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Abstract

In this paper an adaptive filter for high-resolution ECG sig-
nals is presented which estimates the deterministic component
of the ECG signal and removes the noise. The filter needs two
inputs: the signal (primary input) and an impulse correlated
with the deterministic component (reference input). It uses the
LMS algorithm to adjust the weights in the adaptive process. A
description of the characteristics and performance of this filter
is presented.

The adaptive filter was tested by simulation using real ECG
signals and its performance was compared with signal averaging
technique. Several signal-to-noise ratios were considered and
the effect of shape variations was also studied. An application
to ventricular late potentials is presented. Results obtained using
this adaptive filter and signal averaging were compared.

Introduction

The study of low-amplitude cardiac signals by means of
High-Resolution Electrocardiography has been an important ad-
vance in the non-invasive cardiological diagnosis. Signal aver-
aging has been the technique most generally used to improve the
signal-to-noise ratio (SNR) of low-amplitude potentials'. This
technique needs a large number of beats in order to estimate the
deterministic component of the signal, that is supposed to keep
constant for all time.

The limited acceptance in clinical use of signal averaging
technique may be due to the effect of errors on the definition of
a fiducial point and dynamic variations of the signal shape in
real cases.

Adaptive signal processing improves the detection of the low-
level potentials in High-Resolution Electrocardiography, in rela-
tion to the classical signal averaging technique. Adaptive filters
permit to detect time-varying potentials and to track the dy-
namic variations of the signal. These types of filters learn the
deterministic signal and remove the noise. Besides, they modify
their behaviour according to the input signal. Therefore, they
can detect shape variations in the ensemble and thus can obtain
a better signal estimation.

In this work we propose an adaptive filter for signals time-
locked to a stimulus. In particular, this filter can be applied to
low-level potentials linked to high-level waves, in high-resolution
ECG signals. Next, we present a simulation study using real
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ECG signals to test the performance of the method. Finally, an
application to ventricular late potentials detection is presented.
Results obtained using the adaptive filter and signal averaging
were compared.

The adaptive filter

Adaptive filters have been used already in bioelectric signal
processing. In particular, predictors® were applied to detect
His-Purkinje signals and ventricular late potentials®. Predictors
consider the signal is recurrent and the noise is supposed to
be random and gaussian. Thus, both inputs of the filter (the
primary and the reference signals) are the same, but the former
is a delayed signal of the latter. This filter removes the muscle
noise, but not the 50-Hz interference due to its periodicity.

Another adaptive approach applied to bioelectric signals is
the interference cancelling?. Here the reference signal must be
a correlated version of the noise that is present in the primary
signal. This filter was used to cancel the 50-Hz interference®
and to detect P-waves in the ECG by QRS-T cancellation®.

In this work we present an adaptive filter for high-resolution
ECG signals that we have proposed recently’. This filter can
be applied to event-related signals in general and, in particu-
lar, to low-amplitude potentials that are time-locked to a high-
amplitude wave of reference.

High-resolution ECG can be processed with this filter. In
this case, the signal we want to study (di) extends the interval
of interest in each cardiac beat and is considered like a record
of a random process defined by
k=0,..,L (€3]

dk:sk+nk

where s; is the deterministic component of the signal, ny is
additive noise no correlated with s;, and L + 1 is the number of
samples in each record.

The adaptive filter has two inputs (fig. 1). One is the primary
input (d)) that we want to filter, and the other is the reference
input (z), that is a unit impulse time-locked with the beginning
of each recurrence of s;. This impulse can be generated by
means of a signal detector or a more precise alignment method®
from the high-amplitude waves of reference in the signal dy.

1 k=0

Thus
x"={ 0 k=1,..,L

The output of this adaptive filter (y;) can be expressed, accord-
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Figure 1: Block diagram of the adaptive filter to estimate the
deterministic component s, of a signal dy., using a nonrecursive
adaptive transversal filter.

ing to the classical notation?, by

L
Yk =zw|kxk~i = W{Xk k =07-“1L 3
=0

where W, is the weight vector and X is the reference vector:

Wi = [wor wik . wixl? |, X = [z 2ot o 2]’ - @)
The error signal (e;) is defined as
ex=dr —yx k=0,...,L . 5)

Then, the mean-square error of a nonrecursive adaptive filter?
can be expressed by

¢ = E[€}] = E[d2] + WTRW — 2PTW (6)

where
R=EXX[] , P=E[dXy] ¢

are the input correlation matrix and the correlation vector, re-
spectively, and W is the weight vector W, taken as a variable.
Another more intuitive expression of ¢ can be derived directly
from (5):

€ = E[é}] = Bl(sy — y)"] + E[n2] . ®)

To obtain the minimum mean-square error, the weight vector W
must take the optimal value W*, known as the Wiener weight
vector:

W'=R'P. )

With the reference input considered in this application (2), we
obtain a simple expression R and P:

1
R = ml 9 tT[R] = 1 (10)
- 1 [ T
=Is1 S0 81 ... sp]” . (11)

Thus, in this case, the optimal weight vector is

W* =[50 51 ... .17 . (12)

That is, W* is the deterministic component s, of the signal dy.
In the steady state the filter output is

L

yk=2w;xk_; =wr=s k=0,.,L. (13)

i=0
Then, when the weight wector W, = W* the filter output be-
comes the deterministic component s;. In this case, the mean-
square error is minimum and can be obtained from (1), (6), (9),
(11) and (12)

Emin = E[d}] — PTW* = E[n] . 14)

The adaptive algorithm
The least-mean-square (LMS) algorithm? was used to adjust
the weights of the adaptive filter, in order to minimize the mean-
square error. This algorithm can be expressed by the following
equation:
Wk+1 = Wk + 2;15ka. (15)

where g is a gain constant.
In this case (2), the weight vector converges when y fulfils?

1
0 — =1 16
<p< "R . (16)
and the time constant of weight convergence (7,,.) is
L+1 L+1 a7

e = Tt R g

where 7,,,. is measured in sampling periods. Therefore, the
gain constant controls the stability and speed of convergence.
Thus, the convergence of weights can be obtained in the first
record (7. < L + 1) if an appropiate value of 4 is selected.

The value of the gain constant is a compromise between the
rate of adaptation and the excess mean-square error’ due to
the steady-state weight vector oscillations. The variation of the
weights around the optimal value W* produces a mean-square
error

€ = Emin(1 + M) (18)

where M is the misadjustment, that for this filter becomes
M=putrRl=p . (19)
Then, the mean-square error becomes

€= E[nL)(1+p) . (20)

Improvement of the signal-to-noise ratio
The interest of this adaptive filter is to estimate the deter-
ministic component of the ECG signal and remove the noise.
Therefore, the signal-to-noise ratio (SNR) must be improved.
The primary signal dj have a signal-to-noise ratio SN Ry:
Els}]  Els}]

= . 21
Eln?] ~ B(ds - s07) @)

SNRy =

In the steady state, the output signal y; has a signal-to-noise
ratio (SN R%), that can be defined as
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Els}]

SNRY = Bitge— s @
We can obtain from (8) and (20)
El(yx — s1)"] = pEIn}] . (23)

Thus the improvement of the SNR in the steady state (ASN R*)is

. SNR® 1
ASNR* = Grph=— .

(24

Simulation study
A simulation study was carried out to test the performance of
the adaptive filter. In this way, a signal was synthesized as a
sequence of records di. Each one is composed by the same QRS
complex (s;), selected from a real ECG signal, and additive
gaussian random noise (ny). Besides, a reference signal (zx)
was defined as an impulse at the beginnig of each record.

The adaptive filter was applied to these signals d; and zy.
Several signal-to-noise ratios of the signal d; were studied, and
different values of gain constant u were applied. A comparison
of the results obtained with adaptive filtering and with signal
averaging technique was carried out.

Fig. 2 shows the results for a SN R=10dB, after different
number of adaptations (ada). At the top, we can sce the de-
terministic component sy, that is present in each beat. The
second row shows differents records with the same SN R;. The
third row displays the signal estimated by signal averaging after
processing ada beats. Next, the estimation of the determinis-
tic signal by means of the adaptive filter (weights of the filter)
is shown for different values of gain constant x and after ada
records.

Calculated values of ASNR* (24) agree with the results
obtained in the simulation study. Thus, for example, a value
p = 0.01 causes a ASNR** = 100, a convergence time of 25
records. In this case, adaptive filtering and signal averaging
obtained comparable results, and thus we can validate that the
filter converges to deterministic component in ideal conditions.

Another and more interesting situation is when the determin-
istic component s doesn’t keep constant during all records. Fig.
3 shows a case where the first 80 records have a deterministic
component s, and the next 80 records have another s}. Here
the adaptive filter achieves better performance than signal av-
eraging, because it can learn more quickly the new si. Thus,
for example, we can observe it comparing the results after 120
beats with signal averaging and adaptive filtering (figure 3).

Application to ventricular late potentials
The adaptive filter described before was applied to high reso-

lution ECG signals in order to detect ventricular late potentials
(LP). Several ;x values were applied and a comparison with sig-
nal averaging was also carried out.

The ECG signals were measured by low-noise high-gain iso-
lated amplifiers and recorded with a PC-based digital acquisition
system. The signals were sampled at 5 KHz, with a resolution
of 16 bits. The uncorrected orthogonal leads (X, Y, Z) were

used in this study. These three bipolar leads were indepen-
dently processed by the adaptive filter and signal averaging. In
both cases, a matched filter® was used as alignment method to
define the z; signal and synchronize the beats, respectively.

Figure 4 shows, in the first row, a sequence of records that
include the QRS complex and ST segment from an ensemble of
100 cardiac beats. These signals correspond to an X lead from
a patient who had ventricular tachycardia and is a candidate to
show LP. Next, the results after averaging and adaptive filtering
are displayed in the same way as the simulation results.

Figure 5 shows the corresponding signals to fig. 4, after
high-pass filtering. The applied digital filter was a FIR filter
with a bandwidth of 50-250 Hz. In this filtered signal, we can
see remarkable late potentials estimated by signal averaging and
adaptive filtering. In this signal, the deterministic component
appears practically constant. Thus, signal averaging achieves
a signal estimation that keeps constant from the 25 first beats.
The adaptive filter obtains also good estimations, but is more
sensitive to dynamic variations.

. Conclusions .
An adaptive filter for high-resolution ECG signals has been pre-

sented. This filter estimates the deterministic component of the
signal, removing the noise uncorrelated with an impulse gener-
ated from a signal detector or an alignment method applied to
the signal.

The theoretical performance of the filter have been presented.
In particular, the convergence and the improvement of the SNR.
The simulation results agree with this study. The adaptive filter
have shown a better performance than signal averaging when the
signal present dynamic variations. By other hand, if the signal

keeps constant both techniques obtain comparables results.
Finally, the presented filter has shown to be a good method

to detect LP, and it permits to track the dynamic variations of
the signal. Then, a compromise between the convergence time
and the improvement of the SNR must be taken.
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#=0.005 Figure 2: Results for 80 beats (di) with the same deterministic component (s;).
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Figure 5: Filtered versions of the signals displayed in fig 4.
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