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Abstract—In this study, the integral pulse frequency modula-
tion model is extended to account for the presence of ectopic beats
and heart rate turbulence (HRT). Based on this model, a new sta-
tistical approach to the detection and characterization of HRT
is presented. The detector structure involves a set of Karhunen–
Loève basis functions and a generalized likelihood ratio test statis-
tic T (x). The three most significant basis functions reflect the
difference in heart rate prior to a ventricular ectopic beat (VEB)
compared to after HRT, the “average” HRT, and a delayed contri-
bution to HRT, respectively. Detector performance was studied on
both simulated and ECG signals. Three different simulations were
performed for the purpose of studying the influence of SNR, QRS
jitter, and ECG sampling rate. The results show that the HRT test
statistic T (x) performs better in all simulations than do the com-
monly used parameters known as turbulence onset (TO) and turbu-
lence slope (TS). In order to attain the same performance as T (x),
TS needs at least twice the amount of VEBs for averaging, and
TO at least four times. The detector performance was also studied
on ECGs acquired from eight patients who underwent hemodial-
ysis treatment with the goal to discriminate between patients con-
sidered to be hypotension-resistant (HtR) and hypotension-prone
(HtP). The results show that T (x) exhibits larger mean values in
HtR patients than in HtP, suggesting that HRT is mostly present in
HtR patients. The overlap between the two groups was larger for
TO and TS than for T (x).

Index Terms—ECG, generalized likelihood ratio test (GLRT),
heart rate turbulence (HRT), integral pulse frequency modulation
(IPFM) model, Karhunen–Loève (KL) basis functions.

I. INTRODUCTION

THE SHORT-TERM fluctuation in heart rate that follows a
ventricular ectopic beat (VEB) is referred to as heart rate

turbulence (HRT) [1], [2]. In normal subjects, the heart rate first
increases and then decreases to baseline, immediately after a
VEB. The increase in heart rate is hypothesized to be due to
compensation of the sudden drop in blood pressure induced by
the VEB, and subsequently, sensed by the baroreceptors [3]–[7].
Once blood pressure is restored, the heart rate returns to baseline

Manuscript received October 22, 2007; revised March 10, 2008. First pub-
lished November 17, 2008; current version published December 17, 2008. This
work was supported by grants from Gambro AB, Lund, Sweden, The Swedish
Research Council, Comisión Interministerial de Ciencia y Tecnologı́a (CICYT)
(TEC2007-68076-C02-02), and the Grupo Consolidado T30, DGA, Spain.
Asterisk indicates corresponding author.

*K. Solem is with the Signal Processing Group, Department of Electrical
and Information Technology, Lund University, S-221 00 Lund, Sweden (e-mail:
kristian.solem@eit.lth.se).

P. Laguna and J. P. Martı́nez are with the Communications Technology Group,
Aragón Institute for Engineering Research, University of Zaragoza, E-50018
Zaragoza, Spain, and also with the Investigación Biomédica en Red en Bioin-
genierı́a, Biomateriales y Nanomedicina (CIBER-BBN), E-50018 Zaragoza,
Spain.

L. Sörnmo is with the Signal Processing Group, Department of Electrical and
Information Technology, Lund University, S-221 00 Lund, Sweden.

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TBME.2008.2002113

Fig. 1. HRT in the RR interval tachogram for a normal subject. Beat numbers
3 and 4 are the shortened and prolonged RR intervals induced by a VEB (the
coupling interval and the compensatory pause). The parameters TO and TS are
also illustrated.

in order to maintain the blood pressure. The subject’s ability to
recover from a local decrease in blood pressure is reflected by the
strength of turbulence. The absence of HRT reflects autonomic
dysfunction [3], [4].

It has been demonstrated that HRT is a powerful predictor of
mortality after acute myocardial infarction [1], [2]. The analy-
sis of HRT offers considerable potential in other areas as well,
e.g., congestive heart failure, diabetes mellitus [3], [4], and hy-
potension in hemodialysis patients [8]. Several parameters for
HRT characterization have been presented of which turbulence
onset (TO) and turbulence slope (TS) are the most commonly
employed (see Fig. 1). The parameter TO is the relative change
of RR intervals enclosing a VEB, defined by the relative differ-
ence of the averages of the two normal RR intervals before and
after the VEB. Since TO measures the relative change in RR
intervals, negative values of TO imply heart rate acceleration
following the VEB, whereas positive values imply heart rate
deceleration. The parameter TS is defined by the steepest slope
observed over five consecutive RR intervals in the first 15 RR
intervals following the VEB (see Fig. 1). Prior to computation
of TO and TS, an average RR interval tachogram is determined
from available VEBs.

While both TO and TS have proven to be clinically useful,
they are empirical in nature as they do not result from data
modeling. Several studies have shown that TS is clinically more
powerful than TO, e.g., as a predictor of mortality after acute
myocardial infarction [1]–[4]. However, TS has certain draw-
backs. First, TS is overestimated at low SNRs, i.e., when few
VEBs are used for averaging or when the underlying heart rate
variability (HRV) is considerable [9]. Second, TS leads to struc-
tural correlation between HRT and heart rate [9].
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Besides TO and TS, several other HRT parameters have been
presented of which the majority are closely related to TO and
TS, such as combined TO and TS analysis [4], and an adjusted
TS parameter with respect to either heart rate or the number
of averaged beats [9]. Furthermore, the first beat number of the
5 RR interval sequence from which TS is determined (i.e., where
the steepest slope of RR intervals is observed) is denoted turbu-
lence timing [10]. The correlation coefficient of TS is defined
as the correlation coefficient of the regression line fitted to the
5 RR intervals of TS [11]. Other parameters are the turbulence
jump, defined as the maximum difference between adjacent RR
intervals [12], and the turbulence dynamics, quantifying the cor-
relation between TS and heart rate [13]. Yet another measure
is the turbulence frequency decrease that results from fitting a
sine function to the RR intervals following the compensatory
pause [4].

The purpose of the present paper is to develop a model-
based technique for HRT characterization, and to compare its
performance to that of TO and TS, using both simulated and
clinical data. Based on an extended integral pulse frequency
modulation (IPFM) model, we present an approach that involves
a set of Karhunen–Loève (KL) basis functions, modeling HRT as
a uniformly sampled function of time. This stands in contrast to
existing HRT parameters that are computed from the RR interval
series. The interval series is a function of beat index and is thus
an irregularly sampled function of time. The KL representation
is then used in a statistical HRT detection procedure. The clinical
issue of the present study is to investigate whether HRT can be
used to distinguish between hemodialysis patients considered
to be hypotension-resistant (HtR) and hypotension-prone (HtP),
assuming that HRT is present in HtR patients, but not in HtP
patients.

II. METHODS

A. Extended IPFM Model

The original IPFM model was introduced to generate a series
of occurrence times for sinus beats with known rate variability,
reflecting basic electrophysiological properties of the sinoatrial
node [14], [15]. The model input signal is the sum of a dc level,
accounting for mean heart rate, and a zero-mean modulating sig-
nal m(t), accounting for variability due to both parasympathetic
and sympathetic activity [see Fig. 2(a)].

The input signal is integrated until a threshold T0 is reached,
representing the mean interval length between successive events.
An event is created at time tk as the output of the model, and the
integrator is reset to zero. As a result, the output signal of the
IPFM model becomes an event series that represents the beat
occurrence times. In mathematical terms, the following equation
defines the series of event times:∫ tk

0
(1 + m(τ))dτ = kT0 , k = 0, . . . ,K (1)

where k is an integer that indexes the kth beat following the
initial event assumed to occur at t0 = 0.

The heart timing signal dHT(t) is at time tk defined as the
difference between the expected occurrence time at the mean

Fig. 2. (a) Block diagram of the original IPFM model. (b) Block diagram
of the extended IPFM model. (c) Switches, S1 and S2, in the extended IPFM
model. The switches in (b) are drawn in the state of a normal sinus rhythm.
Dashed lines describe control signals.

heart rate kT0 and tk [16]. It has been shown that the heart timing
signal is closely related to the IPFM model and its modulating
signal m(t) [15]. In order to clarify this relation, the model
equation in (1) is rewritten for a particular tk so that∫ tk

0
m(τ)dτ = kT0 − tk

≡ dHT(tk ) (2)

where T0 must be estimated from the available data before
dHT(tk ) can be computed. Thus, m(t) is the derivative of
dHT(t), the former reflecting the membrane potentials of the
sinoatrial cells.

During sinus rhythm, the electrophysiological influence of a
supraventricular ectopic beat (SVEB) may be viewed as a reset
of the charging potentials in the sinoatrial node. In order to
incorporate this property in the IPFM model, the integrator has
to be reset at tsl corresponding to the lth SVEB [see Fig. 2(b)].

A normal heartbeat will induce an electrical wave propagating
from the atria to the ventricles, whereas a VEB will induce a
retrograde wave propagating from the ventricles to the atria [17].
The electrical wave from a normal heartbeat will not arrive to the
ventricles if a VEB is present, since the wave will be interrupted
by the retrograde wave induced by the VEB. In the extended
model, proposed in this paper, this interruption is accounted
for by the switch S1 that opens at tvl , corresponding to the
occurrence time of the lth VEB, and which closes at tvl + tr ,
where tr corresponds to the ventricular refractory period [see
Fig. 2(b) and (c)]. These modifications account for SVEBs and
VEBs when generating the occurrence times of normal sinus
beats without turbulence.

In order to account for the HRT phenomenon, additional feed-
back is introduced in the model. Physiologically, HRT is trig-
gered at tkl +1 by the diastolic blood pressure drop induced by
the VEB, where tkl +1 denotes the occurrence time of the first
normal sinus beat that follows the lth VEB. The first normal
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sinus beat before the lth VEB is denoted as tkl
, so the sequence

of beat times is
. . . , tkl

, tvl , tkl +1 , . . . .

HRT is incorporated by feedback involving a linear system with
impulse response hl(t), where hl(t) is the turbulence associated
with the lth VEB [see Fig. 2(b)]. The feedback branch models
the baroreceptors so that HRT is triggered by an impulse fed to
the linear system at tkl +1 . The summation of all different HRTs,
denoted s(t), caused by different VEBs, i.e.,

s(t) =
Ne∑
l=1

hl(t − tkl +1) (3)

is added to the input of the integrator of the IPFM model; Ne

denotes the number of VEBs. Consequently, dHT(tk ) in (2) is
redefined according to∫ tk

0
x(τ)dτ =

∫ tk

0
(m(τ) + s(τ))dτ = kT0 − tk

≡ dHT(tk ). (4)

The impulse response hl(t) is causal and returns to zero when
the turbulence has vanished. It is assumed that hl−1(t − tkl−1 +1)
returns to zero prior to the onset of the subsequent HRT hl(t −
tkl +1) since in practice, HRT is only analyzed when the distance
between successive VEBs is sufficiently large, i.e., at least 15
beats [2].

In this paper, HRT is modeled as a linear combination of basis
functions,

hl(t) = bT (t)θl (5)

where b(t) = [b1(t) b2(t) · · · br (t)]
T contains r basis func-

tions and θl is an r × 1 weight vector associated with the lth
VEB. Thus, the extended IPFM model accounts for variations
in both HRT dynamics and amplitude through b(t) and θl . The
dynamics of HRT is characterized by b(t) and determined from
a learning dataset, whereas the weights θl define the turbulence
shape in the lth VEB.

B. KL Basis Functions

In this study, data-dependent basis functions are considered,
and in particular, the KL basis functions since these are optimal
for a given set of data. The KL basis functions are obtained as
the most significant eigenvectors of the mean correlation matrix
Rx that results from subjects with HRT. For each subject, the
sample correlation matrix Rx is obtained by

Rx =
1

Ne

Ne∑
l=1

xlxT
l (6)

where xl is an N × 1 vector with HRT data from the lth VEB in
a subject. In order to obtain xl , an estimate of the input x(t) to
the IPFM model is derived from a second-order approximation
to the derivative of dHT(t) [cf. (4)] according to

d

dt
dHT(tk ) = x(tk ) ≈ 2T0

tk+1 − tk−1
− 1

k = kl + 2, kl + 3, . . . , l = 1, 2, . . . , Ne. (7)

For each subject, the mean RR interval T0 in (7) is estimated
from the 10 RR intervals that precede each VEB,

T0 =
1

Ne

Ne∑
l=1

tkl
− tkl −10

10
(8)

where tkl
is the occurrence time of the sinus beat immediately

prior to the lth VEB.
For the lth VEB, the input signal xl(t) to the IPFM model is

obtained from x(t) according to

xl(tk ) =
{

0, k = 0, . . . , kl + 1
x(tk ), k = kl + 2, . . .

, l = 1, 2, . . . , Ne.

(9)
The definition in (9) implies that tkl +1 is the trigger time of
the lth HRT, and that (7) can be applied. Since tk is unevenly
spaced, further processing is required to produce the evenly
sampled vector xl . This vector results from interpolation of
xl(tk ) to produce xl(t) and followed by equidistant resampling
of xl(t). Using a sampling rate of Fs Hz, resampling starts at
tkl +1 to assure that xl contains the HRT from its very onset,

xl =




xl(tkl +1)

xl

(
tkl +1 +

1
Fs

)
...

xl

(
tkl +1 +

N − 1
Fs

)




. (10)

Note that HRT is assumed to start after tkl +1 , cf. (9). If it would
start before tkl +1 , it could not be reflected in the RR series in
any case. It should be noted that the first normal RR interval
after the VEB is between tkl +1 and tkl +2 .

Once Rx is estimated for each of the subjects, the mean
correlation matrix Rx for all subjects is determined. The r
most significant eigenvectors of Rx are chosen as the discrete
representation of the basis functions contained in b(t). Thus,
(5) becomes

hl = Bθl (11)

where hl is an N × 1 vector with the discrete representation of
the HRT associated with the lth VEB, and B is an N × r matrix
with the r most significant eigenvectors in its columns,

B =




bT (0)

bT

(
1
Fs

)
...

bT

(
N − 1

Fs

)




. (12)

C. HRT Detection

Our approach to detect and characterize HRT is based on the
extended IPFM model, and in particular, the linear model in
(11). The detection procedure is formulated as one in which
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HRT is either absent (hypothesis H0) or present (hypothesis
H1),

H0 : x = m

H1 : x = Bθ + m. (13)

Here, x is an N × 1 vector with the observed data, m is an
N × 1 vector considered as random white noise characterized
by a Gaussian probability density function (pdf)N (0, σ2I) with
σ2 as unknown parameter, B is a known N × r (r ≤ N ) orthog-
onal matrix, and θ is an r × 1 vector with unknown weights.
The noise term m signifies nondesired signal components, ac-
counting for errors introduced by sampling of the ECG and QRS
detection. The noise term may also account for the presence of
HRV when some components of HRV remain in play during
turbulence. The detector design is here based on a “least infor-
mative” approach where no assumption is made on noise color
(also see Section V).

The design of the HRT detector is based on the Neyman–
Pearson theorem [18], which maximizes the probability of de-
tection PD for a given probability of false alarm PFA = α by
deciding H1 if

L(x) =
p(x;H1)
p(x;H0)

> γ (14)

where p(x;Hi) denotes the pdf of x under Hi , and the threshold
γ is found from

PFA =
∫
{x:L(x)>γ}

p(x;H0) dx = α. (15)

However, the pdfs in (13) contain unknown parameters,
i.e., σ2 and θ. Employing the generalized likelihood ratio test
(GLRT), the unknown parameters are first estimated with max-
imum likelihood estimation (MLE), and then, inserted into the
likelihood ratio test L(x) [18]. With the hypothesis test in (13),
the GLRT decides H1 if

LG (x) =
p(x; θ̂, σ̂2

H1
,H1)

p(x; σ̂2
H0

,H0)
> γ (16)

where θ̂ and σ̂2
H1

are the MLEs of θ and σ2 , respectively, as-
suming that H1 is true (jointly maximize p(x;θ, σ2 ,H1)), and
σ̂2
H0

is the MLE of σ2 assuming that H0 is true [maximizes
p(x;σ2 ,H0)].

The resulting test statistic T (x) of the GLRT in (16) is used
for HRT detection (see the Appendix). HypothesisH1 is decided
if

T (x) =
N − r

r

θ̂T θ̂

xT x − θ̂T θ̂
=

N − r

r

xT BBT x
xT (I − BBT )x

> γ′

(17)
where θ̂ = BT x and γ′ is a threshold determined by a given
PFA . The energy projected on the signal space (spanned by
r basis functions) is given by xT BBT x, whereas the energy
projected on the orthogonal (N − r)-dimensional noise space
is given by xT (I − BBT )x. As a result, the test statistic T (x)
can be viewed as an estimate of the SNR that reflects the ratio
between HRT and HRV.

D. HRT Averaging

In contrast to existing HRT studies, this study does not assume
that HRT is based on averaged data, i.e., θl can be estimated
from a single VEB. In case averaging is combined with the
GLRT detector, the observations in (17) are replaced with

x =
1

Ne

Ne∑
l=1

xl . (18)

Due to the linear HRT model, θ will represent the weights for
the averaged HRT and are obtained in a way analogous to (18),
i.e.,

θ =
1

Ne

Ne∑
l=1

θl . (19)

E. HRT Time Scaling

Coupling between HRT duration and heart rate is implicit to
both TO and TS as they depend on beat index, whereas it is not
for the present HRT detector. If such coupling would be present,
it is natural to assume that increased heart rate is associated
with shorter HRT duration and vice versa. In terms of the IPFM
model, such coupling can be incorporated by normalizing the
input signals xl(t) in (9) with respect to mean heart rate,

xl

(
T 0

T0
tk

)
=

{
0, k = 0, . . . , kl + 1

x(tk ), k = kl + 2, . . .
,

l = 1, 2, . . . , Ne (20)

where the time axis is scaled with T 0/T0 ; T 0 denotes the overall
mean RR interval for all VEBs in all subjects.

The vector xl is then obtained from interpolation of (20)
followed by resampling of xl(t), starting at (T 0/T0)tkl +1 in
order to assure that xl contains the HRT from its very onset.
The sample correlation matrix Rx is determined by (6), after
which the mean correlation matrix Rx is determined. Finally,
the r most significant eigenvectors of Rx are chosen as the
discrete representation of b(t).

III. DATA AND PERFORMANCE MEASURES

A. Simulation

The extended IPFM model is used to evaluate the performance
of HRT detection. In this model, the mean interval length is
set to T0 = 0.8 s, i.e., a heart rate of 75 bpm, as this is the
mean heart rate in the European ST-T database (see later). The
shape of hl(t) is fixed and deterministic, obtained from the
KL representation of the averaged HRT from the learning set
described later. The underlying HRV, being modeled by m(n)
as the discrete representation of m(t), is obtained as the output
of a seventh-order autoregressive (AR) model with white noise
as input [see Fig. 3(a)]. The power spectrum Sm (ejω ) of m(n)
is given by

Sm (ejω ) = σ2
w |H(ejω )|2 =

σ2
w∣∣1 +

∑7
q=1 aqe−jωq

∣∣2 (21)
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Fig. 3. (a) HRV is modeled as the output m(n) of a linear system H (ejω )
fed by white noise w(n). (b) Power spectrum of m(n).

where

(a1 , . . . , a7) = (−1.6265, 1.8849,−1.8327, 1.2970,

− 0.7758, 0.4133,−0.2136)

and σ2
w = 0.000404 [16], using a sampling rate of 1 Hz of m(t).

Note that this sampling rate influences m(t), but is unrelated to
the mean heart rate used in the simulation model that can have
any value higher than 60 bpm [i.e., “physiological” sampling of
m(t) at a rate higher than 1 Hz] as long as the HRV spectrum
is confined to 0–0.5 Hz. If the spectral content of m(t) exceeds
0.5 Hz, the heart rate should be at least twice the maximum
spectral component of m(t) in order to avoid aliasing [19]. The
power spectrum Sm (ejω ) is displayed in Fig. 3(b).

Three types of simulations were performed in order to evalu-
ate HRT detector performance. The first type evaluated perfor-
mance at different SNRs. The SNR associated with the lth VEB
was calculated according to

SNRl = 10 log10

(
hT

l hl

mT
l ml

)
(22)

where ml is an N × 1 vector with the samples of m(n) as-
sociated with the lth VEB. Different SNRs were obtained by
changing the relation between the energy in hl and ml (weight-
ing hl with a suitable factor) before adding them to the input of
the extended model. Thus, the noise power was fixed, whereas
the signal energy was changed to produce different SNRs.

The second type of simulation evaluated the influence of
QRS detection inaccuracies on HRT detection. Such inaccura-
cies were studied by adding zero-mean Gaussian noise to the
occurrence times of the sinus beats tk produced by the extended
model.

The third type of simulation evaluated the influence of dif-
ferent sampling rates Fr of the original ECG signal on HRT
detection. This was studied by adding zero-mean uniform noise,
[−1/2Fr , 1/2Fr ], to the occurrence times tk to account for time
quantization errors.

The performance was measured by the probability of detec-
tion PD and the probability of false alarm PFA , obtained by

PD =
N(H1 |H1)

N(H1 |H1) + N(H0 |H1)
(23)

and

PFA =
N(H1 |H0)

N(H1 |H0) + N(H0 |H0)
(24)

respectively, where N(Hi |Hj ) denotes the number of Hi de-
cisions when Hj is true. Thus, N(H1 |H1) denotes when HRT
is present and detected, N(H0 |H1) when HRT is present but
missed (missed turbulence), N(H1 |H0) when HRT is absent but
detected (false alarm), and N(H0 |H0) when HRT is correctly
decided as absent.

Different values of PFA were obtained by changing the detec-
tion threshold γ′ for the HRT parameter of interest. Detection
performance is presented using the receiver operating charac-
teristic (ROC) in which PD is displayed versus PFA . It should
be noted that the definitions of PD and PFA are the same for TO
and TS as for T (x). The difference to the standard evaluation of
TO and TS is that we are not using fixed threshold values (i.e.,
TO = 0%, TS = 2.5 ms/beat), but allow them to change. For
different threshold values, PD and PFA are determined for the
parameters TO, TS, and T (x).

B. ECG Datasets

The basis functions were determined from the European
ST–T database that contains ambulatory two-lead ECG record-
ings (sampled at a rate of 250 Hz) from patients with myocardial
ischemia, see [20] for further information on the database, and,
e.g., [21] and [22] for its use in HRV analysis. Annotation infor-
mation on beat occurrence times and beat categories, including
VEB, is included in the database. In the present study, a total
of 31 patients were selected from the database since they all
fulfilled the requirement of having VEBs separated by at least
15 sinus beats. The selection resulted in 84 VEBs that were used
as learning set. The signal vector xl resulted from resampling
of xl(t) during a time interval of 10 s using Fs = 2 Hz, i.e.,
N = 21. The three most significant KL basis functions were
chosen as the columns in B, i.e., r = 3.

The HRT test statistic T (x) was, together with TO and TS,
studied on a target dataset that consisted of patients with end-
stage renal failure who underwent regular hemodialysis treat-
ment three times a week. The goal was to distinguish between
patients considered HtR and HtP. Four patients were included in
each group from a total of 16 patients once patients with VEBs
separated by less than 15 sinus beats or with atrial fibrillation
during the course of the recording had been excluded. Evidently,
patients without VEBs were also excluded. Before the ECG was
recorded, a physician classified each patient into one of the two
groups based on the patient’s clinical history, such as the number
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Fig. 4. Averaged RR interval tachogram from 84 VEBs in 31 myocardial
ischemic patients, with TO = −0.4% and TS = 3.2 ms/beat. Beat numbers 11
and 12 are the coupling interval and the compensatory pause, respectively.

Fig. 5. Cumulative energy as reflected by the number of KL basis functions.
The cumulative energy was obtained as the cumulative sum of eigenvalues,
divided by the sum of all eigenvalues.

of hypotension episodes per month. The ECGs were acquired
during clinical treatment at Park Dialys (Lund, Sweden) and
Helsingborg Hospital (Sweden), lasting from 3 to 5 h. The ECG
sampling rate was Fr = 1000 Hz. The study was approved by
the local ethics committee.

IV. RESULTS

A. Basis Functions

The European ST–T database with ischemic patients was
assessed with respect to HRT, and the averaged RR interval
tachogram from the 84 VEBs was determined (see Fig. 4). The
parameters TO and TS were determined, resulting in −0.4%
and 3.2 ms/beat, respectively (TO < 0% and TS > 2.5 ms/beat
are considered normal). Thus, HRT is present in the database,
although not guaranteed in all the patients (see Section V).

The three most significant KL basis functions, obtained ac-
cording to Section II-B, accounted together for 96% of the total
energy from the total of 21 KL basis functions (see Fig. 5).

These three functions may be given the following interpreta-
tion: the most significant basis function have the shape of a step
function, the second reflects the “average” HRT, and the third
reflects a delayed contribution to HRT (see Fig. 6). It is common
that the heart rate prior to a VEB and after the HRT differs. This
offset in heart rate is reflected by the first basis function, e.g., a
positive weight indicate a higher heart rate after the HRT than
prior to the VEB. The significance of the first basis function
is obscured when the averaged HRT is obtained from several
VEBs, since the offset tends to be canceled by averaging. This
can be observed in the averaged HRT, which is almost entirely
described by the second basis function, while the contribution
from the first and the third are negligible (see Figs. 4 and 6).

B. Simulation

The detection performances of T (x) and TS are similar and
virtually error free at 10 dB SNR, while the performance of TO
is inferior (see Fig. 7). It is obvious from this diagram that the
performance of T (x) is superior to that of TO and TS when the
SNR decreases.

Different SNRs may be interpreted as different numbers of
VEBs used for averaging. The detection parameter PD is dis-
played as a function of the SNR for a fixed PFA = 0.05 in
order to relate the performance of the different HRT detectors
to averaging (see Fig. 8). The horizontal differences between
the curves in Fig. 8 can be interpreted as a power gain of T (x)
with respect to TO and TS. For PD = 0.95, there is a 6 dB gain
between T (x) and TO, and a 3 dB gain between T (x) and TS.
This means that T (x) achieves the same performance as TO,
using only one-fourth of the number of VEBs for averaging,
and the same performance as TS with only half the number of
VEBs, assuming that HRT and noise in different VEBs are un-
correlated [15]. In addition, TS achieves the same performance
as TO with only half the number of VEBs for averaging, since
there is a 3 dB power gain between them.

The influence of QRS detection inaccuracies on HRT detec-
tion was studied for T (x), TO, and TS (see Fig. 9). The detection
performance of T (x) is unaffected by QRS jitter with a standard
deviation of 0.5 ms, whereas TO and TS are slightly reduced
(see Fig. 9). If the standard deviation is larger than 0.5 ms, the
performance of T (x) is superior to both TO and TS (see Fig. 9).

The influence of the sampling rate Fr of the original ECG sig-
nal on HRT detection was found to be negligible for all detectors
when Fr = 1000 Hz was used (see Fig. 10). However, for lower
rates, the performance of T (x) was vastly superior to both TO
and TS. For example, with a sampling rate of Fr = 250 Hz
and a PFA = 0.05, PD for T (x), TS, and TO were 100%, 64%,
and 38%, respectively (see Fig. 10).

C. Real Data

The parameters T (x), TO, and TS were calculated for the
eight hemodialysis patients. The averaged HRT from each pa-
tient was used in the calculation of the different HRT parame-
ters. In the calculation of T (x), the averaged HRT was obtained
by (18), and in the calculation of TO and TS, the averaged
tachogram was used. The results of all three HRT parameters
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Fig. 6. Three most significant KL basis functions, weighted with their respective eigenvalues. The first KL basis functions is the most significant, and so forth.

Fig. 7. ROC curves for different SNRs.

Fig. 8. PD as a function of the SNR, for PFA = 0.05. The power gain is 6 dB
between T (x) and TO, and 3 dB between T (x) and TS, for PD = 0.95.

suggest that HRT is more present in HtR than in HtP patients,
when comparing the mean values of the two groups (see Table I).
There was a larger overlap in TS between the patients in the two
groups, when compared to T (x), and a much larger overlap in
TO when compared to both TS and T (x) (see Table I). Thus,
T (x) appears to be better suited to distinguish between HtR
and HtP patients, since the separation of the patients in the two
groups is better than for TS, and much better than for TO.

D. HRT Time Scaling

The three most significant KL basis functions accounted to-
gether for 95% of the total energy from the 21 obtained KL
basis functions, which is slightly lower than without scaling
(i.e., 96%). These three basis functions are similar to those ob-
tained without scaling and displayed in Fig. 6. The detection
performance would improve if the heart rate influenced the du-
ration of HRT with respect to time. However, the separation
between HtR and HtP hemodialysis patients did not improve
when scaling was included.

The results suggest that the heart rate does not influence HRT
duration with respect to time, since the performance did not
improve, but rather deteriorated with scaling.

V. DISCUSSION

This paper introduces a model-based approach to HRT de-
tection and demonstrates on simulated data that the achieved
performance is superior to that of TO and TS, to date the two
most common detection parameters. Interestingly, the simula-
tion results show that TS performs better than TO, a result
that has been previously established in several clinical studies,
whereas to the best of our knowledge, it is quantified for the first
time with simulations. The parameter T (x) achieves the same
performance as TS with only half the number of VEBs, whereas
TS achieves the same performance as TO with half the number
of VEBs for averaging (Section IV-B).
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Fig. 9. ROC curves describing the influence of QRS detection inaccuracies on HRT detection, studied by QRS jitter with different standard deviations (std). The
SNR was equal to 10 dB.

Fig. 10. ROC curves describing the influence of sampling rate Fr on HRT detection. The SNR was equal to 10 dB.

TABLE I
HRT PARAMETERS T (x), TO, AND TS FOR THE EIGHT HtR AND HtP HEMODIALYSIS PATIENTS

Using a small dataset of ECGs acquired from dialysis pa-
tients, this paper shows that the model-based approach achieves
better separation between patients being prone and resistent to
hypotension than what is achieved with TO and TS. However,
the significance of this result needs to be further established in
a study where a larger dataset is used.

It would be desirable to only use subjects with HRT when
computing the basis functions; however, this is not possible
without having to resort to existing parameters for HRT de-
tection. In this study, subjects with and without HRT were
merged when computing the basis functions since the subjects
without HRT do not contribute much to the dominant basis
functions.

The GLRT statistic T (x) in (17) was derived under the white
noise assumption. While this assumption is unrealistic because
the noise corresponds to spontaneous variability in heart rate,
it is nonetheless adopted as no estimation of HRV spectrum
is required, and accordingly, a much simpler detector structure

results. It is well known that inaccurate spectral estimates may
actually cause the performance to degrade beyond that achieved
by a detector based on the white noise assumption. The present
HRT detector was found to have excellent performance on the
simulated signals despite the fact that the detector was mis-
matched to the spectral HRV properties [see Fig. 3(b)].

To shed further light on the white noise assumption, it is
interesting to note that TS, being employed in numerous clinical
studies without much methodological discussion, can also be
related to a white noise model, namely

x(n) = A + Bn + v(n) (25)

where A denotes the intercept, B denotes the slope, and v(n)
denotes the white Gaussian noise. The MLE of B is identical
to the one used to compute TS [23]. While TS is introduced
from heuristic reasoning, this parameter can just as well be
viewed as one associated with the statistical signal model in (25).
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Undoubtedly, TS is crucial to the many HRT studies and its
significance is not diminished by the underlying white noise
assumption; the same observation could also apply to the present
approach.

Detector performance was studied with respect to the accu-
racy of the QRS detector (i.e., trigger jitter) and the sampling
rate of the ECG signal. The results show that the parameters TO
and TS are much more sensitive to trigger jitter and lower sam-
pling rates than is T (x). From HRV analysis, it is well known
that too low sampling rate introduces bias and uncertainty in
the HF and LF/HF indices, especially when the RR interval has
low variability [24], [25]. However, the significance of sampling
rate in HRT analysis has previously not been reported in the lit-
erature. The present result underlines the importance of either
acquiring the ECG at a high sampling rate (preferably 1000 Hz)
or digitally interpolating the ECG to a high rate if the original
rate is low [26]. The precision in locating the fiducial point of
the QRS complex at a low sampling rate improves when inter-
polation is used, and accordingly, also RR interval variability.
Since many HRT studies have been based on Holter record-
ings, where the sampling rate may be as low as 125 Hz [13],
[27], [28], interpolation should be performed to optimize perfor-
mance; this recommendation applies in particular to TO and TS
whose performance are more sensitive to low sampling rates.

The second-order approximation to the derivative of dHT(t),
in (7), may be interpreted as a low-pass filtered instanta-
neous heart rate, since the first-order approximation, T0/(tk −
tk−1 − 1), is a zero-mean normalized instantaneous heart rate
1/(tk − tk−1). In the calculation of the KL basis functions and
the HRT test statistic, the second-order approximation is used,
since it is less sensitive to noise compared to the first-order
approximation due to the low-pass filtering effect.

In the extended IPFM model, the scope of the linear system
is to model the HRT shape, not the entire feedback mechanism,
and therefore, the modulating signal x(t) receives a feedback
signal s(t) triggered by the VEB. The shape of the feedback
signal is modeled by the signal subspace defined by the most
significant KL basis functions. A simple way to connect VEB
triggering of HRT to the feedback signal is by means of a linear
system whose impulse response hl(t) characterizes the turbu-
lence feedback and whose input, composed of impulses, triggers
the phenomenon. Thus, the linear system is not associated with
any assumption on the interactions responsible for HRT, but
it is a mathematical model of the output shape and timing of
the feedback signal. While the baroreceptor response cannot be
modeled as a linear system, the turbulence phenomenon, mani-
fested as a heart rate change, may be modeled by a linear system
as suggested by the 96% of the energy accounted for by the three
most significant basis functions.

VI. CONCLUSION

Model-based signal processing is developed for HRT detec-
tion and characterization. The resulting technique does not only
provide insight on the HRT phenomenon, but it also relates to
the HRV through the IPFM model and the heart timing signal.
The simulation results show that T (x) achieves the performance

of TO and TS at a considerably lower SNR. It is also shown that
T (x) performs much better in the presence of QRS jitter and
at lower ECG sampling rates than do TO and TS. The HRT
test statistic T (x) appears to be better suited for distinguishing
between HtR and HtP patients, but the significance of this result
needs to be further established.

APPENDIX

DERIVATION OF THE TEST STATISTIC T (x) FROM

THE GLRT IN (16)

The GLRT in (16) decides H1 if

LG (x) =
p(x; θ̂, σ̂2

H1
,H1)

p(x; σ̂2
H0

,H0)
> γ (26)

where

p(x;θ, σ2 ,H1)

=
1

(2πσ2)N/2 exp
[
− 1

2σ2 (x − Bθ)T (x − Bθ)
]

(27)

and

p(x;σ2 ,H0) =
1

(2πσ2)N/2 exp
[
− 1

2σ2 xT x
]

. (28)

For the linear model, θ̂ is easily shown to be [23]

θ̂ =
(
BT B

)−1
BT x = BT x (29)

where BT B = I, since B is orthogonal. The MLE of σ2 un-
der H1 and H0 is found by maximizing p(x; θ̂, σ2 ,H1) and
p(x;σ2 ,H0), respectively, over σ2 :

σ̂2
H1

=
1
N

(x − Bθ̂)T (x − Bθ̂) (30)

σ̂2
H0

=
1
N

xT x. (31)

Note that

σ̂2
H1

=
1
N

(xT x − xT Bθ̂ − θ̂T BT x + θ̂T BT Bθ̂)

=
1
N

(xT x − θ̂T θ̂)

= σ̂2
H0

− 1
N

θ̂T θ̂. (32)

Hence,

p(x; θ̂, σ̂2
H1

,H1) =
1(

2πσ̂2
H1

)N/2 exp
[
−N

2

]
(33)

and

p(x; σ̂2
H0

,H0) =
1(

2πσ̂2
H0

)N/2 exp
[
−N

2

]
. (34)

Thus, the GLRT is

LG (x) =

(
σ̂2
H0

σ̂2
H1

)N/2

> γ. (35)
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If we let

T (x) =
N − r

r
(LG (x)

2
N − 1) >

N − r

r
(γ

2
N − 1) = γ′

(36)
which is a monotonically increasing function of LG (x) and
therefore an equivalent test statistic, then

T (x) =
N − r

r

σ̂2
H0

− σ̂2
H1

σ̂2
H1

=
N − r

r

θ̂T θ̂

xT x − θ̂T θ̂
> γ′. (37)
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