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a  b  s  t  r  a  c  t

In  this  paper  we  present  two  methodologies  to generate  heart  rate variability  (HRV)  signals  character-
ized  by  controlled  and  real-like  time-frequency  (TF)  structure  to  be used  to  assess  different  methods
of  non-stationary  HRV  analysis.  The  synthesized  signals  are  stochastic  processes  whose  TF  structure  is
predetermined  by  choosing  either  the  time-course  of  the  instantaneous  frequencies  and  powers  or  the
shape of  the  TF  model  function.  They  consist  of  three  steps:  (a)  choice  of  the  desired  TF structure  of the
signals  by  choosing  a set  of  design  parameters;  (b)  automatic  identification  of  the  parameters  of  the cor-
responding  models  via simple  closed-form  expressions;  (c)  synthesis  of  the  desired  stochastic  signals.
on-stationary signal processing
ignal synthesis
utoregressive models
ime-frequency analysis
igner–Ville distribution

utonomic nervous system

Two measures  to evaluate  the  goodness  of  the  simulated  signals  are  also  given.  Using  this  framework
we  were  able  to model  the wide  range  of  non-stationarities  observed  in  heart  rate  modulation  during
exercise  stress  testing  and  experiments  of music-induced  emotions.  We  used  the  proposed  methodology
to  assess  the  capability  of the  smoothed  pseudo  Wigner–Ville  distribution  (SPWVD)  to  quantify  HRV  pat-
terns.  We  observed  that  the  SPWVD  followed  the  temporal  evolution  of the  spectral  components  even
when  sudden  and  sharp  transitions  occur.
. Introduction

The spectral analysis of the heart rate variability (HRV) signal
s a non invasive tool widely used to assess the modulation of
he autonomous nervous system (ANS) [1].  The spectrum of the
RV signal is characterized by two main spectral components: the

ow frequency (LF) and high frequency (HF) components, which in
uman are defined in LF ∈ [0.04, 0.15 Hz] and HF ∈ [0.15, 0.40 Hz],
espectively. The power in the HF band is considered a measure of
arasympathetic activity. The power in the LF band is considered

 measure of sympathetic and parasympathetic activity, being its
nterpretation controversial when, e.g. the respiratory frequency
ies in the LF band. Traditional spectral analysis requires stationarity
nd cannot be applied in a wide range of clinical and physiological
tudies, such as exercise stress testing, tilt table test, experiments
f induced emotions, etc., in which time-frequency (TF) techniques

hould be preferred. Given that the number of HRV studies which
nvolve TF analysis is increasing [2] and non-stationary signal pro-
essing is becoming the rule in cardiovascular analysis, there is a
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need of evaluation procedures to assess the performance of TF tech-
niques on each specific application. This can be done by analyzing
simulated HRV signals characterized by predetermined real-like
time-varying (TV) spectral patterns. In simulation studies, signals
related to the autonomic modulation are often modeled as the sum
of two deterministic tones embedded in noise [3–6]. Nevertheless,
given that the nature of biological signals is not completely deter-
ministic [7],  TV autoregressive models are widely used to estimate
HRV spectral indices as well as to describe the interactions between
cardiovascular signals [2,8–10].

In this study, we propose to use TV autoregressive models to
create HRV signals with known and controlled TF structure with
the purpose of providing a useful tool for the assessment of dif-
ferent TF methodologies before being used in clinical applications.
The proposed framework is then used to evaluate the performance
of the smoothed pseudo Wigner–Ville distribution (SPWVD) in
non-stationary HRV analysis. Our attention is focused on exer-
cise stress testing and experiments of music-induced emotions.
Exercise stress testing [6,8] is a common test during which cardio-
vascular parameters vary quickly within a wide range of values.
Recently, indices of HRV during this test have been used in the

diagnosis of coronary artery diseases [11–13].  The validation of TF
techniques used in the HRV analysis during experiments of music-
induced emotions deserves attention since in the recent years the
interest in therapeutic applications of music has increased, as well

dx.doi.org/10.1016/j.bspc.2011.05.003
http://www.sciencedirect.com/science/journal/17468094
http://www.elsevier.com/locate/bspc
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s the effort to understand the relationship between music features
nd physiological patterns [14,15].

The paper is organized as follows: two frameworks for the simu-
ation of non-stationary stochastic signals are presented in Section
. The modeling of HRV signals during exercise stress testing and
xperiments of music-induced emotions is considered in Section
. The SPWVD is described in Section 4. Results and discussion are
resented in Sections 5 and 6, respectively.

. Synthesis of non-stationary random processes

.1. General framework

A time-varying autoregressive moving average (TV-ARMA)
odel can be used to describe non stationary signals:

(n) = −
p̃∑

k=1

ak(n)x(n − k) +
q̃∑

k=0

bk(n)�(n − k) (1)

here ak(n) and bk(n) are TV coefficients, p̃ and q̃ are the orders
f the AR and MA  part of the model, and �(n) is a zero-mean unit-
ariance white noise. The TV transfer function of (1),  H(n, z), and
he TF model function of the random process x(n), S(n, f), can be
erived from the coefficients of the model as:

(n, z) =

q̃∑
k=0

bk(n)z−k

1 +
p̃∑

k=1

ak(n)z−k

=

q̃∏
k=1

(z − zk(n))

p̃∏
k=1

(z − pk(n))

b0(n)z(p̃−q̃) (2)

(n, f ) =
∣∣H(n, f )

∣∣2 =

⎡
⎢⎢⎢⎢⎢⎣

b2
0(n)

q̃∏
k=1

∣∣z − zk(n)
∣∣2

p̃∏
k=1

∣∣z − pk(n)
∣∣2

⎤
⎥⎥⎥⎥⎥⎦

z=ej2�f

(3)

here f ∈ [− 0.5, 0.5], while zk(n) = | zk(n) | ej∠zk(n) and
k(n) = | pk(n) | ej∠pk(n) are the zeros and poles of H(n, z). Poles
nd zeros are numbered according to their phase, as 0, . . .,  ∠ p1(n),

 p2(n), . . .,  2�. When a complex pole is sufficiently close to the
nit circle and far from other poles, its power is given by the pole
esidue [16,17]:

i(n) = R

⎡
⎢⎢⎢⎣

∏q̃

k=1
(pi(n) − zk(n))

∏q̃

k=1
(p−1

i
(n) − z∗

k
(n))b2

0(n)

pi(n)(p−1
i

(n) − p∗
i
(n))

∏q̃

k = 1
k /=  i

(pi − pk(n))(p−1
i

(n) − p∗
k
(n))

⎤
⎥⎥⎥⎦ (4)

iven a predetermined S(n, f), we look for simple closed-form
xpressions which allow to estimate the polar configuration of the
orresponding transfer function H(n, z). The rational for searching
hese closed-form expressions is to easily design any suitable spec-
ral pattern for the stochastic processes being used in simulation
tudies. The simulation process involves three steps: (a) choice of
he desired TF structure of x(n), which is defined by a set of design
arameters; (b) estimation of the corresponding H(n, z) and (c) syn-
hesis of the desired signals, by regressing the model coefficients
ith �(n) as in (1).  Two general frameworks, which differ in the

hoice of the parameters which characterize the TF structure of
he signals, are proposed. The first framework (I-FS) is proposed to

eproduce signals characterized by a desired TF model function S(n,
), while the second one (II-FP) is proposed to generate signals char-
cterized by predetermined instantaneous frequencies and powers.
ince in TF analysis the HRV signal usually presents at least two  well
ing and Control 7 (2012) 141– 150

defined spectral peaks, corresponding to the LF and HF  components,
we only considered those zero-pole configurations yielding S(n, f)
with two  well resolved narrow-band spectral peaks.

2.2. Framework I-FS

In framework I-FS, TV-ARMA models are used to reproduce
a predetermined TF model function S(n, f) composed by spec-
tral peaks of instantaneous amplitude S(n, fi(n)) and normalized
frequency fi(n), with i ∈ [1 : p̃]. The desired shape of S(n, f) is approx-
imated by fi(n), S(n, fi(n)) and by appropriately positioning the zeros
zk(n) in the polar plane (see Section 2.4 for details). To estimate
H(n, z), (3) should be solved with respect to pk(n). This is done by
considering that the amplitude of a spectral peak centered on fi(n)
is:

S(n, fi(n)) =

⎡
⎢⎢⎢⎢⎢⎣

q̃∏
k=1

∣∣z − zk(n)
∣∣2

p̃∏
k=1

∣∣z − pk(n)
∣∣2

b2
0(n)

⎤
⎥⎥⎥⎥⎥⎦

z=ej2�fi(n)

(5)

where
∣∣z − pk(n)

∣∣ represents the distance between the point
z = ej2�fi(n), located on the unit circle at phase 2�fi(n), and the pole
pk(n). Every pole is assumed to correspond to a spectral peak. Given
that zk(n) are design parameters, the numerator of (5) is a known
quantity Ni(n), while the terms in the denominator are estimated
by means of the cosine formula:

|ej2�fi(n) − pk(n)|2 = |pk(n)|2 + Ai,k(n)|pk(n)| + 1 (6)

Ai,k(n) = −2 cos(2�fi(n) − ∠pk(n)); i, k ∈ [1, p̃]  (7)

Inserting (6) in (5) we obtain a set of equations Ei:

Ei :

p̃∏
k=1

(|pk(n)|2 + Ai,k(n)|pk(n)| + 1) = Ni(n)
S(n, fi(n))

b2
0(n) (8)

with i ∈ [1, p̃].  The solution of (8) provides the |pk(n)| and b0(n)
which define the pole configuration of H(n, z) and consequently
the coefficients ak(n) and bk(n). To model the HRV signal, which
in short-term analysis is characterized by the simultaneous pres-
ence of two main spectral components, four poles are used (p̃ = 4).
In Fig. 1, the graphic representation of (5) for a model of order
(p̃, q̃) = (4,  2) evaluated at fi(n0) = fLF(n0) is shown. Black and gray
arrows represent the factors which appear in the denominator
and in the numerator of (5),  respectively. The model includes two
complex conjugate poles associated to the LF component, namely
pLF(n) = p1(n) = p∗

4(n), and two  complex conjugate poles associ-
ated to the HF component, namely pHF(n) = p2(n) = p∗

3(n). In this
example z1(n) and z2(n) are placed on the unit circle and constrain
the spectrum to vanish at frequency ±(1/2�) ∠ z1(n). The design
parameters are: fLF(n), fHF(n), S(n, fLF(n)), S(n, fHF(n)) and zk(n), while
the unknown quantities are |pk(n)| and b0(n). After rearrangement,
system (8) can be written:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪

4∏
k=1

(|pk(n)|2 + ALF,k(n)|pk(n)| + 1)

4∏
k=1

(|pk(n)|2 + AHF,k(n)pk(n)| + 1)

= NLF(n)S(n, fHF(n))
NHF(n)S(n, fLF(n))

2 S(n, fHF(n))
4∏

2

(9)
⎪⎪⎩ b0(n) =
NHF(n)

k=1

(|pk(n)| + AHF,k(n)|pk(n)| + 1)

A restriction should be introduced to match the number of equa-
tions with the number of unknowns. To this end, the magnitude
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ig. 1. Configuration of a TV-ARMA of order (4,2) for n = n0. Crosses and circles rep-
esent poles and zeros, respectively, while black and gray arrows correspond to the
erm in the denominator and numerator of (5),  respectively.

f two complex conjugate poles is fixed to a constant value.
s shown in the following, this restriction gives the possibility

o further increase the control of S(n, f). Fixing the magnitude
f the LF poles to a constant value |p1(n)| = | p4(n) | = | pLF | the
rst equation of system (9) takes the closed-form of a quartic
quation:

pHF(n)|4 + C1(n)|pHF(n)|3 + C2(n)|pHF(n)|2 + C1(n)|pHF(n)| + 1 = 0

(10)

here

1(n) = (ALF,2(n) + ALF,3(n)) − ˛(n)(AHF,2(n) + AHF,3(n))
1 − ˛(n)

(11)

2(n) = (2 + ALF,2(n)ALF,3(n)) − ˛(n)(2 + AHF,2(n)AHF,3(n))
1 − ˛(n)

(12)

(n) =

S(n, fHF(n))NLF(n)
∏

k={1,4}
(|pLF|2 + AHF,k(n)|pLF| + 1)

S(n, fLF(n))NHF(n)
∏

k={1,4}
(|pLF|2 + ALF,k(n)|pLF| + 1)

(13)

q. (10) has a real solution whenever:

1
2

(
−C1 +

√
C2

1 − 4(C2 − 2)

)]2

− 4 < 0 (14)

nce that the magnitude of the HF poles, |pHF(n)|, has been esti-
ated, the parameter b0(n) is obtained by replacing |pHF(n)| in
he second equation of (9). In the case in which the magnitude of
he HF poles |p2(n)| = | p3(n) | = | pHF | was used as design parameter,
p1(n)| = | p4(n) | would be obtained using (10)–(13) and replacing
i,2 with Ai,1, and Ai,3 with Ai,4, with i ∈ {LF, HF}, respectively.
ing and Control 7 (2012) 141– 150 143

2.3. Framework II-FP

In this case, the TF structure of the signals is predetermined by
fixing instantaneous frequencies fi(n) and powers Pi(n), rather than
fi(n) and S(n, fi(n)), as in I-FS. The pole-zero configuration associated
to fi(n) and Pi(n) can be estimated by using (4).  At every n, the power
associated to the pole pi(n) depends on the whole pole-zero con-
figuration, i.e. on the whole set of complex numbers pi(n) − pk(n),
p−1

i
(n) − p∗

k
(n), pi(n) − zk(n) and p−1

i
(n) − z∗

k
(n). The explicit form of

(4) is highly non-linear in |pi(n) | ej∠pi(n). Nevertheless, as shown in
[16], by using an autoregressive model (i.e. not considering zk(n))
and placing the poles very close to the unit circle (1 − | pi(n) | � 1),
one can approximate p−1

i
(n) with p∗

i
(n) and rewrite (4) as:

Pi(n) ≈ b2
0(n)(

|Pi(n)| − 1
|Pi(n)|

)∏p̃

k = 1
k /=  i

|Pi(n) − Pk(n)|2
; i = {1, p̃}; (15)

When i = {LF, HF}, (15) represents a system of 2 equations in |pLF(n)|,
|pHF(n)| and |b0(n)|. Similar to what previously done in (8)–(10),
the solution is found by: (i) use the magnitude of two  complex-
conjugate poles as a design parameters, (ii) rewrite (15) in the
form PLF(n)/PHF(n) = [. . .]  and (iii) estimate from this new expres-
sion the magnitude of the other 2 complex-conjugate poles; (iv)
estimate b0(n) by solving one of the equations of system (15). It can
be shown that using |p1(n)| = | p4(n) | = | pLF | as design parameter,
one can easily estimate the corresponding |pHF(n)| by solving

|pHF(n)|3 − |pHF(n)| + C(n) = 0 (16)

where

C(n) = PLF(n)
PHF(n)

(
sin(2�fLF(n))
sin(2�fHF(n))

)2

(|pLF| − |pLF|3) (17)

In the case in which |p2(n)| = | p3(n) | = | pHF | was used as design
parameter, |p1(n)| = | p4(n) | = | pLF(n) | would be obtained using (16)
and (17) and replacing subscript LF with HF and subscript HF with
LF. The incomplete cubic equation (16) has an acceptable real solu-
tion for those n for which C(n) ∈ (−2/

√
27, 2/

√
27).

2.4. Design parameters

Design parameters necessary to define the desired TF structure
of the signals are fi(n), S(n, fi(n)), with i = {LF, HF}, and zk(n), in the
case of I-FS and fi(n), Pi(n) in the case of II-FP. In both cases, the
magnitude of one of the two complex-conjugate poles is fixed and
the other one is estimated. The positioning of the poles used as
design parameters can be used to improve the control of the shape
of the model function S(n, f): by moving the poles closer to the
unit circle the spectral peaks get sharper and their bandwidth is
reduced.

In the case of framework I-FS, zeros are used to predetermine
desirable spectral features. As shown in Fig. 2, they can be used
to control the degree of overlapping of the spectral peaks. Model
functions shown in the upper, middle and lower panels share the
same fi(n0), S(n0, fi(n0)) as well as the magnitude of the poles used
as design parameters. Those on the left are obtained by means of
AR models, while those on the right by means of an ARMA model
of order (4,10). In these graphics, circles represent the phase of
zeros zk(n0), with k = {1, 2, 3}. It is shown that without chang-

ing the magnitude of the pole used as design parameter, and by
moving zk(n) closer to the unit circle, S(n0, f) takes lower val-
ues at frequency (1/2�) ∠ zk(n) and the spectral peaks are better
resolved.



1 rocessing and Control 7 (2012) 141– 150

2

i
t
a
r
i
t
b
p

d

W

w
t
T
o
g
t

e

T
a
n
n
z
t
a

3

i
e
f
u
z
w
H
f
I
t
I

(
s
(
f
r

F

S

Table 1
Simulation setup.

Parameters of I-FS framework
EST MIE

T1 T2 T1 T2

Length [s] 360 150 38 42
F̄ ′

LF [mHz s−1] 0 0 0.9 1.6
F̄ ′

HF [mHz s−1] 1.1 2.2 0.3 3.2
S̄′

LF [% s−1] 0.14 0.28 1.14 2.3
S̄′

HF [% s−1] 0.25 0.28 0.8 1.4
Order (4,8) (4,10)
Fs [Hz] 2 2
R 1000 1000
44 M. Orini et al. / Biomedical Signal P

.5. Evaluation of the models for non-stationary HRV signals

Due to the stochastic nature of the signals and to the lim-
ted number of realizations of the model, the TF distribution of
he stochastic process, obtained by averaging among realizations,
lways presents a fluctuation around S(n, f). This fluctuation rep-
esents a sort of intrinsic uncertainty of the simulated signals and
s quantified by means of two measures. The first one is a spec-
ral distance, defined as the normalized L1-norm of the difference
etween S(n, f) and the estimated TF distribution of the stochastic
rocess W̄x(n, f ):

W = ‖W̄x(n, f ) − S(n, f )‖l1

‖S(n, f )‖l1

(18)

¯ x(n, f ) = 1
R

R∑
r=1

Wx(n, f ; r) (19)

here Wx(n, f;r) is the Wigner–Ville distribution of one realiza-
ion x(n;r) [18,19].  Distance dW is specially sensitive to the correct
F localization of the spectral components. The second measure is
btained by comparing the total power PTOT(n), obtained by inte-
rating S(n, f) with respect to f, with the instantaneous powers of
he simulated signals:

(n) =

1
R

R∑
r=1

x2(n; r) − PTOT(n)

PTOT(n)
(20)

he temporal mean and standard deviation of e(n), denoted as �e

nd �e, is used to assess the capability of the model to generate sig-
als characterized by the desired instantaneous power. For a given
umber of realizations R, measures dW and e(n) depend on the pole-
ero configuration given by pk(n), zk(n), b0(n) and will be used in
he following to assess the effect of the design parameters as well
s to compare the frameworks.

. Applications

In this section, the dynamics observed in the HRV signal dur-
ng exercise stress testing (EST) and experiments of music-induced
motions (MIE) are modeled. In both situations, the evaluation of
rameworks I-FS and II-FP is done as follows: (i) framework I-FS is
sed: signals are modeled by fixing fi(n), S(n, fi(n)) and by choosing
k(n) and |pLF| as to obtain the desired model function S(n, f), which
ill be used in the evaluation; (ii) the instantaneous power of LF and
F components, PLF(n) and PHF(n), are estimated from this model

unction, and (iii) they are used as design parameters of framework
I-FP, whose model function will be estimated and used to assess
he uncertainty of the simulated signals obtained with framework
I-FP.

The TF structure of the simulated signals is shown in Fig. 3(a) and
b), where Fi(n) = fi(n)Fs, being Fs the sampling rate. In both cases,
ignals are characterized by epochs of mild and abrupt variations
indicated as T1 and T2, respectively), which correspond to dif-
erent degrees of non-stationarity. The degree of non-stationarity,
eported in Table 1, is quantified by:

¯ ′
i = Fs

NT

nb+NT−1∑
n=nb

|Fi(n) − Fi(n − 1)|,  [Hz s−1] (21)
¯ ′
i = Fs

NT

nb+NT−1∑
n=nb

|S(n, fi(n)) − S(n, fi(n − 1))|
S(n0, fi(n0))

, [% s−1] (22)
|pLF| 0.905 0.870

where NT is the number of time samples of intervals T1 or T2, nb is
the first time sample of each interval, i ∈ {LF, HF} and n0 = 1.

3.1. Exercise stress testing (EST)

As shown in Fig. 3(a), in this simulation the HRV spectral com-
ponents are assumed to vary linearly [6].  FLF is constant over time,
while FHF(n) increases and decreases during effort (T1) and recovery
(T2), respectively. Changes in S(n, fHF(n)) simulates the withdrawal
of the parasympathetic modulation (−70% in the first 3 min) and
the restoration of baseline values during recovery (+50% in 3 min).
From 3 min  after the onset of the exercise until the peak stress
S(n, fHF(n)) slightly increases, simulating the effect of the stretch
of the sinus node [20]. A model of order (4,8) with |pLF | = 0.905 is
used. Details about the choice of this specific value are given in the
following. Zeros are placed on the unit circle and have TV phase.
Zero z1(n), fixed at DC, cancels the contribution around f = 0 Hz,
which in TF analysis is usually filtered out; z2(n) = z∗

8(n), with
phase �(fLF(n) + fHF(n)), lies in between LF and HF poles, to separate
the spectral peaks, which otherwise would overlap; z3(n) = z∗

7(n),
with phase �(3fHF(n) − fLF(n)), is symmetric to z2(n) with respect
to fHF(n) and makes the HF peak symmetric; zero z4(n) = z∗

6(n),
with phase �

2 (3fHF(n) − fLF(n) + 1) and z5(n) = �, cancel undesired
contributions introduced by the other ones in f > fHF(n).

3.2. Experiments of music-induced emotions (MIE)

Parameters Fi(n) and S(n, fi(n)) were derived from the time-
course of the LF and HF components of an original HRV  signal
recorded during an experiment of music-induced emotions [15].
In that experiment, participants listened to different kind of musi-
cal stimuli, each one of a duration of about 90 s, and characterized
by different emotional valence. The pattern of response of the
HRV signal, shown in Fig. 3(b), is characterized by two phases: an
early fast epoch in which abrupt changes occur (T2), and a later
epoch of adaptation in which spectral parameters changed gradu-
ally (T1). The time-course of spectral indices of Fig. 3(b) is derived
by low-pass filtering the time-course of the parameters obtained
by TF analysis of the HRV of a subject listening to an excerpt of
pleasant music [15]. As also reported in Table 1, changes in T2
are particularly abrupt: S(n, fLF(n)) and S(n, fHF(n)) decreases by
about 70% and 40% in the first 13 s. In this application, a model
of order (4,10), with |pLF | = 0.870, is used. Zeros are placed on
the unit circle and have TV phase. Zeros z1(n), z2(n) = z∗

10(n) and
z3(n) = z∗

9(n) are located as in simulation EST, while, in order to can-
∗ ∗
cel contributions in f > fHF(n), z4(n) = z8(n), z5(n) = z7(n) and z6(n)

are evenly distributed between z3(n) and �, i.e. with phases equal to
�
3 (6fHF(n) − 2fLF(n) + 1), �

3 (3fHF(n) − fLF(n) + 2) and �, respectively.
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ig. 2. Influence of zk(n) on the model function. S(n0, f) are modeled by means of A
k(n0), with k = {1, 2, 3}. All zk(n0) have the magnitude reported in the legend. Zeros

. Evaluation of the SPWVD
The framework presented in the previous sections is used to
valuate the performance of the SPWVD [18] in non-stationary HRV

ig. 3. Modeling HRV during: (a) exercise stress testing (EST) and (b) experiment of m
requency and (C) spectral amplitude of the LF (in gray) and HF (in black) components. 

emporal axes are different.
dels (left) and ARMA models of order (4,10) (right). Circles represent the phase of
), with k > 3, are associated to a frequency f > 0.4 Hz and are not shown.

analysis. Among the different TF and TV methods which have been

applied to the study of the cardiovascular variability [2],  the SPWVD
is one of the most interesting, since it provides an independent
control of the time and frequency resolution. It is defined as the

usic-induced emotions (MIE). (A) A simulated HRV signal x(n); (B) instantaneous
T0, T1 and T2 represent epochs of stationarity, slow and fast variations. Note that
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ourier transform of the generalized autocorrelation function of
a(n), the complex analytic signal representation of the original real
ignal x(n) [18]:

ˆ(n, f ) = Ŝ(n, �)|�=2f , f ∈ [−0.25, 0.25] (23)

ˆ(n, �) = 2
K−1∑

k=−K+1

[
|h(k)|2

N−1∑
n′=−N+1

[
g(n′)xa(n + n′ − k)x∗

a(n + n′+k)
]]

× e−j2�k�, � ∈ [−0.5, 0.5] (24)

n (23), a variable change is used since the SPWVD in (24) has
he spectral peaks at twice the frequency of the spectral com-
onents of xa(n). Functions g(n′) and |h(k) | 2 are the time and
requency smoothing kernels used to reduce the interference
erms, while n and f are the discrete time index and the nor-

alized frequency, respectively. In this study, the rectangular
indow g(n) = 1

2N−1 , with n = (− N + 1), . . .,  (N − 1), and the expo-
ential function |h(k) | 2 = e−� |k| were used. The degree of time and

requency smoothing depends on the length of the rectangular win-
ow (2N  − 1) and on the damping factor of the exponential window
. To estimate the time-course of the HRV spectral indices the tradi-

ional LF band, BLF = [0.04, 0.15] Hz and a TV respiration-dependent
F band, BHF(n) = Fr(n) + [− 0.125, 0.125] Hz, are used [21]. Here,

he respiratory rate Fr(n) is assumed to be equal to FHF(n). In real
ata analysis a direct or ECG-derived estimation of respiratory rate

ould be used to dynamically adjust the HF band. Instantaneous
requencies from the model (FLF(n), FHF(n)) and from TF analysis
F̂LF(n), F̂HF(n)) are obtained as the peak frequency of S(n, f) from (3)
nd of Ŝ(n,  f) from (23) in BLF, BHF(n), respectively. In both frame-
ce dW (top graphic) and the mean and the standard deviation of e(n) (second and
for the evaluation of the SPWVD. Lower graphics: PTOT(n) estimated from S(n, f) and

works, instantaneous powers, PLF(n), PHF(n), PTOT(n) and P̂LF(n),
P̂HF(n), P̂TOT(n) are obtained by integrating S(n, f) and Ŝ(n, f) on
BLF, BHF(n) and on the entire spectrum, respectively. The estima-
tion error between the time-course of a general HRV index �(n)
and its estimate �̂(n) is calculated as:

E�(n) =

1
R

(
R∑

r=1

�̂r(n)

)
− �(n)

�(n)
(25)

where �(n) ∈
{

FLF(n), FHF(n), PLF(n), PHF(n), PTOT(n)
}

and R is the
number of realizations of the model.

5. Results

5.1. Evaluation of the models for non stationary HRV signal

In Fig. 4, the intrinsic uncertainty of signals obtained by means
of frameworks I-FS and II-FP is shown for both simulations EST
and MIE. The uncertainty was assessed by measures dW and e(n),
estimated from (18) to (20), where, for each framework, the cor-
responding model function S(n, f) was used. As shown in Fig. 4,
the intrinsic uncertainty of the simulated signals always decreased
with |pLF|, i.e. the magnitude of the pole used as design parame-
ter. This indicates that signals characterized by wide spectral peaks

are generated more reliably than signals characterized by narrow
spectral peaks. As a rule of thumb, to minimize the intrinsic uncer-
tainty of the signals, one should give to the poles used as design
parameters the lowest magnitude which at the same time allows
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Fig. 5. Robustness and contribution of zk for the I-FS framework. Left panels: |pLF| is used as design parameters; right panels: |pHF| is used as design parameters; upper,
m t |pLF| 
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he generation of a model function which complies with the specifi-
ations. This heuristic method was used to select the values of |pLF|
sed in simulation EST and MIE. Comparison of results reported in
olumn (A)–(B) and (C)–(D) of Fig. 4 shows that the spectral dis-
ance dW as well as the mean and the standard deviation of e(n)
ere lower for signals obtained by using framework I-FS than II-

P. As shown in Fig. 4, by increasing the number of realizations of
he model, R, the intrinsic uncertainty decreased. The comparison
etween PTOT(n) and the power estimated directly from the signal
s in (20) is reported in the lower graphic of Fig. 4 and shows that
he simulated signals followed on average the desired dynamics,
ven in epoch T2 of simulation MIE, during which the instanta-
eous power dramatically decreased while FHF(n) increased almost
tepwise.

To assess whether the presented methodology can repro-
uce a much wider range of spectral configurations than those
onsidered here, and to assess how the use of zeros affects
he intrinsic uncertainty of the models, simulations EST and

IE  were modified and different configurations were tested.
n the following, index n is omitted. Spectral parameters

ere chosen as: FLF = 0.09 Hz, FHF = {0.15, 0.16, . . .,  0.5} Hz and
og10

(
S(fLF)/S(fHF)

)
= {−2, −1.8, . . . , 2}. The magnitude of one

ouple of complex-conjugate poles was fixed at {0.850, 0.855, . . .,
.995} and the magnitude of the other poles was  estimated by
sing the closed-form expressions of framework I-FS (10). Models
ith the following configurations were tested: AR model, ARMA

4,8) as in simulation EST, and ARMA (4,10) as in simulation MIE.
o accept |pHF| (or |pLF|) as a possible solution, the correspond-
ng model function should verify the following conditions: (i) very

ow frequency (VLF) is low S(0) ≤ 0.15 min[S(fLF), S(fHF)]; (ii) LF and
F spectral peaks are well resolved: S((fLF + fHF)/2) ≤ 0.25 min[S(fLF),
(fHF)]; (iii) components with central frequency higher than HF
re low S(f > fHF) ≤ 0.15 min[S(fLF), S(fHF)]. Fig. 4 shows that, when-
(on the left) and the lowest |pHF| (on the right) which allowed to reproduce real-like
-label SLF stand for S(fLF). (For interpretation of the references to color in this figure

ever possible, solutions characterized by a polar configuration with
poles of low magnitude should be preferred to configurations with
poles of high magnitude, since the lower the magnitude of the poles,
the better the simulated signals will reproduce the desired spec-
tral patterns. Results reported in Fig. 5 give, for the whole set of
configurations, the lowest magnitude of the poles used as design
parameter for which a suitable solution existed. Results reported on
the left (right) correspond to the case in which |pLF| (|pHF|) was  used
as design parameter and |pHF| (|pLF|) was estimated. In the white
regions no suitable solution was found, either because (10) had no
solution or because S(n, f) did not comply with the specifications.
Fig. 5 shows that: (i) framework I-FS is robust: the only few cases in
which a suitable solution was  not found corresponded to extreme
configurations for which the HRV signal may  be better modeled
as monocomponent; (ii) for a same configuration, ARMA models
allowed to use poles with lower magnitude than AR models, which
in turn allows one to generate signals characterized by lower uncer-
tainty; (iii) solutions for low FHF are possible only with poles of high
magnitude; (iv) to model HRV signals in which S(fLF) 
 S(fHF), it is
preferable to use as design parameter |pHF| and estimate |pLF|, since,
as shown in the right-side panels, in this way it is possible to find
appropriate polar configurations by using poles with lower mag-
nitude than if |pLF| was used as design parameter and |pHF| was
estimated (as in the left-side panels).

5.2. Evaluation of SPWVD

For both simulations EST and MIE, 1000 signals were generated
with a sampling frequency of 2 Hz. In the calculation of the SPWVD

we used 9 different kernels. The width of g(n) gave a time resolu-
tion of about {20, 35, 50} and {5, 15, 25}  seconds for simulation
EST and MIE, respectively, while in both simulations |h(k) | 2 gave a
frequency resolution of {0, 7, 13}  mHz. Time and frequency resolu-
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esolution was  {20 s, 7 mHz} and {5 s, 13 mHz} for EST and MIE  simulations. R = 100

ions are given as the full-width at half maximum of g(n) (	t) and
f the Fourier transform of |h(k) | 2 (	f), respectively. Representa-
ive examples of TF estimates and estimation errors estimated as
n (25) are given in Figs. 6 and 7. It is shown that in simulation EST
he estimated parameters perfectly followed the transitory, with

 mean estimation error |Ē�| < 2.8% in T1 and |Ē�| < 3.6% in T2.
n simulation MIE, which is characterized by much stronger rates
f variation, the indices estimated using the SPWVD followed the
heoretical changes, even if with a higher percentual error.

. Discussion

Applications of TF methods of analysis in biomedical signal
rocessing have increased in the last years [2].  Nevertheless, the
roblem of how to generate signals with a given TF model func-
ion has been less studied. Only a small number of methods for
he synthesis of non stationary processes whose TF representa-
ion was closest, in a least squares sense, to a given model function
(n, f) were presented in the literature [22,23].  The importance of
hese studies lies in that models which allow to reproduce real-
ike signals with predetermined TF characteristics can be used to
alidate and compare different non-stationary signal processing
echniques. Another application of the presented framework may
oncern the generation of controlled TV surrogate data to assess
on linearity in non stationary time series or the significance of TV
oherence function [10].

In this paper, two robust and flexible frameworks for generat-
ng non-stationary HRV signals following predetermined spectral
atterns have been presented. Signals are modeled as time-varying
tochastic processes characterized either by spectral components
ith controlled instantaneous powers and frequencies or by a given

ime-frequency model function, whose shape can be controlled by
uning several design parameters. Using these methods we were
ble to simulate stochastic signals whose spectral components
hanged both linearly and non-linearly during time, with differ-

nt rates of variation, going from slow variations to sudden and
ery sharp transitions. We  modeled HRV dynamics during exer-
ise stress testing and experiments of music-induced emotions and
e observed that using the smoothed pseudo Wigner–Ville dis-
phic: simulation MIE; from left to right, columns refer to: model function S(n, f);

d F̂i(n) and P̂i(n) are reported in black, values of the model in gray. Time-frequency
izations was used.

tribution it was  possible to reliably follow these dynamics. These
frameworks can be used in all those studies which require the gen-
eration of simulated HRV signals. Moreover, even if in this study we
only considered HRV dynamics, they could also be used to simulate
any of those cardiovascular signals which present at least a LF or a
HF component, e.g. arterial pressure variability, photoplethysmo-
graphic signal, pulse transit time, etc.

6.1. Models for non-stationary HRV generation

The presented methodologies are based on the identification
of the polar configuration associated to a model function whose
geometry can be controlled by the design parameters introduced
in Section 2.4.  The identification problem has a closed-form solu-
tion which is exact in the case of I-FS and approximate in the case of
II-FP framework. Therefore, once that the design parameters have
been chosen, the solution of (10), or (16), directly provides the
parameters of the model used to generate signals characterized
by the desired properties. Framework II-FP has the advantage of
allowing to directly control the instantaneous power of LF and HF
components, but, being based on a TV-AR model, it cannot provide
much control on the shape of S(n, f) which is constrained to be a
sum of Lorentzian functions. The capability of tuning the shape of
the model function S(n, f) by properly choosing parameters zk(n),
gives a great flexibility to the I-FS framework, which additionally
was observed to generate signals whose spectral patterns followed
more reliably the desired ones. The quantification of the intrin-
sic uncertainty of the simulated signals through the estimation of
dW and e(n) allows one to evaluate the signals before using them
to assess a method of analysis. It was  shown that the uncertainty
increases with the magnitude of the poles. Thus, one should give
to the magnitude of the poles used as design parameter the lowest
value which at the same time provides a S(n, f) which complies with
the specifications.

A correct positioning of zeros zk(n) increases the number of pos-
sible S(n, f) which can be modeled. For example, as shown in Fig. 2,

zk(n) can be used to control the degree of overlapping of LF and
HF spectral peaks when their central frequencies are close. To sep-
arate the LF and HF spectral peaks without using zk(n), one could
move |pLF| toward the unit circle which, in turn, has the undesirable
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Fig. 7. Distribution of the estimation error E� for parameters � = {FLF, FHF, PLF, PHF, PTOT}. In the last column the distribution of the uncertainty e(n) is reported. Results obtained
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ffect of increasing the uncertainty of the signals. Thus, the use of
V-ARMA models instead of the simpler TV-AR models is crucial not
nly to improve the control of S(n, f) but also to reduce the intrinsic
ncertainty of the simulated signals. In some configurations, addi-
ional zk(n) should be used to compensate for the introduction of
ndesirable components in S(n, f). In the applications presented in
his paper, zk(n) were placed on the unit circle. In those applications
here this constraint is too restrictive, S(n, f) could be forced to a
on-zero value by placing the zk(n) inside the unit circle, as shown

n Fig. 2. The model sampling rate Fs is another important param-
ter. It should be high enough to ensure a good time resolution
ut not too high, in order to spend the degrees of freedom of the
odel to describe relevant signal components and not modeling

oise presents in high frequency band. The presented frameworks
ave been shown to be robust: as shown in Fig. 5 it was possible to
nd a pole-zero configuration for any kind of possible combination
f HRV spectral indices.

.2. The SPWVD for HRV quantification

One of the more relevant applications of signal synthesis
ethods is the validation of signal processing techniques, whose

imitations should be known by users, in order to make a correct
nterpretation of the results. Among all the TF representations, the

VD  is characterized by the best TF resolution, but its applicabil-
ty is limited by the presence of interference terms. These terms
re reduced by low-pass filtering the WVD  by means of TF kernels.
he SPWVD, which makes use of separable kernels, is one of the
ost appealing solution due to the possibility of an independent
ltering in time and frequency. For a comprehensive description of
FR representations see [19]. As reported in Fig. 6–7, during both
imulations EST and MIE, the SPWVD estimated the dynamic of the
imulated signals with a median error which, in the worst case,
circle, respectively. Symbols represent the median values and the box extremities

did not exceed the 10%. Results should be compared to the intrinsic
uncertainty of the simulated signals, whose distribution is reported
in the last column of Fig. 7. The estimation error E�(n) increased
by increasing the rate of variation of the spectral components. For
simulation EST, the estimation error was  always very low, both for
epochs T1 and T2. The time-course of FLF(n), FHF(n) and PLF(n) was
estimated with an estimation error whose median and interquar-
tile range were bounded between 0.78% and 5.52% and between
0.29% and 5.16%, respectively. During T2, the interquartile range of
the estimation error of P̂HF(n) was  higher, but still comparable with
that of e(n), which measures the intrinsic uncertainty. The tempo-
ral evolution of the total power was  estimated with an error whose
median and interquartile range were bounded between 0.11% and
0.65% and between 2.11% and 4.55%, respectevely. For simulation
MIE, the estimation error was  higher, especially during T2. Never-
theless, in Fig. 6, it is shown that P̂LF(n) and P̂HF(n) correctly followed
the temporal evolution of PLF(n) and PHF(n) even during T2. In this
simulation, the estimation of PLF(n) worsened by increasing the
degree of the time-smoothing. To correctly track the changes of
the HRV spectral indices, one should always pay attention to the
TF resolution given by the kernels. Concerning the effect of the
TF filtering, it is shown that the estimation error of PTOT(n) only
depended on the filtering in time, and that for a given time reso-
lution, E�(n) decreased by increasing the degree of the frequency
filtering. This was  particularly evident for the estimation of HF
instantaneous power and frequency, where misestimations due to
residual interference terms are more frequent. The use of a time-
varying respiration-dependent boundaries [21] was  very effective
to improve the estimation of the HF component, which otherwise

would have required a much higher degree of filtering.

In this paper we  used a rather basic TF analysis, which involves
a TF filtering of the WVD  by means of time-invariant kernels which
were arbitrary chosen, and an estimation of spectral indices by inte-
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rating Ŝ(n, f) in BLF and BHF(n). More sophisticated techniques have
een presented in the literature to improve the spectral charac-
erization of non-stationary signals. An interesting possibility is to

ake the TF filtering of the WVD  time-varying or signal-dependent
24]. Another possibility is to perform a parametric decomposition
f the generalized autocorrelation function [3].  A method, which
ombines parametric decomposition of the autocorrelation func-
ion with a dynamic adjustment of the TF filtering which depends
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