50 KL basis functions.

typical values of SNR 10}15 dB in actual ECG
records and number of basis functions between 30
and 50 (compression ratio2 of 8.6}14.3), we obtain
that the LMS algorithm is more or less equivalent
to the inner product for white noise, but when
physiological noise is considered an improvement
in MSE

1
of about 40% for k values between 0.3 and

0.5.
We show in Fig. 18 an example of original and

reconstructed signals with p"50 basis functions.
The original signal is taken from record 103 of
MIT-BIH Arrythmia database. It is contaminated
with em noise with a value of SNR"10 dB. The
"rst line represents the actual ECG signal, the sec-
ond line is the em-noise added to it. Noise morpho-
logy is similar to some ECG waveforms. The third
line is the simulated noisy ECG signal (addition of
the previous signals). The last two lines are the
outputs of the reconstructed signals with inner
product and the LMS algorithm with k"0.1, re-
spectively. It can be clearly seen that inner product
cannot attenuate the em-noise (for example at the
ST-T complex of the "rst two beats) because
the signal and noise KL representations are

2The value of compression ratio is only an approximation
without considering quantization.

overlapped. However, the LMS algorithm obtains
a cleaner reconstruction.

8. Conclusions

In this work we have analyzed the performance
of truncated orthogonal expansions for compress-
ing ECG signals when the input signals are con-
taminated by additive noise. Due to the presence of
noise, the distortion (evaluated as the mean square
error between the original clean signal and the
reconstruction) has two di!erent sources: signal
truncation error and noise error. We have quanti-
"ed the relative importance of both terms when
a variable number of functions p are used in the
expansion. We distinguish two classical methods
for estimating the transform coe$cients: inner
product and adaptive estimation with the LMS
algorithm.

A simulation study has been proposed where
noisy ECG signals are generated from actual ECG
records from MIT-BIH Arrythmia database and
adding three di!erent noise sources: simulated
Gaussian white noise, and two records of physiolo-
gical noise. All derived results are contrasted with
simulated data.

When the transform coe$cients are calculated
using the inner product the e!ect of noise in the
reconstructed signal for physiological noise is high-
er than for white noise because signal and noise
representations in the transformed domain are
more overlapped in the "rst case, and the inner
product estimation cannot distinguish between sig-
nal and noise. Analytical results of distortion and
SNR in the reconstructed signal for any value of
number of functions are given.

We have also considered an adaptive estimation
of the coe$cients with the LMS algorithm in order
to reduce the uncorrelated noise. Two di!erent
situations of the LMS algorithm are analyzed: sta-
tionary (without changes in the deterministic com-
ponent of the signal) and non-stationary (actual
ECG signals with beat-to-beat morphology cha-
nges) input signals.

In the ideal case of stationary signals we have
analyzed the steady-state performance of the LMS
algorithm making a comparison with inner product
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results. We calculated the value of the LMS step-
size k

-*.
that get the same performance than inner

product. If the step-size is chosen as k(k
-*.

, the
LMS algorithm gets better steady-state perfor-
mance than inner product.

However, actual ECG records have beat-to-beat
morphology changes, and there is no in"nite time
for the adaptation process. In the case of complete
expansions, the analytical expression of the value of
the step-size k

015
that minimizes the distortion after

a "nite-time adaptation process is given. For non-
complete expansions, only experimental results are
given.

With the shown methodology we can give some
practical criteria for the selection of the more ap-
propriate transform coe$cient estimation method
(inner product or adaptive estimation) and the
choice of the step-size k for the LMS algorithm. For
example, in typical Holter recording, the value of
SNR is around 10 dB, and therefore the optimum
value of the LMS step-size should be around
k"0.3}0.5 if physiological noise is present with
p around 40 KL basis functions. The improvement
of the LMS algorithm over the inner product will
be around 40% for these operating conditions.
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