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Abstract—Adaptive estimation of the linear coefficient vec-
tor in truncated expansions is considered for the purpose of
modeling noisy, recurrent signals. The block LMS (BLMS)
algorithm, being the solution of the steepest descent strategy
for minimizing the mean square error in a complete signal
occurrence, is shown to be steady-state unbiased and with a
lower variance than the LMS algorithm. It is demonstrated
that BLMS is equivalent to an exponential averager in the
subspace spanned by the truncated set of basis functions. The
performance of the BLMS algorithm is studied on an ECG
signal and the results show that its performance is superior
to that of the LMS algorithm.

I ndex Terms—Adaptive filters, deterministic input, orthog-
onal expansions, event-related signal.

|. INTRODUCTION

The problem of noise reduction in recurrent signals is
well-studied and has traditionally been solved by ensem-
ble averaging, or by one of the many variations on this
technique. The time reference of each occurrence is of-
ten synchronized to a known, external stimulus; in certain
signals, however, the time reference is difficult to observe
and therefore a fiducial point needs to be established for
each occurrence by some kind of estimation procedure. A
major disadvantage with ensemble averaging is that effi-
cient noise reduction is typically achieved at the expense
of using a large number of occurrences for averaging. In
order to better track short-term changes in morphology of
the recurrent signal, while still achieving a reduction of
the noise level, it is desirable to develop methods which
incorporate a priori information on possible morphologies.
More recently, modeling of each occurrence as a signal
which is well-described by a truncated linear expansion of
orthonormal basis functions has been studied.

The coefficients of the linear expansion can be estimated
using different approaches. In many situations, the mean
square error (MSE) between the observed signal and the
signal model represents a suitable cost function since it is
related to signal energy. The optimal coefficients are deter-
mined on an individual occurrence basis, thus constituting
a memory-less estimation. By introducing memory in the
estimator, the variance of the coefficient estimates can be
considerably reduced while the capability of tracking sig-
nal changes in a noisy environment is still available. Sev-
eral papers have been presented in the area of biomedical
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signal processing where an adaptive solution based on the
LMS algorithm is suggested, see e.g. [1]. The reference
inputs to the LMS algorithm are deterministic functions
and defined by a periodically extended, truncated set of or-
thonormal basis functions.

In these papers, the LMS algorithm operates on an “in-
stantaneous” basis such that the weight vector is updated
for every new sample based on an instantaneous gradient
estimation. In a recent study, however, a steady-state con-
vergence analysis for the LMS algorithm with determin-
istic reference inputs showed that the steady-state weight
vector is biased, and thus the adaptive estimate does not ap-
proach the Wiener solution [2]. To handle this drawback,
we consider another strategy for estimating the coefficients
of the linear expansion, namely the block LMS (BLMS)
algorithm in which the coefficient vector is updated only
once every occurrence based on a block gradient estima-
tion. The BLMS algorithm has already been proposed for
the case with random reference inputs and has, when the
input is stationary, the same steady-state misadjustment
and convergence speed as the LMS algorithm [3,4]. A
major advantage of the block, or the transform domain,
LMS algorithm is that the input signals are approximately
uncorrelated (or orthogonal in a more general sense). To
the best of our knowledge, block adaptation has not been
considered previously within the context of deterministic
reference input signals.

The selection of orthonormal basis functions is, of
course, dependent on the application of interest. In the area
of biomedical signal processing, the analysis of evoked
potentials in the electroencephalogram has been based on
impulse functions, sine and cosine functions, complex ex-
ponentials and Walsh functions, whereas the QRST com-
plexes of the electrocardiogram (ECG) have been mod-
eled by Hermite functions or basis functions that resulted
from the Karhunen-Loéve (KL) expansion. The ultimate
purpose of the basis function description is not necessar-
ily noise reduction, as mentioned above, but may as well
be considered for data compression, feature extraction and
monitoring.

Il. MSE ESTIMATION OF EXPANSION COEFFICIENTS

An observed event-related signal d; can be represented
as a NV x 1 vector, where the sub-index & denotes the oc-
currence number. When a truncated orthogonal expansion
is used, the estimated signal yy, is a linear combination of



basis functions
yir = Twy 1)

where T is a N x p matrix whose columns are the basis
functions and wy, is the px1 coefficient vector withp < N.
One approach to find the linear optimal coefficient vector
w{, is to minimize the cost function defined by the mean
square error between dy and yy,

Jk =F {(dk — ka)T (dk — ka)} . (2)

Applying differentiation we obtain that the Wiener solu-
tion for the linear coefficient vector is

wo =TT E{dy} . 3)

This solution can be easily understood because the optimal
signal description in the transform domain is the projection
of the expected value of the observed signal.

The observed signal dy is commonly contaminated by
noise. Assuming an additive-noise model, each signal oc-
currence dy can be decomposed as dy, = si + niwhere
sy, 1S a deterministic signal and ny, is zero-mean random
noise. Since the clean signal s, is unavailable, wj, needs to
be estimated according to (3) from the observed signal d,.
A very simple way is to approximate E {d} ~ dy in (3),
implying that the linear coefficient vector is estimated by

wif =TT d;, (4)

where IP denotes the inner product between each basis
function and the observed signal. This kind of estimation
is memory-less since only information from the k-th occur-
rence is used to estimate E {d;}, and as a result, sudden
changes in signal shape can be tracked. On the other hand,
wiF will be sensitive to the presence of noise.

I1l. THE BLMS ESTIMATION

One way to reduce the influence of noise is to include
adaptive algorithms in the coefficient estimation since
this type of estimators has memory of previous occur-
rences. When the deterministic signal is repetitive with
slow occurrence-to-occurrence shape changes, the amount
of noise can be reduced at the expense of a slower conver-
gence. The trade-off between convergence speed and sig-
nal to noise ratio improvement is controlled by the memory
used in the estimation.

The structure of the vector-based adaptive filter is shown
in Fig. 1. The primary input, d = sy + ny, consists of
successive concatenated signal occurrences, not necessar-
ily obtained in a contiguous fashion. For the steady-state
analysis of the algorithm we assume that the deterministic
signal s remains unchanged during all occurrences, i.e.,
s = s. In practice, s; will be occurrence-variant, and the
algorithm will track signal changes in a finite adaptation
time. The adaptive system estimates at each signal occur-
rence the amount of each reference input (columns of the
N x p matrix T) present in the input signal d.
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Fig. 1. Adaptive block-wise estimation of truncated expansions.

In order to minimize the cost function in (2), the optimal
weight vector can be estimated by using an iterative algo-
rithm based on the steepest descent strategy: the weight
vector is updated once every occurrence according to

0Jk

Ma—wka 5)

Wit+1 = Wi —
where 1 is the step-size that controls stability and conver-
gence speed of the algorithm. The weight vector update
equation can be obtained using the classical gradient ap-
proximation as

Wiyt = (1= 2p) wi +2uT7dy, . (6)

This algorithm is named BLMS because it is equivalent to
the LMS algorithm but with a block-wise gradient estima-
tion. In other words, the BLMS is equivalent to exponen-
tial averaging in the subspace spanned by T. Note that the
BLMS is equivalent to IP when p = 1.

We will now consider the bias and variance of the BLMS
algorithm, since these quantities are useful for comparison
with other estimation methods. The weight error vector at
the k-th occurrence v;, = w; —w®° can be written as

k—1

ve=(1-2w" vo+2u» (1-2u) 7" TTn;. (7)
j=0

The first term is clearly a transient which for 0 < u < 1
will vanish after a sufficiently large number of signal oc-
currences. Therefore, at steady-state only the second term
in (7) will be important. Taking limy_, ., and the expected
value we obtain

kli)m E{vi} =E{ve} =0, (8)

since the noise n; is assumed to be zero-mean. Accord-
ingly the steady-state weight vector w, is an unbiased es-
timator of the Wiener solution (3).

The steady-state weight error vector variance will be

k—1k
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If the noise signal is assumed to be stationary with corre-
lation function shorter than the gap between consecutive



occurrences?, then
E {nlnj} = 61_7' N (10)

being N the NxN noise covariance matrix. Accordingly,
the steady-state weight error vector energy is

ko
—

E{vive} = lim 447" (1-2p)"* 7V o7 {T'NT}
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- Lﬂtr {TTNT} . (11)

The MSE is usually decomposed as JPIMS = Jo 4 Jex
where Jp is the MSE at the optimum and the excess MSE
Jg¥ can be written as

JX=E{vivi} —2E{viT"e}} (12)
At the optimal solution, the orthogonality principle applies
TTe9 = TT (1 - TTT) s+TTn, = TTn;. (13)
Hence the cost functions can be written as
JEMS = o+ E{vivi} —2E{viTTn;} (14)

Using the same noise assumption as in (10) the cross
term E {v{ TTn,} at steady-state will be null because

>
=

N (1 gkl T TV
klgroloj (1—2u) tr {T E{nknJ}T}—O. (15)
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Summing up, the steady-state MSE will be

W

JEMS = Jo 4+ - tr {T'NT} . (16)

In the case of complete expansions we have that
tr {TTNT} = ¢tr {N} which is equal to the noise energy.
In the case of white noise and incomplete expansions

TN = g2+

(17)
It may be worthwhile to point out certain relationships
to the LMS algorithm. In the case of the LMS algo-
rithm, J* is composed of three terms [2, Eq. (12-13)]
while for the BLMS algorithm only two terms are present
in (14) because the truncation signal error is orthogonal
to the input basis functions T. Moreover, the LMS algo-
rithm converges to a biased estimate for truncated expan-
sions [2], while the BLMS estimation is steady-state unbi-
ased. When complete expansions p= N are used it can be
noted that JBLMS = JLMS [2] This result agrees with the
fact that the algorithms become identical when complete
expansions are used (compare (6) with [2, Eq. (8)]).

1The very-low frequency components of biomedical signals, e.g. base-
line wander in the ECG, are usually removed in a pre-processing stage
because they do not convey any valuable clinical information.
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IV. EQUIVALENT TRANSFER FUNCTION

Truncated orthogonal expansions can be understood as
linear time-variant filters. The equivalent instantaneous
impulse and frequency responses were calculated in [5]
where the linear coefficients were estimated using the IP
and the LMS algorithm. This section will extend the anal-
ysis for the BLMS algorithm.

In the update equations of BLMS (6) the term T7d,
represents the IP estimation of w° using only information
from the k-th occurrence. The first term accounts for the
estimation done at the previous occurrence. Consequently,
the BLMS algorithm can be understood as a transform do-
main exponential averager. It is well-known that exponen-
tial averaging is equivalent to a linear time-invariant fil-
ter whose transfer function is a comb filter. On the other
hand, truncated orthogonal expansions estimated with in-
ner product are equivalent to a linear time-variant filter [5].
Therefore the combination of both systems is a linear time-
variant filter.

An alternative demonstration can be done by looking
at the reconstructed signal. A first-order finite difference
equation is obtained by premultiplying both sides of (6) by
T

Y1 = (1 —2p) i + 2uTT"dy, . (18)

In the case of complete expansions TT? = I, and the
coefficients in (18) are scalar and time-invariant. When
truncated orthogonal expansions p < N are considered, a
coupled system of finite difference equations is obtained
from (18) because TT7T £T .

V. RESULTS

The performance of the three estimation methods (IP,
LMS and BLMS) is illustrated by a simulation example
in which the characteristics of an ECG signal is studied.
In particular, the ECG is analyzed with respect to the ST-
T complex (Fig. 2) since this part of the cardiac cycle
frequently reflects myocardial ischemia (this condition is
caused by a lack of blood supply in a certain region of the
heart wall). Changes that occur in the ST-T complex due
to ischemia are traditionally quantified by the amplitude
measurement “ST60” obtained 60 milliseconds after the
depolarisation phase has ended.

Basis functions derived by using the KL expansion have
been found useful for monitoring of ischemia [6]. The KL
basis functions used in the present study were estimated
from a training set of signals including several databases in
order to adapt the basis functions to a large variety of ECG
morphologies. The four most significant basis functions
are also plotted in Fig. 2. It should be emphasized that
although the KL basis functions have been selected here,
other orthogonal expansion can be used as well.

The signal analyzed below was synthesized as a se-
quence of identical ST-T complexes, in the same way as
was done in [2], to which Gaussian white noise was added
with an SNR = 20 dB. The three estimation methods (IP,
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Fig. 2. ST-T complex selected for the simulation from a normal heart-
beat.
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Fig. 3. Bias and variance for small memory (1=0.3) and large truncation
error (p = 1) which corresponds to 29.5% of the signal energy.

LMS and BLMS) were then applied to the simulated sig-
nals. Average results from a set of 5000 trials are shown in
Figs. 3-5, with several values of the number of basis func-
tions p and the step-size u. The results below presents the
performance during “steady-state” heart conditions, how-
ever, it is naturally of interest to also study the performance
during changes in the ST-T segment; such study is outside
the scope of the present paper.

The first component weight error vector trajectory is il-
lustrated in Fig. 3(a) when only one basis function is used
in the expansion model with a large step-size (. = 0.3).
The steady-state bias of the LMS algorithm is large due to
the truncation signal error and the large value of the step-
size. In contrast, BLMS obtains an steady-state unbiased
estimate; IP is unbiased at any occurrence. The variance
of the LMS algorithm is shown at every time instant. The
large variance is due to the combination of large truncation
error and large step-size.

If more memory is used by the adaptive algorithms
(lower value of ), the steady-state variance will be lower,
but the convergence speed will decrease, as it is illustrated
in Fig. 4. It can be checked that the LMS and BLMS per-
formance are very similar when very small value of the
step-size are used, but still some differences due to the
truncation error: the LMS is biased and with a slightly
higher variance at steady-state.

When a larger number of basis functions is used in the
expansion, most of the signal energy is contained in the
signal subspace spanned by T, and the effect of the trunca-
tion error on the LMS is much less important (see Fig. 5),
even for large values of u (note that when complete ex-
pansions are used LMS and BLMS are equivalent for any
step-size). It is also illustrated in Figs. 3 and 5 that the
number of basis functions used in the expansion has a crit-
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ical impact on the bias and variance performance of the
LMS algorithm, but not in IP, or BLMS, where only the
variance is affected in a linear way by the number of basis
functions p.

V1. CONCLUSIONS

In this paper the problem of adaptive estimation of linear
transform coefficient on event-related signals is analyzed
for a block structure with deterministic inputs. The BLMS
algorithm is derived using the steepest descent strategy
with a block gradient estimation to minimize the mean
square error. Its performance is found to be better than
the LMS algorithm due to the following reasons: a steady-
state unbiased estimation of the Wiener solution, a lower
steady-state variance and unaffected by the truncation sig-
nal error.
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