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Abstract

The Karhunen-Loéve transform (KLT) has been
used as a tool to analyze the repolarization period in the
study of ischemic episodes. The dynamic variations
in the ST-T complex shape are shown as variations of
the kl series associated with the beat series. In this
work we propose an adaptive system to estimate the kl
coefficients of the ST-T complex in order to improve
the signal-to-noise ratio (SNR) of the estimation
(it is obtained around 10dB of improvement). A
transversal adaptive linear combiner filter using as
reference inputs the KL basis functions and as primary
input the concatenation of noisy ST-T complexes from
consecutive beats is used. It is shown how the weights
of the filter become, after convergence, estimates of
the kl series. The Least Mean Squares (LMS) and
Recursive Least Squares (RLS) algorithms are studied
and compared in the kl time series estimation. It is
presented o specific initialization for the LMS which
leads to the same performance than the RLS.

1. Introduction

The ST-T complex of the ECG reflects the
repolarization phase of the cardiac electrical cycle,
and ischemia is usually reflected as changes in the
ST-T shape. The Karhunen-Loéve Transform (KLT)
has been used to model the ST-T complex[l] and
has permitted to study its dynamic behavior. We
present an adaptive filter to estimate the kl series of
the ST-T complex that reduces the noise incorrelated
with the signal. The SNR improvements of the
adaptively estimated ki series with respect to the
direct estimation (with the inner product) are derived.
It is shown that an improvement of 10dB can be
achieved, with adequated convergence time to follow
ischemic episodes, using the adaptive estimation. This
improvement is very useful when using the &l series to
monitor or detect ST-T transient changes that can be

0276-6547/96 $5.00 © 1996 IEEE

associated with ischemic episodes. The LMS and RLS
algorithms are detaily studied in order to determine
which one presents the best performance in the ki
Series estimation.

2. The Karhunen-Loéve Transform

The KLT is an orthogonal signal-dependent linear
transform which is optimal in the sense that it
concentrates the maximum signal information in the
minimum number of parameters and defines the
domain where the signal and noise are more separated.
It is needed to build a training set which contains
the statistical properties of the signals to be analyzed
in order to obtain the basis functions of the KL
transform field. The KL basis functions for the ST-
T complex were derived from a training set of 100.000
preprocessed beats[1]. Once the basis functions have
been derived, each ST-T complex of the ECG signal
to be analyzed is represented in the KL transform
field by a feature vector; the first components (2-4) of
this vector represent almost all (70%-90%) the signal
energy[1l]. In this way there will be as many kl time
series, kl,(¢) (where n represents the KL order and ¢
is the beat number), as KL coefficients are needed to
represent the ST-T complex. The dynamic variations
in the ST-T complex shape are shown as variations of
the kl,(7) series. The direct way to obtain the ki, (7)
series is from the inner product of the KL basis with
the ST-T complexes to be analyzed. This leads to a
noisy time series, and the adaptive estimation is used
to reduce the noise being a more’suitable estimation.

3. The Adaptive Filter

The adaptive estimation allows reduction of noise
incorrelated with the signal. We propose the adaptive
linear filter to estimate the kl,,(¢) time series. The KL
basis K L;i are the reference inputs to the transversal
filter whose primary input dj is the concatenation of
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ST-T complexes from consecutive beats sy plus noise
ny, (Figure 1). The weights after filtering each ST-T
complex will result in the estimated kl coefficients.

d = s+ n,

LMs

Figure 1: Adaptive Filter.

The N samples that compose each ST-T complex
are assumed to be the sum of the signal of interest (a
deterministic signal component, sy = STT}) and an
incorrelated noise component ny. If the deterministic
component is strictly periodic with a period of N
samples, then it satisfies s = sgyn for all k. The
reference inputs KLz (j = 0, ..., n — 1) (n < N,
with n the number of taps in the filter and N the
number of samples of each ST-T complex) are formed
by concatenating copies of the jth KL basis function;
thus K L;x = KLjrrn. In the KL vectorial space,
dy = s +ny may be expressed as the sum of all the
KL components and the incorrelated noise:

N-1
dy = Z Ekl; K Ljj, + ny,
j=0

1)

The output of the adaptive filter, yy, is the signal that
we want to be an estimation of s, and e, is the error
signal ex = s + ng — yx with:
n—1
Yk = Z wj g KLj

=0

(2)

If KL; denotes the reference input vector and Wy
the weight vector: KL; = [KLo,,..., KLn_12])"
and Wy = [wok, .-, Wn—1]7, then yx = KL{ We.
Minimizing the mean squared error ¢ = E[e}i] using
any adaptive algorithm[2], the weight vector converges
to the optimal solution W* = R™'P, where R =
E[KL; KLY] and P = E[dy KLi|. In this case,
given the orthonormality conditions of the KL basis
and the lack of correlation between the noise n; and
the KL basis K L, x, R and P reduce to R = %I and
P = %[klo,kll, weykln—1]T, respectively. The optimal
weight vector, W*, that minimizes the mean squared
error is given by:

W* = [klo, kly, ..., kln_1]T (3)

This result means that each weight w; is an estimate
of the ith KL coefficient for s;. Thus the weight
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vector is a characterization of the deterministic signal
component, and the output signal y, in the optimum
case, takes the value:

n—1 n—1
ye=Y wi KLjp =Y ki KL; 4)
j=0 j=0

i.e., the projection of s, onto the subspace spanned by
KL (i1=0,..,n—1) withn <N. Thus y; is the
nth-order KLT representation of si, and y; = s if
n = N (i.e., if all of the KL components are included).
The minimum mean squared error, &min, will be
émin = E[d}] — PTW*. Given that the weight
vector oscillates around this optimal value, y;, is an
unbiased estimate of s;. The remaining noise due to
the misadjustment (1) depends upon the adaptive
algorithm used to adjust the weight vector[2]. The
elements of the weight vector, evaluated at the end
of each ST-T complex, are the adaptive estimates
of the KL coeflicients of that complex. The quality
of the y; estimation is thus directly related to the
quality of the KL estimation. In figure 2, the
direct and adaptive (with 10dB of SNR improvement)
estimations of kly(7), from the lead V3 of the record
¢0106 from the European ST-T Database, are shown.
(@)

Inner product

Normatized Units

o s . 1o
minutes

(b) Adaptive estimation (10dB)

Normalized Units

24 T T
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Figure 2: Estimation of klo(n) in record e0106.
The LMS Algorithm

First, we have used the LMS algorithm [2]

3.1.

Wk+1 = Wk + 2;A€k I(L}c (5)
The condition that assures the convergence of the
algorithm is [3] © 0 < p < g5y = 3, The time
constant 7 for the convergence of the MSE is:

1 N

where A + is the eigenvalue of the matrix R
(all the eigenvalues are identical). 7 is expressed
in sampling intervals. The gain constant, u, thus



controls the stability and the speed of convergence.
Given an appropriate choice of u, the estimate of
the weight vector may be obtained within a single
beat (r < N) if necessary. Thus adaptive filtering
may be used in principle even for tracking beat-by-
beat ST-T variations. To measure the excess of
mean squared error we calculate the misadjustment
[2) M = Breess MSE ' which for the LMS algorithm

min

can be approximated by:

M =y tr{R) = (7)

The mean square error € = £pin (1 + M) will be:

1 ey 2 2 un
= ;::n W2+ ER3 ) (1+52) ®)

The MSE thus depends on the noise power, the power
in the ST-T complex not represented by the first n ki,
coefficients, and the gain constant, u. Note that the
dependence on the KLT order n is not evident, since an
increase in n value increases the (1+ 52) factor and
decreases the ZN _1 kl? factor. Thus, the optimum
solution minimizes n and maximizes ».) ! klZ; this
property is intrinsic to the KLT. (zlven thd,t at the
steady state the estimated signal y; is orthogonal with
the error ey [2], the Ezcess M SE is the excess of error
power introduced in yx, and the signal-to-noise ratio
of this estimation, SN Ry, will be:

& k2
() (3 IS k2 + Blnd))

If we consider that the ST-T energy is strongly
concentrated in the n first coefficients, we can
neglect the term Z;V o1 kl?, obtaining SNR, =
SNR({-— where SNR, is the SNR. of the original
dy, mgnal Comparison of this SNR, with that
obtained from the direct estimation of kl,(i) will
give the SNR improvement (ASNR) achieved by
the adaptive system. Direct kln(i) estimation yields
a SNR (SNRI7Tet) that can be estimated if we
assume the noise is white and then its PSD is
uniformly distributed in the KL domain SN R ~
SNRdNE. Thus the SNR improvement obtained using
the adaptive filter is:

SNR, = (9)

SNR 1
ASNRLyms = SNRdu’yp('L = ; (10)

Thus we find that, for appropriately chosen values of
(1 < 1), the adaptive estimate of kl,, (%) is cleaner than
the kl,,(¢) time series obtained from the inner product.
It is possible to get a ASNR of 10dB (p = 0.1) with
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= 2.5 beats. The choice of p obviously involves
the typical trade-off between SNR improvement and
rate of convergence and is limited by the need to track
changes occurring within a few beats in typical cases.

3.2. The RLS Algorithm

The aim of RLS algorithm is to obtain, at
each time k, a multiple linear regression model
of the inputs and desired responses of the filter
up to this time, in a recursive way. Formally,
we want to minimize a cost function £(k) which
exponentially weights the differences between the
desired response d(i) and filter output. It it expressed
as E(k) = 8 N1 [d(i) — WT (k)X (i)]”, where X
is a forgetting factor, X (i) represents the KL basis
function vector, and W (k) is a weight vector adapted
to minimize £(k). The RLS algorithm produces after
convergence an unbiased estimation of the desired
signal [4]. The exponential nature of the estimators,
e., the finite window effect leads to an estimation-
noise which results in a misadjustment M of the
output signal from its optimal setting [4]:

1= /\

1" (1)

where n is the number of taps (basis functions) in the
adaptive filter. In nonstationary environments a A < 1
value is selected so that the algorithm presents finite
memory and tracking capability This choice results in
a convergence time of [4]: 7 = 2. Following a similar
analysis than with LMS, we get the improvement in
SNR using RLS algorithm versus direct estimation:
SNR, 1142

ASNRRrs = SNR;“”“ =~Ni-x (12)

When X approaches to unity the improvement ASNR
will be better, but the time constant T will be greater.

4. Comparison Between RLS and LMS

The improvement of the RLS versus the LMS
is obtained to compare the efficiency of the two

algorithms: ASN Rpps

M 1 + /\
RLSvsLMS A SN M

TNT-A

(13)

In figure 3 the iso-improvement curves as function of
its features parameters (u (gain constant in LMS) and
A (forgetting factor in RLS)) can be seen: the equal
ASNR curves correspond to sampling rates of 1000,
360 and 250 Hz, i.e. to N = 600, 216 and 150 samples
in the ST-T complex, respectively. The region above
each curve corresponds to a better improvement in
SNR produced by the RLS algorithm and the region



LMS gain constant

LS forgetting factor

Figure 3: Equal ASNR curves.

below conversely. Because of the KL eigenvectors
are orthonormal and all eigenvalues of the correlation
matrix are equal the LMS algorithm will show the
same time constant for each tap and the convergence
rate will not be limited by the smallest eigenvalue.
Thus, the RLS algorithm will not represent a great
improvement over the LMS performance. To obtain
the same SNR improvement it is necessary to select
pu and A related accordingly to (13) and this leads
roughly (A near 1) to the same rate of convergence
for both algorithms:

n 1-An
Muses = pg =Ny = Mees (14)
N 11+
TLMS = 5; =31-1x ~ TRLS (15)

So their performances become equal looking at the
adaptive trade-off between ASNR and 7 but with
higher simplicity for the LMS. However the initial
convergence rate is much better in RLS algorithm [4]
as it can be seen in the kly estimated on the record
€0103 of the European ST-T Database (figures 4(b)
and 4(c)) for equivalent A and p values.

5. Ischemic ECG Analysis

In figure 4 it can be seen the klj series corresponding
to the lead V4 of the record €0103 from the European
ST-T Database estimated by different methods. The
adaptive estimation shows a large SNR improvement:
19dB (¢ = 0.012, A = 0.99984). The LMS estimation
can lead to errors in the initial detection of ischemic
episodes as it is shown comparing figures 4(b) and
4(c) where there are two episodes with the first
one underestimated with the LMS Dbecause of the
convergence time. In the rest of the record the signal
tracking is essentially the same with the LMS and
RLS. Because of roundoff errors, when A < 1 is used,
the RLS algorithm becomes unstable and and need
to be periodically restarted. It has been proposed an
ad-hoc initialization for the LMS weights (instead to
zero, to the inner product of the first ST-T complex
with each basis function) which gives a better initial
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convergence rate. The result (fig. 4(d)) is that the
same tracking properties are obtained with the new
initializated LMS than RLS. Thus, this initializated
LMS is the best suited for the estimation.
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Figure 4: Estimation of klo(n) in record e0103.
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6. Conclusions

The adaptive estimation of kl,(7) series has been
studied in the analysis of the dynamic ST-T complex
behavior. kl,(i) series are better estimated in the
adaptive way, with a significant SNR, improvement.
A transversal linear combiner filter has been used
achieving 10dB of SNR improvement with an adequate
convergence time (7 = 2.5 beats). The performances
of LMS and RLS algorithms have been studied and a
specific initialization for the LMS algorithm has been
presented. This results in the best suited for the ki
series estimation.
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