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Abstract

The Karhunen�Lo�eve transform �KLT� has been applied to study the ventricular repolarization

period as re�ected in the ST�T complex of the surface ECG� Characterisation of the repolarization

period �which may contain subtle evidence of cardiac electrical instability� must take account of the

entire ST�T period� We have used the KLT as a sensitive means of quantizing ST�T shape with

an overall index� the kl coe�cients� Since the KLT is signal dependent� we assembled a diverse

set of roughly 	

�


 ST�T complexes from 	
� �fteen�minute excerpts of digitized two�channel

ambulatory ECG recordings� First� using uniformly sampled ST�T complexes� we derived a set of

KLT basis vectors that permit representation of 
� of the signal energy using � KLT coe�cients

for each ST�T complex� In a second experiment� Bazett�s correction was used to normalize the ST�

T duration� after which a second set of KLT basis vectors was derived which was more e�cient in

signal representation� Since a truncated KLT expansion tends to favour representation of the signal

over any additive noise� a time series of KLT coe�cients� obtained from successive ST�T complexes� is

better�suited for representation of both medium�term variations in ST�T morphology �such as ischemic

changes� and short�term variations �such as ST�T alternans� than discrete parameters such as ST level

or other local indexes� For analysis of ischemic changes� we describe an adaptive �lter that may be

used to estimate the KLT coe�cients� yielding an increase in signal�to�noise ratio of 	
 dB �� � 
�	��

with a convergence time of about � beats� We use a beat spectrum of the UN��ltered KLT coe�cient

series for detection of ST�T alternans� Finally� we illustrate these methods with examples from the

European ST�T Database obtaining that about �
� of records at the database reveal a quasi�periodic

salvos pattern of ischemic �or ST�T changes� episodes and other �
� exhibit repetitive but not clearly

periodic patterns of ST�T change episodes� It has been obtained that about �� of ischemic episodes

present alternans associated with them�

Keywords� ST level� STT complex� Ischemia� KL Transform� Alternans� Monitoring�

� Introduction

Electrocardiographic �ECG� information is derived from analysis of both the depolarization �QRS complex�

and repolarization �STT waveform� phase of the cardiac electrical cycle� Considerable interest has been

directed at ventricular repolarization �VR� in recent years because subtle STT changes may be a marker of

electrical instability that might result in increased susceptibility to ventricular �brillation �VF�� and sudden

cardiac death �SCD� �Rosenbaum et al�� ������ Repolarization may be perturbed by multiple factors

including ischemia� structural heart disease� metabolic factors �e�g� electrolyte abnormalities� drugs� and

neurohumoral factors�

At present� there are no generally accepted noninvasive indices of the risk of SCD� although such indices

would have very substantial implications for both public health policy and medical practice� and many
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studies have sought to develop such indices� Among the most promising candidates are measurements of

heart rate variability �HRV� �Klieger et al�� ����� Myers et al�� ������ ventricular late potentials

�Berbari and Lazzara� ����� Breithardt et al�� ������ repolarization duration �QT� interval

�Puddu and Bourassa� ������ QT variability �Merri et al�� ����� Speranza et al�� ������

assessment of heterogeneity of repolarization �QT interval� in di�erent leads� and repolarization alternans

�Clancy et al�� ����� Rosenbaum et al�� ����� �a possible precursor of ventricular �brillation��

Except for the �rst two� all of these indices are derived from the STT complex of the ECG� which has

long been known as a highly sensitive �though arguably less predictive� marker of myocardial ischemia

�Gallino et al�� ����� Akselrod et al�� ���	��

Most of these indices to describe VR are derived from discrete features of the STT complex� a practice

that re�ects the di�culty of deriving integrated measurements using visual analysis� However the STT

waveform represents a complex spatial and temporal summation of electrical potentials from innumerable

ventricular cells� Therefore� if physiologically and clinically relevant information is contained within the

STT complex� this information may not necessarily be concentrated within any individual di�erential

feature or subinterval such as ST levels and QT intervals� but may be represented by the entire STT

waveform� The proliferation of additional �heuristic� measurements that describe the STT complex shape

clearly demonstrates the need to consider more than the traditional measurements in order to characterize

subtle changes in VR� Furthermore� noise and other sources of measurement error �such as errors in

�ducial or baseline estimation� have far more deleterious e�ects on measurements of isolated features and

simple di�erential measurements than on integrated measurements� These considerations� together with

the increasing evidence for the importance of repolarization alterations as a marker of electrical instability

and SCD� led us to consider the objective of developing an analytic technique based on the entire STT

complex�

We chose to use the KarhunenLo�eve transform �KLT� which has the power to characterize the shape of

the entire STT complex� and which is minimally a�ected by noise� We propose that a feature set of KLT

coe�cients would provide a superior method for characterizing each beat� and that the KLT feature set

would provide a much more sensitive and robust quantization of STT shape than the discrete measures

commonly used in clinical practice� like ST or QT measures� In a previous study �Jager et al�� ���
��

the KLT was successfully applied to analyze the ST segment of the ECG� with the speci�c aim of obtaining

noisetolerant methods for ischemia detection� In this study� we have applied the KLT to the entire STT

complex� in order to include as much information about VR as possible� with the broader aim of noise

tolerant characterization of both beattobeat and longerterm variations in VR�

In the following sections� we describe our technique for STT complex representation� including

construction of KLT basis functions and derivation of KLn coe�cient time series� kln�i�� We also present

an adaptive �lter �Laguna et al�� ����a� Thakor et al�� ������ suitable for estimating the kln�i�
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time series� that reduces the noise of the kln�i� estimation while preserving the deterministic coe�cient

information� We apply these techniques to ECG records from the European STT Database� and we show

how the �rst and second kln�i� �n � �� �� series may be used to monitor ST segment changes in these

records� We illustrate this point with examples of periodic behaviour of the ischemic process within these

records� We also analyze the power spectral density �PSD� of the kln�i� series� This analysis is done using

PSD estimation of the kln�i� coe�cients expressed with temporal reference the beat order �DeBoer et al��

����� �as previously used for HRV analysis� rather than the beat occurrence time ti� This analysis also

points out the possibility of detecting ventricular alternans using the peaks of the spectrum at ��� beat��

�beatquency�� We show examples �from the European STT Database� of the appearance of alternans in

association with ischemic ST and Twave changes� which were successfully detected by this method�

� The Karhunen�Lo�eve transform applied to the ST�T complex

The KLT �Haddad and Parsons� ����� is a signaldependent linear transform that is optimal in the

following sense� for a given signal �an STT complex� lasting N samples and any given number of parameters

n � N � if the signal is reconstructed from the �rst n terms of the series expansion of a linear transformation�

the lowest expected meansquared error will be obtained if the transform is chosen to be the KLT� The

KLT thus has two major advantages over other linear transforms� it concentrates the signal information

in the minimum number of parameters� and it de�nes the domain where the signal and noise are most

separated� These properties are obtained at the expense of generality� however� it is by estimation of the

�most likely� variations in waveform shape that the KLT acquires its property of noise rejection� A KLT

for a given type of signal must be derived from the statistics of examples of that signal� it is unlikely to

be useful �with the same optimal properties� for analysis of other types of signals� Thus� a signi�cant

constrain of the KLT is that it is necessary to collect a representative �training� set of the signals to be

analyzed� in order to derive the KLT basis functions �eigenfunctions�� The performance of the KLT� in

terms of capacity to concentrate information in a small coe�cient set� depends on how well the training

set has been constructed� Once each STT complex is characterized by n kl coe�cients we construct n kl

series �kln�i�� as the series formed by the kl coe�cients of the ith beat�

In this section we describe our technique for analyzing the STT complex using the KLT� First we discuss

the derivation of the training set� including the preprocessing performed on the ECG to attenuate noise

and to exclude beats likely to be signi�cantly corrupted by noise� We then present an adaptive �lter for

estimating the kln�i� series of an ECG record�

In this work� we represent each STT complex �rst by a pattern vector� x� whose components are the

timeordered samples of the STT complex �after baseline correction and normalization� described below��

The KLT is a rotational transformation of a pattern vector into a feature vector� whose components are
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the KLT coe�cients� As shown below� the �rst few components of the feature vector represent almost all

of the signal energy� and the remaining components need not even be computed�

The derivation of the KLT basis functions begins by estimating the covariance matrix C of the pattern

vectors of the training set �Haddad and Parsons� ������

C � Ef�x�m��x �m�T g ���

where m is the mean pattern vector over the entire training set� The covariance matrix re�ects the

distribution of the pattern vectors in the pattern space� The orthogonal eigenvectors of C are the basis

functions of the KLT� and the eigenvalues� �k� represent the average dispersion of the projection of a pattern

vector onto the corresponding basis function� After sorting the eigenvectors in order by their respective

eigenvalues� such that �k � �k��� for k � �� �� ����� N � �� the corresponding basis functions are arranged

in order of representational strength� The basis function corresponding to the largest eigenvalue is that

function best able to represent an arbitrary pattern vector from the training set� the next function is the

�orthogonal� function best able to represent the residual error obtained from �tting the �rst function� etc�

The value of N is equal to the number of components in the pattern vector� and depends on the length of

the waveform and on the sampling frequency� in this case the length is ��� ms� and the sampling frequency

is ��� Hz� so that N � ����

In this study� the mean pattern vectorm can be forced to be zero� if we assume that each STT complex

in the training set can represent both itself and its inverted counterpart� This represents the possibility

that any STT complex may appear inverted simply as an artifact of the choice of the lead polarity when

recording the ECG� Thus� the covariance matrix may be expressed simply as

C � Ef�x��x�T g ���

and the eigenvalues� rather than representing the average dispersion of the STT projection onto the

associated basis function� instead represent the average energy of this projection�

��� Derivation of the training set and the KLn basis functions

To obtain a representative training set of normal and abnormal STT waveforms we selected a wide variety

of ECG records� ��� in all �Laguna et al�� ���	� ��� from the MITBIH Arrhythmia Database �Moody

and Mark� ����a�� � from the MITBIH ST Change Database� �� from the MITBIH Supraventricular

Arrhythmia Database� �� recordings of healthy subjects from BIH� �� from the European STT Database

�Taddei et al�� ���
�� � from the MITBIH LongTerm Database and �� from SCD recordings collected

at BIH� which included a wide spectrum of Twave shapes� ST elevation� ST depressions� etc� From each

of these ��� recordings� a ��minute excerpt was selected� Since the noise discrimination power of the KLT
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depends on the distribution of the pattern vectors as re�ected in the covariance matrix� we tried to avoid

including segments that were obviously corrupted by baseline wander or other noise�

From these ��� �fteenminute records� we selected the training set of STT complexes according to the

following procedure� First� QRS complexes were detected and labeled using Aristotle software �Moody

and Mark� ���
�� Each detected QRS complex was marked at a �ducial point corresponding to the

centre of gravity of the signi�cant peaks of the convolution of the QRS complex with the QRS detection

function� a matched �lter characterized by a Wshaped impulse response� This method of �ducial point

placement was chosen for its stability with respect to minor morphology changes� as in respirationrelated

axis shift� as well as for its tolerance of impulse noise� The QRS �ducial points generally coincide with the

Rwave peaks of monophasic QRS complexes� and lie between the major positive and negative de�ections

of biphasic QRS complexes� We de�ned the STT complex as the portion of the signal within a window

beginning  � ms following a QRS mark� qi� and ending ��� ms prior to the next QRS mark� qi��� If the RR

interval� rri �de�ned as the interval between the QRS marks�� is less than ��� ms� the end of the window

is located at qi !
�

�
rri �i�e�� ��� of the way from the initial QRS mark to the following one�� This strategy

permits inclusion of the whole STT complex� independently of the QT duration� �The STT window is

restricted to ��� ms�� In those cases when T waves end later than ��� ms prior to the next QRS mark

it is very likely that T waves are distorted by the next P wave� It is better to exclude those beats rather

than have them corrupt the training set� These values have been selected according to the clinical values

of intervals and from our experimental work when deriving the KLT of the STT complex� When we refer

to STT as de�ned here we include the U wave� in the cases where it exists� This will be observed later

when discussing Fig� � � Fig� �

To avoid the e�ects of ectopic and other abnormal beats on the STT complex� we accepted only ST

T complexes associated with QRS complexes labelled as normal by Aristotle �Moody and Mark�

����b�� and further required that both the previous and following QRS complexes also be labelled as

normal� For each beat� we estimated the isoelectric level in the PR interval as the signal averaged during

the �� ms interval beginning  � ms prior to the QRS mark� This isoelectric value� measured in the di�erent

beats� was used as input to the cubic splines interpolation of the ECG signal in the baseline cancellation

�Meyer and Keiser� ��		�� Beats for which the estimated isoelectric level di�ered by more than ���

mV from that of the previous or following beat were excluded from the training set� The presence of delta

waves associated with preexcitation �Wol�ParkinsonWhite syndrome� in four records required us to use

intervals beginning ��� ms �records sel��� sel���� and sel������ or ��� ms �record sel���� prior to the QRS

mark for the isoelectric level estimation in these cases� We then manually rejected a small number of STT

complexes we judged subjectively to be particularly noisy� The remaining ������ STT complexes formed

the training set�

We generated the set of pattern vectors for the training set in six di�erent ways� to test the e�ects of
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STT dependence on heart rate �HR� and of noise on the KLT representation� We used both uniformly

sampled STT complexes� and complexes corrected with Bazett"s formula �Bazett� ��
�� and resampled�

We corrected for baseline variation using cubic splines and using a highpass �lter� �Since the KLT basis

functions will be in�uenced by incorrectly determined isoelectric levels� we selected recordings with minimal

baseline variation� Even in such recordings� however� it is still necessary to account for baseline variation

caused by respiration�� Finally� given the lowfrequency content of the STT complex �Thakor et al��

������ we have also studied the e�ects of bandpass �ltering the ECG signal as a means of improving the

signaltonoise ratio� These considerations led us to develop six sets of pattern vectors from the training

set�

� Using cubic splines for baseline removal �Meyer and Keiser� ��		�� The knots were taken to be

the centres of the isoelectric intervals� as de�ned above�

� As in set �� but correcting for the e�ects of heart rate on the STT complex using Bazett"s formula�

This is performed by resampling within the STT window at a sampling frequency equal to the

original ���� Hz� divided by
p
rri� where rri is the previous RR interval and is expressed in seconds�

The result is a corrected STT complex� STTc�t
�� � STT �t�

p
rri��

� Using a secondorder highpass �lter �Lynn� ��		� with a cuto� frequency of � Hz for baseline

removal�

� As in set �� but with HR correction as in set ��

� Using bandpass �ltering� a highpass �lter as in set �� together with a secondorder lowpass �lter

�� dB at � Hz� for attenuation of highfrequency noise�

� As in set �� but with HR correction as in set ��

In each case� the pattern vectors were normalized by magnitude �i�e�� scaled such that the signal energy

was constant�� in this way� each pattern vector is accorded equal importance when deriving the KLT basis

functions�

Since the durations of the STT complexes vary �the �nal part of the STT complex is not always available

due to the appearance of the next Pwave and QRS complex�� the estimation of certain elements of the

covariance matrix is problematic� Although one might extend the pattern vectors �by adding zero elements�

so that all are of equal length� this procedure would tend to reduce the signi�cance of nonzero elements in

these positions when they are available� thereby lending an artifactual bias in favour of the initial elements�

We prefer to address this issue by estimating each element of the covariance matrix using only those STT

complexes for which the corresponding elements are available� This procedure avoids introducing artifacts

of the window de�nition into the covariance matrix estimate� its consequence is that the �nal portions of

the derived basis functions are derived from a smaller sample than the initial portions�
�



#Figure � about here�$

In Fig� � we plot the cumulative eigenvalue energy �CEE� Fig� �

CEE�n� � ���

Pn

k�� �kPN��

k�� �k
���

as a function of the KLn order n� for the KLT basis functions derived using pattern vector set � �with cubic

spline baseline correction� Fig� �a� and for the KLT basis functions derived using set � �with correction Fig� �a

for heart rate� Fig� �b�� Note how the CEE for set � is higher than the CEE for set � for low values Fig� �b

of n� re�ecting the reduction in waveform variability once the e�ects of heart rate are �at least in part�

accounted for� This results in representing approximately �% more energy by the �rst two HR corrected

basis functions than by their uncorrected counterparts �Fig� ��� In the training set� the average HR is Fig� �

quite low� as a result of our requirement of minimal baseline wander �generally accompanying low levels

of physical activity and consequent low HR�� This works to the disadvantage of the set � basis functions�

since there is relatively little representation of STT complexes corresponding to high HR� with energy

concentrated in the initial part of the window� The HRcorrected pattern vectors corresponding to STT

complexes in high HR� however� closely resemble those in set �� and are thus better represented by the

loworder KLT coe�cients of set � than those of set � �for an example� see section �����

Although correction for HR produces an improvement in the quality of the KLT� we do not observe any

improvement using highpass or bandpass �ltering �pattern vector sets �� �� �� and ��� This result agrees

with the supposition that the KLT is the most e�ective linear method for separating the signal from the

noise� and that any other linear �lter cannot produce further improvements� Cubicspline correction of

baseline variation produced slightly better results than highpass �ltering�

The �rst �� KLT basis functions are displayed in Fig� � for the uncorrected set � �solid lines� and for the Fig� �

corrected set � �dashed lines�� It is apparent that the energy in the corrected set is concentrated at a later

time than in the uncorrected set� Since most heart rates exceed �� beats per minute� the correction applied

to most STT complexes tends to stretch them �i�e�� to move the concentration of energy toward the end of

the window�� The �rst basis function� and to a lesser extent the second one� represent the dominant low

frequency components of the STT complex concentrated in the �rst ��� ms after the QRS� The next few

basis functions contain more highfrequency energy� and contain energy more evenly distributed across the

entire complex� These functions represent components present in abnormally prolonged STT complexes

and in U waves where present within the window� The remaining higherorder basis vectors shown in

Fig� � contain almost exclusively highfrequency content related to noise in the training set� By inspection Fig� �

of the basis vectors� we can predict that the �rst two KLT coe�cients� kl��i� and kl��i�� should be a good

tool for detecting ischemic STT changes� since they contain virtually all of the lowfrequency energy� we

discuss this point further in section ��� below� Also� looking to the basis �� it is apparent that it will

mostly represent ST segment elevation waveforms �has a positive value at the ST segment� that will result
 



in positive kl��i� values� on the contrary� basis � �has a negative value at the ST segment� will represent

ST segment depressions waveforms resulting in positive kl��i� values�

#Figure � about here�$

��� KLT representation of the ST�T complex

#Figure � about here�$

To illustrate the ability of the KLT to represent an arbitrary STT complex� we will analyze in this

section the reconstruction of several real STT complexes� In Fig� � we present the reconstruction of three Fig� �

STT complexes with �� � and  KLT coe�cients� using both set � �uncorrected� and set � �HRcorrected�

KLT basis functions� The �rst complex �Fig� �a�b� includes a prominent U wave� Since high amplitude Fig� �a�b

of U waves was unusual at the training set� a faithful reconstruction requires more than the �rst few

KLT coe�cients� The RR interval in this case is ��� ms� implying only a small HR correction� we see�

however �Fig� �b� how this small shift to the left results in a markedly better reconstruction with the low Fig� �b

order coe�cients� At the right� the cumulative signal energy �CE�n� � ���
Pn

j�� kl
�
j�
PN��

k�� STT ��k�� is

shown for each reconstruction� Panels c and d of Fig� � show an STT complex during high HR �RR���� Fig� �

ms�� The signal energy is concentrated in the earliest part of the STT� and is poorly represented by the

uncorrected KLT coe�cients �Fig� �c�� The HR correction in this case shifts the STT complex to the Fig� �c

right� producing a much better representation with the �rst three coe�cients �Fig� �d�� This example Fig� �d

shows the value of HR correction in cases where the HR is quite far from typical values� Finally� panels

e and f of Fig� � present the reconstruction of a biphasic STT complex with RR� �� ms� Given that Fig� �

this shape is not dominant in the training set� more coe�cients are required for an accurate reconstruction

than in typical cases� The HR correction in this case is small� but a small improvement in the loworder

reconstruction is still obtained� It always remains the question of how many coe�cients are needed for an

accurate reconstruction� For very rare waveshapes �that always can occurs� it may be required a much

larger number of KLT coe�cients� but in our studies we did not found clinically signi�cant waveshapes

that were not well overall reconstructed with the �rst � to � coe�cients�

� Monitoring the kln�i� series

In previous section we have described how to derive a KLT representation of a single STT complex� In

clinical practice� the dynamic behaviour over time of STT morphology is even more important than the

characteristics of an isolated complex� STT dynamics can be characterized by the study of KLT coe�cient

time series� kln�i�� using many of the techniques used in studies of HRV� We can assign to each beat mark
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�QRS �ducial point� the KLT coe�cients of its STT complex� In this way we will have as many �scalar�

time series as there are KLT coe�cients needed to represent the STT complex� The direct way to monitor

kln�i� is to obtain it from the inner product of the KLT basis with the pattern vectors of the STT complexes

to be analyzed� These pattern vectors are obtained in the same manner as those in the training set �using

cubic spline baseline removal� and HR correction if we are using the set � KLT�� In this case� however� we

do not normalize the energy of the STT complex pattern vectors� since we are interested in monitoring

variations in energy as well as in morphology� We are not so restrictive as in the training set for rejecting

beats� since now the obtained kln will in�uence only the beat that represent and not a�ect the others as

could happen if considered at the training set� The inner product is performed over the interval in which

the STT complex is de�ned �not necessarily the entire window over which the basis function extends�� this

policy is equivalent to appending additional zero components to the pattern vector as needed to match its

length to that of the basis function �see section �����

Direct estimation in this way� however� results in a noisy kln�i� time series� Noise is introduced into the

kln�i� time series from a variety of sources� including noise in the STT complexes not removed by the KLT�

residual error in the KLT domain representation of the STT complexes� misestimation of the isoelectric

level �because of noise in the PR interval� or QRS �ducial misestimation�� residual baseline variations� and

ectopic beats not rejected� Noise in the kln�i� time series may be reduced using an adaptive �lter that

removes noise uncorrelated with the STT complex� This technique is useful for monitoring medium to

longterm variations in the STT complex� such as for detecting ischemic STT changes� on the other hand�

when we are interested in beat tobeat variations �alternans�� direct kln�i� estimation is necessary�

��� The adaptive kln�i� estimate

Adaptive estimation of quasiperiodic signals such as the STT complex permits reduction of noise

uncorrelated with the signal� with attendant improvements in the ability to track subtle dynamic variations

in these signals� This technique has been applied to analysis of ECG signals �Laguna et al�� ����a�

Laguna et al�� ���
� and evoked potentials �Thakor et al�� ������ It makes use of the recurring

features of the signal and is based on the adaptive linear combiner �Widrow and Stearns� ������

#Figure � about here�$

In e�ect� the adaptive �lter input signal �the primary input� dk� consists of concatenated STT complexes

only� with all intervening data removed� Short complexes are lengthened by appending zeroes as necessary�

so that a new complex begins every N samples� The adaptive system dynamically estimates the amount of

each reference input present in the input signal� In �Laguna et al�� ����a� the reference inputs used for

the estimation of the deterministic signal were the orthonormal Hermite functions� in �Laguna et al��

��



���
� the reference inputs were unit impulses� and in �Thakor et al�� ����� they were sine� cosine and

Walsh functions� In the present study� the reference inputs are the KLT basis functions to be used to

represent the STT complexes�

Figure � shows this process in schematic form� We de�ne the beginning of each STT complex � � ms Fig� �

following the QRS �ducial mark in each case� as the time of the stimulus� The N samples that follow the

stimulus are assumed to be the sum of the signal of interest �a deterministic signal component� sk � STTk�

correlated with the stimulus� and an uncorrelated noise component nk� If the deterministic component is

strictly periodic with a period of N samples� then it satis�es sk � sk�N for all k�

The reference inputs KLj k �j � �� ���� n � �� �n � N� are formed by concatenating copies of the jth

KLT basis function to be used to represent the STT complexes� thus KLj k � KLj k�N �

In the KLT vectorial space� dk may be expressed as the sum of all the KLT components and the

uncorrelated noise�

dk �

N��X
j��

klj KLj k ! nk � ���

The output of the adaptive �lter� yk� is the signal that we want to be an estimate of sk� and ek is the

error signal ek � sk ! nk � yk with

yk �
n��X
j��

wj k KLj k ���

If KLk denotes the vector of reference inputs and Wk the weight vector

KLk � #KL� k�KL� k� ����KLn�� k$
T Wk � #w� k� w� k� ���� wn�� k$

T ���

then

yk � KLTk Wk �WT
k KLk� ���

Minimizing the mean squared error � � E#e�k$ using any adaptive algorithm �Widrow and Stearns�

������ the weight vector converges to the optimal solutionW� � R��P �Widrow and Stearns� ������

where

R � E#KLk KL
T
k $ and P � E#dk KLk$ � �

In this case� given the orthonormality conditions of the base elements of KLT vectorial space and �by

de�nition� the lack of correlation between the noise nk and the KLT basis KLn k� R and P reduce to

R �
�

N
I and P �

�

N
#kl�� kl�� ���� kln��$

T � ���

and the optimal weight vector� W�� that minimizes the mean squared error� � � E#e�k$� is given by

W� � #kl�� kl�� ���� kln��$
T � ����

��



This result means that each weight wi is an estimate of the ith KLT coe�cient for sk� Thus the weight

vector is a characterization of the deterministic signal component� and the output signal yk� in the optimum

case� takes the value

yk �

n��X
j��

w�

i KLj k �

n��X
j��

klj KLj k � ����

i�e�� the projection of sk onto the subspace spanned by KLj k �i � �� ���� n � �� with n � N � Thus yk

is the nthorder KLT representation of sk� and yk � sk if n � N �i�e�� if all of the KLT components are

included��

The minimum mean squared error� �min� will be

�min � E#d�k$�PTW� � ����

Given that the weight vector oscillates around this optimal value� yk is an unbiased estimate of sk� The

remaining noise due to the misadjustment �M� depends upon the adaptive algorithm used to adjust the

weight vector �Widrow and Stearns� ������ The elements of the weight vector� evaluated at the end

of each STT complex� are the adaptive estimates of the KLT coe�cients of that complex� The quality of

the yk estimation is thus directly related to the quality of the KLT estimation�

In this study� we have used the Least Mean Squares �LMS� algorithm �Widrow and Stearns� �����

Wk�� �Wk ! ��ek KLk� ����

The condition that assures the convergence of the algorithm is �Feuer and Weinstein� ������

� � � �
�

� tr#R$
�

N

�n
� ����

The time constant ��mse� for the convergence of the MSE is�

�mse �
�

� ��
�

N

��
� ����

where � � �

N
is the eigenvalue of the matrix R �all the eigenvalues are identical�� �mse is expressed in

sampling intervals� The gain constant� �� thus controls the stability and the speed of convergence� The

estimate of the weight vector may be obtained within a single beat given an appropriate choice of � that

satis�es� ��mse � N� if necessary� Thus adaptive �ltering may be used in principle even for tracking

beatbybeat STT variations�

To measure the excess of mean squared error we calculate the misadjustment �Widrow and Stearns�

�����

M �
ExcessMSE

�min

� ����

which for the LMS algorithm can be approximated by �Widrow and Stearns� ������

M � � tr#R$ � �
n

N
� ����

��



The mean square error � is

� � �min�� !M� �
�
� !

� n

N

� �� �

N

N��X
j�n

kl�j !E#n�k$

�
A � �� �

The MSE thus depends on the noise power� the power in the STT complex not represented by the �rst n

kln coe�cients� and the gain constant� �� Note that the dependence on the KLT order n is not strong� since

an increase in n value increases the
�
� ! � n

N

�
factor and decreases the

PN��

j�n kl�j factor� Thus� the optimum

solution minimizes n and maximizes
Pn��

j�� kl
�
j � this property is intrinsic to the KLT� Given that at the

steady state the estimated signal yk is orthogonal to the error ek �Widrow and Stearns� ������ the

ExcessMSE is the excess of error power introduced in yk� and the signaltonoise ratio of this estimation�

SNRy� will be

SNRy �
�

N

Pn��

j�� kl
�
j�

� n

N

� �
�

N

PN��

j�n kl�j !E#n�k$
� � ����

If we consider that the STT energy is strongly concentrated in the n �rst coe�cients� we can neglect the

term
PN��

j�n kl�j � obtaining

SNRy �
�

N

PN��

j�� kl�j�
� n

N

�
E#n�k$

� SNRd

N

� n
� ����

where SNRd is the SNR of the original signal� Comparison of this SNRy with that obtained from the

direct estimation of kln�i� will give the SNR improvement ��SNR� achieved by the adaptive system�

Direct kln�i� estimation yields a signaltonoise ratio� SNRdirect
y � that can be estimated if we assume the

noise is white and that its PSD is uniformly distributed in the KLT domain�

SNRdirect
y �

�

N

Pn��

j�� kl
�
j

E#n�k$
n
N

� SNRd

N

n
� ����

Thus the SNR improvement obtained using the adaptive �lter is

�SNR �
SNRy

SNRdirect
y

�
�

�
����

Thus we �nd that� for appropriately chosen values of �� the adaptive estimate of kln�i� is cleaner than a

kln�i� time series obtained directly from the inner product� The choice of � involves the typical tradeo�

between stability and rate of convergence� which limits the amount of improvement that can be obtained in

practice� given the need to track changes occurring within a few beats in typical cases� When the interest of

the estimation is in the ischemic changes that occur gradually from beat to beat the convergence restriction

will be that it occurs in a reduced number of beats� Next section will consider the real case election�

��� Application to real signals with ischemic episodes

In this section we present the results of estimating and monitoring the kln�i� values on several real ECG

records� The parameters that we have selected for the adaptive estimate are � � ���� with n � � kln�i�

functions and N � ���� These values do not approach the convergence limit �lim � ����� and give a time
��



constant �mse � N
��

� ��� � ��� beats� This convergence time is reasonable for monitoring ischemic ST

changes that typically occur over much longer intervals� The �SNR obtained in this case is ��� � �� dB�

representing a large improvement in the kln�i� estimation�

The real signals are taken from the European STT database �Taddei et al�� ���
�� This database

contains records manually annotated by clinical experts who identi�ed episodes of signi�cant STT changes

consistent with ischemia� The database was designed to provide a resource for the development and

evaluation of automated ischemia detectors� All of the patient records in the database have been analyzed

with our KLT technique� and its performance is illustrated by several selected cases chosen to illustrate

the properties of the KLT technique�

#Figure � about here�$

To assist in the interpretation of the kl coe�cients we show in Fig� � the kl� time series from the ECG Fig� �

of a patient during Percutaneous Transluminal Coronary Angioplasty �PTCA�� The STT complex shows

marked morphological variations from in�ation to postin�ation� Note that how during the �rst period

�balloon in�ation� the ST segment is positive as is kl�� During the postin�ation period the STT complex

inverts its amplitude and oscillates in magnitude� This is re�ected in the kl� series as an oscillating negative

value of the kl� coe�cients�

#Figure � about here�$

Figure � illustrates kln�i� time series� each two hours in length� for three ECG records from the European Fig� �

STT database� Fig� �a compares the kl��i� series of record e���� for each of the two recorded ECG leads� Fig� �a

estimated as the inner product between the STT complex and the �rst �uncorrected� KLT basis function�

Fig� �b shows the same series� obtained using the adaptive estimate with the parameters as given above� Fig� �b

and showing a �SNR of about �� dB compared with those of Fig� �a� Note the simultaneous appearance Fig� �a

of ischemic STT changes in both leads� which is repeated quasiperiodically� Note also the similarity of

the temporal pattern of sequential ischemic episodes� The �gure clearly shows eight ischemic episodes�

corresponding to the eight peaks in the kln�i� time series� Only �ve of these are marked in the database

reference annotations� since three of these episodes ��th� �th� and �th� are below the standard thresholds

for de�ning ischemic STT episodes� The technique we present allows these subthreshold episodes to

be identi�ed unambiguously� and allows the longterm pattern of quasiperiodic ischemic changes to be

observed more clearly than would be possible otherwise� Since the time series are initialized to zero� the

time required for the adaptive algorithm to reach steady state �at the left edge of plots �b� d� f� can be

seen to be negligible in comparison with the evolution of the ischemic variations�

Fig� �c shows the kl��i� �left� and kl��i� �right� series of the ECG signal �only lead MLIII� of record Fig� �c

e����� and Fig� �d shows their adaptively estimated counterparts� In this case� each of the seven peaks Fig� �d
��



corresponds to an ischemic STT episode marked in the database reference annotations� By study of two

or more KLT coe�cients in a single lead� we can easily monitor changes in STT morphology� Note how

the ST segment elevation that corresponds to potential ischemia in the e���� record� results in increased

kl��i� values and decreased �negative� kl��i� values� as pointed out in section ���� Note again that the

temporal pattern of each ischemic episode is quite constant�

Finally� in Fig� �e the uncorrected and HRcorrected kl��i� time series for the �rst ECG signal of record Fig� �e

e���� are shown� and Fig� �f shows their adaptively estimated counterparts� As in the previous examples� Fig� �f

the adaptive estimation of ST morphology tracks ischemic changes noted in the reference annotation �les

of the database� Note the slightly higher amplitude of the peaks in the HRcorrected series� showing that

the �rst corrected kln�i� basis function is better able to represent the STT complexes in this record than

is the �rst uncorrected kln�i� basis function� In Fig� �f� we note that of the eight wellmarked peaks� Fig� �f

seven correspond to ischemic episodes annotated in the database� but one other �the second� was not so

annotated in the database� although its presence is quite clear from inspection of the kln�i� series�

In the examples presented in Fig� � it can be seen that both traces �adaptive and inner product estimated� Fig� �

re�ect the STT changes� However when the changes are not so clearly de�ned ��rst salvo in a� b�� last in

e� � f�� the adaptive estimation is more suited� In addition when considering automatic ischemia detection�

the in�uence of noise decreases sensitivity and speci�city of the inner product with respect to those of

adaptive estimate�

Analyzing the entire European STT Database ��� records� we found that roughly ��% of the records

demonstrated the quasiperiodic salvos of STT changes shown in Fig� �� In most records containing Fig� �

multiple STT variation episodes� we noted similarity in the temporal structure of their kln�i� time series�

suggesting a similar pathophysiologic mechanism� It is clear that the KLT technique detects and locates

transient STT variations� Subsequent detailed analysis of the record and�or collateral clinical information

should be used to determine whether the STT variations are actually associated with ischemic episodes�

This technique has been used to design an automatic ischemia detector �Grac�a� ����� making use of

the �rst four kl series� The automatic detector can be con�gured to detect either ST segment� T wave

or STT complex episodes �for the detector validation we used the manual annotations in ST segment

and T wave from the European STT database and the OR combination of ST and T episodes for the

STT complex �Taddei et al�� ���
��� The preliminary results obtained in terms of sensitivity �S� and

positive predictivity �!P� are S� �% and !P� �%� when detecting ST episodes� This shows a very good

performance of the technique which can help clinicians in ischemic episodes detection in Holter ECGs and

may be useful for alarms design in coronary care units�

��



��� kln�i� series compared to qt�i� series

Repolarization is re�ected in both the shape of the STT waveform� and also in the duration of the

QT interval� We compared the kln�i� time series with the qt�i� time series using the techniques for QT

estimation described elsewhere �Laguna et al�� ������ An example from record e���� is shown in Fig�

�� In this case the ischemic episodes are clearly manifested in the kln�i� time series� The qt�i� time series

time series taken from lead III �but not that taken from lead V�� shows transient increases in QT interval

during the �rst four ischemic episodes �but not the last three�� The QT variations persisted when corrected

for heart rate using Bazett"s formula�

Figure  shows that the transient QT prolongation accompanies ischemic STT episodes �Fig�  c�� and

becomes even more prominent when heart rate is corrected �Fig�  d��

#Figure � about here�$

#Figure  about here�$

Analyzing the entire European STT Database ��� records� we found that roughly ��% of ischemic records

showed QT variations in at least one lead associated with the ischemic episodes�

��� kln�i� series compared to st�i� series

To show the di�erences between conventional ST level monitoring and the kl series monitoring we created

ST level trend plots for several records and compared them to corresponding kl time series� The weighted

averaging method was used to measure the ST segment deviations� This method is especially useful when

the beattobeat noise level changes� ST segments were selected from averaged ECG complexes� To assure

convergence properties similar to those of the KLT estimation method previously described� only three

beats were included in each subensemble average� Also only normal beats surrounded by normal beats

were included to avoid artifacts� Each beat was added into the average with a weighting factor inversely

proportional to its noise content� The weighted average �Zhong and Lu� ����� is given by�

&x�t� �

NbeatX
i��

wixi�t� ����

where Nbeat is the number of beats to be averaged� xi is the ith beat� and wi is the weight applied to that

beat� For simple signal averaging wi � ��Nbeat� ie� each beat has an equal weight� The weighting factor is

wi �

�
�

	�i

	�� �PNbeat

j��
�

��
j

�
A ����

where 	i is the noise power of the ith beat� Once each threebeat average had been constructed� the ST

level was measured by taking the mean value in a �� ms interval centered �� ms from the end of the QRS�
��



#Figure � about here�$

In Fig� �a we show the kl� series of record e���� �two leads� and in �b the corresponding ST level series

for each lead� Note the signi�cant enhancement of the ST episodes by the KLT method� especially in lead

V�� Figure �� shows similar plots for record e����� and again the superiority of the kl trend plots is clear�

From these examples and others throughout the ESC STT database� we con�rmed our expectation that

the KLT technique is much more robust and sensitive than the single ST level measure�

#Figure �� about here�$

��� ST�T Alternans detection from the kln�i� series

The KLT can also be used to detect alternans in the STT complex� Alternans may be an index of the risk

of SCD �Clancy et al�� ����� Rosenbaum et al�� ������ We calculate a spectrum from the series of

KLT coe�cients� with the independent variable being the beat number� The spectrum obtained in this way

is a beat spectrum �DeBoer et al�� ����� rather than a frequency spectrum� the units corresponding

to frequency are cycles per beat �beat�� � b���� This spectrum is best suited for study of alternans� since

we are interested in beat periodicities rather than the time periodicities that require study of frequency

spectra�

#Figure �� about here�$

Figure �� illustrates the detection of subtle alternans in record e���� of the European STT Database Fig� ��

using the kln�i� series and its beat spectrum� This record presents alternans in association with the STT

variation �potentially ischemic� episodes shown in Fig� �� Fig� ��a shows beattobeat alternation of STT Fig� �

Fig� ��
morphology during the �rst STT variation episode� Fig� ��b shows the kl��i� series calculated directly

Fig� ��b
�at left� and its beat spectrum �at right�� The clear peak at ��� b�� represents the periodic beattobeat

STT shape variations� visible in the time series as a highfrequency� highamplitude modulation near

the middle of the ��minute series� In addition� the beat spectrum reveals the appearance of a ���� b��

peak associated with a period � variation in STT morphology� also observable in Fig� ��a� There is

another peak at ��� b�� and its harmonic at ��� b�� that represent a DC component over the entire kln�i�

series� This comes from the overall kln�i� variation due to the underlying ischemic evolution� Fig� ��c�d

show another episode of alternans� occurring during the sixth STT variation episode of the record �see Fig� ��

Fig� �c�d� � In this episode� both period � and period � alternans are even more marked than in the �rst Fig� �

example� Although the alternans may be detected even when using adaptive kln�i� estimates �Fig� ��e��

the resulting attenuation of shortterm variation makes it clear that the directly estimated kln�i� series is

bettersuited for this purpose� Figure ��f �left� shows the HR spectrum� obtained using a technique for

��



power spectral density estimation of irregularly sampled signals �Laguna et al�� ������ this spectrum

con�rms that the alternans is not an artifact of an underlying HR modulation� Figure ��f �right� shows

the kln�i� frequency spectrum� estimated using the same technique� the alternans is less apparent in this

frequency spectrum than in the beat spectra� as a result of the change in HR that makes the alternans not

strictly time periodic� The beat spectrum �Fig� ��d� right� of the kln�i� is thus much more appropriate for

alternans detection than the time spectrum �Fig� ��f� right�� Finally �gs� ��g�h show this analysis during

a nonischemic period of the same record� In this case� the beattobeat alternans has almost disappeared�

but the period � alternans remains apparent� By study of the entire record� we can observe that the period

� alternans appears in association with the STT variation episodes� usually in the later portions of each

episode� but disappears rapidly during recovery� The period � alternans is also associated with the STT

varying episodes� but persists after recovery� It seems that period � alternans is more prominent in the

nonischemic �Fig� ��h� than during ischemic periods �Fig� ��d�� This happens because the total power

is normalized to unity� and then when the period � disappears most of the relevant energy is at period ��

The interpretation should be done in relative terms rather than absolute�

Based on this beatquency spectrum and KLT series we developed an alternans detector �Laguna et al��

����b� that detects alternans representing around �� �V amplitude variations of the STT complex� A

detailed analysis of the European STT database has shown that about �% of ischemic episodes present

alternans associated with them and also more than ��% of the alternans present in the recordings are

associated with the ischemic episodes �Laguna et al�� ����b�� This corroborates previous clinical works

that highly relate the alternans phenomena with the ischemia� This detector can be used as a new index

when analyzing Holter ECG recordings to prevent ventricular arrythmias�

� Discousion and Conclusions

In this work we have presented a KLT technique for studying the repolarization period of the heart

throughout the STT complex of the ECG signal� We have developed a KLT training set of STT complexes�

containing a broad range of morphologies� to obtain the KLT basis vectors� We have shown that this

representation permits about ��% of the signal energy to be represented by the �rst � kln�i� coe�cients�

We have shown that heart rate correction of the STT complex using Bazett"s formula improves the

performance of the KLT� whereas neither linear highpass nor linear bandpass �ltering has any bene�cial

e�ect� The KLT has been used to detect STT shape variations� with results demonstrating its sensitivity

for detecting ST variations �potentially related to ischemic events�� We have described an adaptive �lter�

based on the adaptive linear combiner with the LMS algorithm� for improving the signaltonoise ratio of

a time series of KLT coe�cients� The adaptive estimation system delivers an improvement of about ��

dB for a practical choice of parameters for monitoring ischemic STT changes� The direct estimates of the

� 



KLT coe�cient time series� and beat spectra derived from them� have been shown to be wellsuited for

study of STT alternans�

In demonstrating the application of these techniques to analysis of the entire European STT Database�

we have shown that about ��% of the records reveal a quasiperiodic pattern of ischemic STT episodes�

and another ��% exhibit repetitive but not clearly periodic patterns of STT change episodes� These

observations are drawn from information coming from the entire STT complex� it would be di�cult if

not impossible to reach similar conclusions with con�dence using classical di�erential measurements of

ventricular repolarization such as measurements of ST level or QT interval� The salvo patterns of ischemia

suggest an oscillatory or periodic instability of the coronary blood supply� perhaps due to cyclic vasospasm�

More study of the phenomenon is warranted� since the temporal patterns of ischemia may guide therapeutic

interventions� Preliminary results on automatic ischemia detection using � kl coe�cents give a sensitivity of

 �% and a positive predictivity of  �% at the European STT database� Finally� we have observed alternans

of periods � and � in association with ischemic episodes� with di�erent responses to recovery� Period �

alternans and the association of alternans with STT changes �ischemia� have not been previously reported�

the techniques we describe make the study of these phenomena possible� However a complementary analysis

of the respiration will be required to establish if the period � alternans are a results of the respiration rate

coupled with HR or a intrinsic period � alternans� At complete analysis at the European STT database

gives that �% of the ischemic episodes present period � alternans associated with them�

The KLT technique can be used for longterm tracking of STT variations� and may open the door for

developing improved automatic detectors of transient STT changes�
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� Cumulative eigenvalue energy CEE�n� � ���
Pn

k�� �k�
PN��

k�� �k as a function of the sorted

eigenvalue order n� N � ��� is the total number of eigenvalues �k� Light bars show results

obtained using pattern vector set � baselines corrected using cubic splines�	 and dark bars

show results obtained using set � with correction for heart rate�� � � � � � � � � � � � � � � � ��

� KLT basis functions� The solid lines show functions derived from set � without HR

correction�	 while the dashed lines show functions derived from set � with HR correction��

The units of vertical axis are normalized not mV� since the basis need to be orthonormal	

and then they have been multiplied by a normalizing factor� � � � � � � � � � � � � � � � � � � ��

� Reconstruction of three ST�T complexes with the KLT� Panel a� shows an ST�T complex

with a U wave and its reconstruction based on �	 � and � KLT coe�cients	 together with

the cumulative energy CEn�� as a function of the kln�i� order n�	 plotted at the right�

In panel a�	 the uncorrected set �� KLT has been used� panel b� shows the same ST�T

complex	 reconstructed using the HR�corrected set �� KLT� Panels c� and d�	 and panels

e� and f�	 show similar reconstructions for two other two ST�T complexes� see the text for

descriptions� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � ��

� Adaptive estimation system for the kln�i�� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � 

� Example of the time series of the �rst kl coe�cient	 kl�	 from a patient with large ST�T

variations during PTCA� Four sample beats are shown at the top of the �gure corresponding

to the times indicated by the arrows on the kl��i� series� Note how during the balloon in�ation

period the ST�T complex is positive	 corresponding to positive kl� values� After de�ation of

the balloon	 the ST�T complex inverts its polarity and oscillates in magnitude�This is re�ected

in the kl� time series as a negative oscillating value� � � � � � � � � � � � � � � � � � � � � � � ��

� kln�i� plots for three records of the European ST�T Database� Panels a� and b� present

kl��i� time series of record e���� estimated directly from the inner product a�	 and with the

adaptive estimate b�� those on the left correspond to the �rst lead V��	 and those on the

right to the second lead MLIII�� Panels c� and d� show the kl��i� time series for record

e���� on the left	 and the kl��i� time series for the same lead MLIII� on the right� Panels

e� and f� illustrate the uncorrected kl��i� time series for record e���� on the left	 and the

corresponding HR�corrected kl��i� time series on the right for the same lead MLIII�� The

temporal axes re�ect the time instant at which the beat	 corresponding to the kl value	 appears� ��
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� kl and qt plots for record e���� of the European ST�T Database� Panel a� shows the heart

rate left� and its power spectrum density right� estimated with the Lomb spectrum���� only

frequencies up to the inverse mean heart period are meaningful�	 b� presents the kl� time

series estimated with the adaptive �lter for lead V� left� and lead MLIII right�	 c� shows

the qt series for both leads estimate as the mean after rejecting the maximum and minimum

values in �ve beat sets� d� show the Bazett�s corrected qt series� � � � � � � � � � � � � � � � ��

 kln�i� and qt�i� plots for record e���� of the European ST�T Database� Panel a� shows the

heart rate left� and its power spectrum density right� estimated with the Lomb spectrum����

only frequencies up to the inverse mean heart period are meaningful�	 b� shows the kl��i�

time series estimated with the adaptive �lter for lead MLIII left� and lead V� right�	 c�

shows the qt�i� series for both leads estimated as the mean after rejecting the maximum and

minimum values in �ve beat sets� d� show the Bazett�s corrected qt�i� series� � � � � � � � ��

� kln�i� and st�i� plots for record e���� of the European ST�T Database� Panel a� shows the

kl��i� time series estimated with the adaptive �lter for lead MLIII left� and lead V� right�	

b� presents the st�i� series for both leads estimated as described in the text� � � � � � � � � ��

�� kln�i� and st�i� plots for record e���� of the European ST�T Database� Panel a� shows the

kl��i� time series estimated with the adaptive �lter for lead V� left� and lead MLIII right�	

b� presents the st�i� series for both leads estimated as described in the text� � � � � � � � � ��

�� Alternans in record e���� of the European ST�T Database� Panel a� illustrates the ECG

during the �rst ischemic ST�T episode� b� shows the kl��i� time series during a ���minute

interval including the ischemic episode	 and the corresponding beat spectrum� The beat

spectrum exhibits a clear peak corresponding to period � alternans at ��� b���	 and also

shows period � alternans at ���� b���� Panel c� shows an excerpt of the ECG during

another ischemic episode� d� shows the corresponding kl��i� time series and beat spectrum	

and e� shows the same data	 derived using adaptive estimation� The adaptive estimate

attenuates the beat�to�beat variations� it is better suited for study of longer�term variations�

Panel f� shows the HR power spectrum and the kl��i� frequency spectrum for the same

interval see text�� Panels g� and h� show an excerpt of ECG	 a kl��i� time series	 and

the corresponding beat spectrum during a non ischemic period in the same record	 where the

period � alternans has disappeared	 but a period � alternans remains� � � � � � � � � � � � � � ��
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k�� �k as a function of the sorted

eigenvalue order n� N � ��� is the total number of eigenvalues �k� Light bars show results obtained using

pattern vector set � baselines corrected using cubic splines�	 and dark bars show results obtained using set

� with correction for heart rate��

��



KLT ST-T complex basis  

0 100 200 300 400 500 600

 

0.00

0.05

0.10

0.15

0.20
 

 basis 0

ms

N
or

m
al

iz
ed

 u
ni

ts

0 100 200 300 400 500 600
-0.2

-0.1

0.0

0.1

0.2
 basis 1

ms

0 100 200 300 400 500 600

 

-0.2

-0.1

0.0

0.1

0.2
 

 basis 2

ms 0 100 200 300 400 500 600

 

-0.2

-0.1

0.0

0.1

0.2
 

 basis 3

ms

0 100 200 300 400 500 600

 

-0.2

-0.1

0.0

0.1

0.2
 

 basis 4

ms 0 100 200 300 400 500 600

 

-0.2

-0.1

0.0

0.1

0.2
 

 basis 5

ms

0 100 200 300 400 500 600

 

-0.2

-0.1

0.0

0.1

0.2
 

 basis 6

ms 0 100 200 300 400 500 600

 

-0.2

-0.1

0.0

0.1

0.2
 

 basis 7

ms

0 100 200 300 400 500 600

 

-0.2

-0.1

0.0

0.1

0.2
 

 basis 8

ms 0 100 200 300 400 500 600

 

-0.2

-0.1

0.0

0.1

0.2
 

 basis 9

ms

0 100 200 300 400 500 600

 

-0.2

0.0

0.2

 
 basis 10

ms 0 100 200 300 400 500 600

 

-0.2

0.0

0.2

 
 basis 11

ms

0 100 200 300 400 500 600

 

-0.2

0.0

0.2

0.4
 

 basis 12

ms 0 100 200 300 400 500 600

 

-0.2

0.0

0.2

0.4
 

 basis 13

ms

 basis 0

ms

 basis 1

ms

 basis 2

ms

 basis 3

ms

 basis 4

ms

 basis 5

ms

 basis 6

ms

 basis 7

ms

 basis 8

ms

 basis 9

ms

 basis 10

ms

 basis 11

ms

 basis 12

ms

 basis 13

ms

Figure �� KLT basis functions� The solid lines show functions derived from set � without HR correction�	

while the dashed lines show functions derived from set � with HR correction�� The units of vertical axis

are normalized not mV� since the basis need to be orthonormal	 and then they have been multiplied by a

normalizing factor�
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KL Reconstruction of ST-T complex 
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Figure �� Reconstruction of three ST�T complexes with the KLT� Panel a� shows an ST�T complex with

a U wave and its reconstruction based on �	 � and � KLT coe�cients	 together with the cumulative energy

CEn�� as a function of the kln�i� order n�	 plotted at the right� In panel a�	 the uncorrected set ��

KLT has been used� panel b� shows the same ST�T complex	 reconstructed using the HR�corrected set ��

KLT� Panels c� and d�	 and panels e� and f�	 show similar reconstructions for two other two ST�T

complexes� see the text for descriptions�
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Figure �� Example of the time series of the �rst kl coe�cient	 kl�	 from a patient with large ST�T variations

during PTCA� Four sample beats are shown at the top of the �gure corresponding to the times indicated by

the arrows on the kl��i� series� Note how during the balloon in�ation period the ST�T complex is positive	

corresponding to positive kl� values� After de�ation of the balloon	 the ST�T complex inverts its polarity

and oscillates in magnitude�This is re�ected in the kl� time series as a negative oscillating value�
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Figure �� kln�i� plots for three records of the European ST�T Database� Panels a� and b� present kl��i�

time series of record e���� estimated directly from the inner product a�	 and with the adaptive estimate

b�� those on the left correspond to the �rst lead V��	 and those on the right to the second lead MLIII��

Panels c� and d� show the kl��i� time series for record e���� on the left	 and the kl��i� time series for

the same lead MLIII� on the right� Panels e� and f� illustrate the uncorrected kl��i� time series for

record e���� on the left	 and the corresponding HR�corrected kl��i� time series on the right for the same

lead MLIII�� The temporal axes re�ect the time instant at which the beat	 corresponding to the kl value	

appears�
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Figure �� kl and qt plots for record e���� of the European ST�T Database� Panel a� shows the heart rate

left� and its power spectrum density right� estimated with the Lomb spectrum���� only frequencies up to

the inverse mean heart period are meaningful�	 b� presents the kl� time series estimated with the adaptive

�lter for lead V� left� and lead MLIII right�	 c� shows the qt series for both leads estimate as the mean

after rejecting the maximum and minimum values in �ve beat sets� d� show the Bazett�s corrected qt series�
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Figure  � kln�i� and qt�i� plots for record e���� of the European ST�T Database� Panel a� shows the heart

rate left� and its power spectrum density right� estimated with the Lomb spectrum���� only frequencies

up to the inverse mean heart period are meaningful�	 b� shows the kl��i� time series estimated with the

adaptive �lter for lead MLIII left� and lead V� right�	 c� shows the qt�i� series for both leads estimated

as the mean after rejecting the maximum and minimum values in �ve beat sets� d� show the Bazett�s

corrected qt�i� series�
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Figure �� kln�i� and st�i� plots for record e���� of the European ST�T Database� Panel a� shows the

kl��i� time series estimated with the adaptive �lter for lead MLIII left� and lead V� right�	 b� presents

the st�i� series for both leads estimated as described in the text�
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Figure ��� kln�i� and st�i� plots for record e���� of the European ST�T Database� Panel a� shows the

kl��i� time series estimated with the adaptive �lter for lead V� left� and lead MLIII right�	 b� presents

the st�i� series for both leads estimated as described in the text�
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Figure ��� Alternans in record e���� of the European ST�T Database� Panel a� illustrates the ECG

during the �rst ischemic ST�T episode� b� shows the kl��i� time series during a ���minute interval

including the ischemic episode	 and the corresponding beat spectrum� The beat spectrum exhibits a clear peak

corresponding to period � alternans at ��� b���	 and also shows period � alternans at ���� b���� Panel

c� shows an excerpt of the ECG during another ischemic episode� d� shows the corresponding kl��i� time

series and beat spectrum	 and e� shows the same data	 derived using adaptive estimation� The adaptive

estimate attenuates the beat�to�beat variations� it is better suited for study of longer�term variations� Panel

f� shows the HR power spectrum and the kl��i� frequency spectrum for the same interval see text�� Panels

g� and h� show an excerpt of ECG	 a kl��i� time series	 and the corresponding beat spectrum during a non

ischemic period in the same record	 where the period � alternans has disappeared	 but a period � alternans

remains�

��


