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Abstract - -The  most characteristic wave set in ECG signals is the QRS complex. 
Automatic procedures to classify the QRS are very useful in the diagnosis of cardiac 
dysfunctions. Early detection and classification of QRS changes are important in real- 
time monitoring. ECG data compression is also important for storage and data 
transmission. An Adaptive Hermite Model Estimation System (AHMES) is presented 
for on-line beat-to-beat estimation of the features that describe the QRS complex 
with the Hermite model. The AHMES is based on the multiple-input adaptive linear 
combiner, using as inputs the succession of the QRS complexes and the Hermite 
functions, where a procedure has been incorporated to adaptively estimate a width 
related parameter b. The system allows an efficient real-time parameter extraction 
for classification and data compression. The performance of the AHMES is compared 
with that of direct feature estimation, studying the improvement in signal-to-noise 
ratio. In addition, the effect of misalignment at the QRS marl( is shown to become a 
neglecting low-pass effect. The results allow the conditions in which the AHMES 
improves the direct estimate to be established. The application is shown, for 
subsequent classification, of  the AHMES in extracting the QRS features of an ECG 
signal with the bigeminy phenomena. Another application is highlighted that helps 
wide ectopic beats detection using the width parameter b. 
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1 In t roduct ion  

THE ELECTROCARDIOGRAPHIC (ECG) signal represents the 
electrical activity of the heart recorded on the body surface. 
The analysis of this signal is the most common way to study 
and diagnose cardiac dysfunctions. The ECG signal is 
characterised by its recurrent or periodic behaviour with each 
beat. Each recurrence is composed of a wave sequence, P, QRS 
complex and T waves, where the most characteristic wave set is 
the QRS complex. This complex represents the depolarisation 
phenomenon of the ventricles and therefore gives useful 
information about heart behaviour. The beat-to-beat cl~sifica- 
tion of the QRS complexes will permit us to follow the heart 
evolution and to detect arrythmias like premature ventricular 
contractions (PVC). The ECG data compression allows 
efficient storage of a large amount of ECG data and fast data 
transmission and signal processing for diagnosis. All these 
properties are of great importance in healthcare units and in 
those that need data transmission to a central processing unit. 
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Usually, the classification and tracking are performed 
through pattern recognition techniques (TRAHANIAS and 
SKORDALAKIS, 1990). These techniques use features that 
represent the data by a set of either heuristic descriptors 
(amplitude, area, width etc.) or formal features such as the 
coefficients of an orthonormal vector set (RAPPAPORT et  al., 
1982). These features represent the QRS complex as an 
element in a space where the similarity between beats is 
measured by the distance between their associated elements. 
The election of these features is a key point in obtaining a low- 
dimension feature space with retention of maximum signal 
information (data compression) and enhancement of distance 
between different classes of QRS (classification). In previous 
work, Stmmo et  al. (SORNMO et  al., 1981) have proposed and 
studied a set of features for QRS classification that consists of 
the coefficients of the QRS complex modelled by the Hermite 
functions. These functions are orthonormal; thus each feature 
has independent information and the signal can be represented 
with a low number of coefficients. It has been reported that, on 
average, 98.6% of signal energy can be represented with only 
three Hermite functions, thus making it an efficient method for 
classifying QRS complex (SORNMO et  al., 1981). The 
performance of the Hermite model as a data compression tool 
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of the complete ECG signal (PQRST complex) has been 
presented, obtaining a compression ratio of around I0 on ECG 
records from the MIT-BIH database (JANI~ et  al., 1993). For 
this reason, this model seems appropriate to efficiently classify 
QRS complexes and compress the ECG signal. 

Early detection and classification of QRS changes are of 
great interest in real-time monitoring such as in cardiac critical 
care units or operating room environments. In these circum- 
stances, it is important to develop signal-processing techniques 
that allow on-line feature extraction for subsequent classifica- 
tion of QRS patterns or data transmission to a central unit. 
Adaptive signal processing is appropriated for the on-line 
estimation of non-stationary signals that present a recurrent 
behaviour, attenuating the noise effect at the estimation 
(WIDROW and STEARNS, 1985). Many biomedical signals, in 
particular the ECG, present this recurrent behaviour. The 
adaptive signal-processing techniques have been applied to 
biomedical signals like ECG (WIDROW and STEARNS, 1985; 
FERRARA and WIDROW, 1981; THAKOR and Y1-SHENG, 1991; 
LAGUNA et al., 1992b) and evoked potentials (LAGUNA et  al., 
1992b; VAZ and THAKOR, 1989). 

In this paper, we present a detailed analysis of an adaptive 
Hermite model estimation system (AHMES) for the on-line 
determination of the Hermite model features of the QRS 
complex reported previously (LAGUNA et al., 1989; LAGUNA et 
al., 1992a). A width parameter is incorporated in this model, 
related to the width of the QRS complex. It can be considered 
as a feature specially relevant to ectopic beat detection (they 
are usually of a greater width than normal beats). We present 
the theoretical performance of the system using the LMS 
algorithm (WIDROW and STEARNS, 1985) to adjust the weights 
(coefficients), and we propose an a!gorithm to adapt the width 
parameter. We compare the signal-to-noise ratio improvement 
(ASNR) of the estimated coefficients by the AHMES with the 
direct estimation (inner product of  the ECG signal with the 
Hermite functions). This comparison establishes under what 
conditions this estimate yields a better signal-to-noise ratio. 
The effect ofmisalignment at the QRS mark is also studied and 
modelled as a function of the jitter dispersion. Applications of 
this system to extract the QRS complex features from several 
examples of ECG signals are presented. 

2 Hermite model of the QRS complex 

Orthonormal function modelling is a general method for 
approximating functions with a finite number of parameters 

tD 
(AHMED and RAO, 1975). The approximated function results as ~ 
the finite linear combination of the orthonormal basis elements. 

We can consider the d(t)  signal as composed of the noise- 
free QRS signal (QRS(t)) over its definition interval 

t 
(-T0/2,  T0/2); t = 0 is the time given by the QRS detector, -200 
and extended to - o o  and +oo with a zero extension. 

s'(t) = [ QRS(t) Itl < To~2 

0 Itl > To~2 (1) 

This s'(t) function represents the QRS complex and is 
an element of the linear vectorial space L2(-oo, c~), given 
that it satisfies J~-oo sa(t) dt < oo. The Hermite functions / ~ / ~  
(@,(t), n = 0 . . . . .  oo) form an orthonormal basis in the 
L2(-oo, oo) space (FRANKS, 1975) and are expressed as 

dPn(t, b) = 1 ~ e - ~ H n ( t / b )  (2) d 

where H . ( t / b ) a r e  the Hermite polynomials. We have 
considered the parameter b in order to have a scale factor 
related to the width of the QRS complex. These functions 

remain orthonormal for any width parameter b. Fig. 1 shows 
the first six Hermite functions for b --- 25 ms. Note that they 
look like the regular QRS shape and are in accordance with 
previous work (SORNMO et al., 1981), where it is shown that 
the first three functions recover, on average, more than 90% of 
signal energy. 

With these basis functions we can express the QRS signal 
s'(t) as 

st(t) : k cn(b)~n(t,  b) 
n = O  

�9 where 

? c.(b) = s ' ( t ) . . ( t ,  b)dt (3) 

and we can consider an N-order approximation of s'(t) as 

N - I  

s'(t) ~- ~_. c . (b)*n( t ,  b) (4) 
n = 0  

In this approximation, the QRS complex is characterised by the 
parameter b and the coefficients cn(b). These N + 1 parameters 
are the features that allow the data reduction and subsequent 
classification for a more efficient data transmission, storage 
and signal processing for diagnosis. 

3 Adaptive Hermite model estimation system 

In this Section, we present the adaptive Hermite model 
estimation system (AHMES) to adaptively calculate the cn and 
b coefficients. This system is based on the multiple-input 
adaptive linear combiner (ALe) with desired response 
(WIDROW and STEARNS, 1985). The primary input to the 
AHMES is the digitised QRS signal, and the reference inputs 
are the digitised Hermite functions. Fig. 2 displays the 
AHMES, where there are two adaptation processes: the weight 
adaptation and the parameter b adaptation. The parameter b 
acts as an input to a Hermite function basis generator that 
produces the elements of the reference input signals in the 
AHMES. 

The noisy primary input signal d(t) of the AHMES is 
synthesised as follows. We apply a QRS detector (PAN and 
TOMPK_rNs, 1985) to the digitised ECG signal that is suitable 
for real-time processing. Centred on each jth QRS detection 
mark of the QRS complex sequence, we define a signal 

0 200 

ms 

a b c 

e f 

Fig. 1 First five Hermite functions (~n, n = O, . . . .  5) in an interval 
of  400 ms (-200, 200) for b = 25: (a) n = O; (b) n = I; (c) 
n=2;  (d) n=3;  (e) n=4;  09 n = 5  
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C(k = Sk + flk 

WO~ 

)-- 

Fig. 2 Block diagram of AHMES based on multiple-input ALC; dk = primary input signal 
composed of QRS signal sequence sk plus noise nk not correlated with Sk; AHMES 
output signal is yk:w, = weights; b = width factor that generates c~, Hermite basis 
functions; these functions act as reference inputs to AHMES 

window (200ms) that is wide enough to contain the QRS 
complex plus additive noise. This signal window is extended 
with a zero flat line, on the right and on the left, to form the 
d~(t) = s j ( t )+ nj(t) signal, (n':(t) is the noise present in the 

QRS complex with the zero extension), 200 ms of the jth J 
which now extends enough to consider the low-order Hermite 
functions zero valued outside this time interval. We construct 
the new signal d(t) as the subsequent linking of all thejth QRS 
( j  = 1 . . .nqrs) ,  dj(t), delayed at time l from the dj_l(t  ). 

nqrs 
d(t) = ~ dj(t - j l )  = s(t) + n(t) (5) 

j=o 

nqrs 
s(t) = ~ s j ( t - j l )  (6) 

j = 0  

nqrs 
n(t) = ~ n j ( t - f l )  (7) 

j = 0  

This new signal, by itself, loses the actual timing of beats that 
contain valuable clinical information. However, it is presented 
in this way for convenience to analyse the AHMES behaviour, 
as shown in the following Sections. The primary input has 
been converted to a pseudo-periodic deterministic (QRSs) 
component plus added noise not correlated with the former. In 
real situation~, the signal d(t) does not need to be generated; 
instead we arrange the AHMES to activate when the QRS 
detector gives a mark and to act only during the 200 ms ECG 
signal window. After that, the AHMES is inhibited until the 
next QRS mark appears. In this way, we keep the valuable beat 
timing .information. The two situations are exactly equivalent 
from the AHMES point of view; the former is much more 
suitable for AHMES performance analysis. 

In Fig. 1 we can note that the exponential part of. q~n(t) 
decreases to zero when time goes on from the origin. This 
tendency is faster or slower depending on the parameter b and 
model order N. The time interval l = LT (T is the sampling 
period) is selected according to b and N values b < l as b 
closely represents the half-power QRS duration and l is 
selected to include the complete QRS complex. The sampled 
signal dk = d(kT), which acts as primary input to the AHMES, 
is the deterministic QRS complex signal sk = s(kT) plus 
additive noise nk = n(kT). I f  QRS signals are free of noise and 
repetitive, dk is a periodic signal. The non-repetitive part of the 
deterministic QRS signal and the noise give the non- 
periodicity of d~. 

Each reference input is formed by one of the N Hermite 
functions considered in the model. The construction of these 
inputs is analogous to the construction of dk. We concatenate 
sequences of the Hermite functions defined in an interval of L 
samples and centred around the synchronisation point (gen- 
erally the middle point of the interval). The reference inputs 
q~.k at the jth QRS recurrence are defined as 

nqrs I r = 2 r  L(j - �89 b)n kT -jLr  
j=0 LT ] (8) 

where T is the sampling period and H(t/a) is the rectangular 
window function of width a centred at t = 0, and with unitary 
amplitude. The parameter b is continuously recalculated and 
acts as input to the Hermite function generator. 

The output signal of the system is Yk which results from the 
linear combination of the Hermite functions, each one of which 
is affected by a weight factor w.. These weight factors 
characterise the QRS complex in this model. Thus, they are the 
features that describe the QRS. The error signal ek, the 
difference between the original signal and the model output 
signal, is used to adjust the weights and the parameter b. 

We study the theoretical performance of the system 
according to the standard notation for the ALC (WtDROW 
and STEARNS, 1985). Then the model output signal is defined 
a s  

- N - 1  
yk(b) = ~ w,kX,  k (b )=  WrXk(b)  (9) 

n=O 

where X.k(b) = ~.k(b), Xk  is the reference vector and W, is 
the weight vector 

Xk(b) = [Xok(b), Xlk(b) . . . . .  X(N-  ok(b)] T, 

Wk = [wok, wlk . . . . .  W(N- 1)k] r (10) 

The error signal ek can be expressed as 

ek = ak --yk(b) = dk -- Wff Xk(b) (11) 

The mean-square error (MSE) between the signal under study 
and the estimated signal can be expressed (WIDROW and 
STEARNS, 1985) as 

r = e[e ] = Eid ] + W 'RW - Ze(b)r W 
(12) 

R = E[Xk(b)Xr(b)], P(b) --- E[dkXk(b)] 

where R and P(b) are the input correlation matrix and the 
cross-correlation vector, respectively, and W is the weight 
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vector W~, taken as a variable. Given that the Hermite 
functions remain orthonormal for any parameter b, the R 
matrix results proportional to the identity matrix and does not 
depend on parameter b. 

R =~-~-~I (13)  

In the ECG signal, the noise is not correlated with the beats 
sequence; thus we can assume the noise n, is not correlated 
w~th the reference inputs X, .  The cross-correlation vector P 
then results proportional to the coefficients c,(b) that describe 
the QRS complex in the Hermite model 

1 
P = L-T [c0(b), Cl (b) . . . . .  q s -  o(b)] r (14) 

If we minimise this MSE ~ with respect to the weight vector 
(WIDROW and STEARNS, 1985), we obtain the optimum weight 
vector W* (Wiener solution), which from eqns. 13 and 14 has 
the expression 

W*(b) = R-IP(b) = [c0(b), cl(b) . . . . .  cu-l(b)] r (15) 

The optimum weight vector W*(b), which depends on the b 
parameter, is the sequence of  coefficients that describes the 
deterministic component Sk of  the primary input signal dk in 
the Hermite model, defined by the reference inputs X,k = ~,~. 

In the steady state, the AHMES output is 

N - I  
yk = w*r(b)Xk(b)= ~ w*(b)X,k(b) 

n = 0  

N - I  

= Y] c.(b)~.k(b) (16) 
n = 0  

that means Yk is the N order approximation of  the s'(t) signal 
(QRS complex) in the Hermite model (eqn. 4), for a given 
parameter b. 

If now we minimise the MSE ~ with respect to parameter b, 
and consider that the R matrix does not depend on b, we find 
that the optimum parameter b(b*), which minimises ~ for a 
fixed W, satisfies 

EFdk Oyk(b)q ---ffg--j = o (17) 
t 

When the weight vector and parameter b have both converged 
to the optimum solution, the MSE becomes minimum ((min) 
and from eqns. 3, 5, 12 and 15 results: 

1 o~ 
ernin = E[d~] - V(b)rW*=E[n2~] + Z-f ~_g ~(b*) (18) 

The ~r~n, and then ek, is due to the noise present in the primary 
signal and to the deterministic signal component that cannot be 
represented by the N order approximation. 

Given that the weight vector oscillates around the optimal 
value w*(b), Yk will be an unbiased estimation of  Sk. The 
remaining noise due to the misadjustment (M) will depend on 
the adaptive algorithm used to adjust the weights. It represents 
the effect of  the vector oscillations around the optimum 
position (Wff)ROW and STEARNS, 1985). The weight values, 
picked up when the QRS signal has just passed the AHMES 
(end of  each QRS complex adaptation), will be the estimation 
of  the cn coefficients of  each QRS complex. The quality of  the 
Yk estimation will be directly related to the quality of  the c, 
estimation. 

To measure the excess of  the mean squared error, we 
calculate the misadjustrnent (WIDROW and STEARNS, 1985) 

excess MSE 
M -- (19) 

which results in a mean squared error 
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= ~min(l + M) = (I + M) [n~ (b* (20) 

3.1 SNR improvement of AHMES estimation 

Given that at the steady state the estimated signal yk is 
orthogonal with the error e, (WIDROW and STEARNS, 1985), the 
excess MSE is the excess of  error power introduced at the 
estimation yk, and the SNR of this estimation SNRy will be 

N - I  

SNRy = n=o (21) 

If we consider that the QRS energy is basically concentrated at 
the N first coefficients, we can neglect the term ~.~--N ~(b), 
obtaining 

4(b) 
1 

SNRy _ ~=0 - SNRd =~= (22) 
(M)E[n 2] M 

where SNRd is the SNR at the original signal. Comparison of  
this SNRy with that obtained from the direct estimation of the 
c, will give the SNR improvement (ASNR) achieved by the 
adaptive system. The SNR obtained with the direct c, 
estimation (SNR~ irect) can be estimated, assuming that the 
noise is white and then the power spectral density is uniformly 
distributed at the c, domain. Then 

N - I  

~(b)  L 
SNRyair~t _ ,=0 N -- S N R a ~  (23) 

E[n2] Z 

We find that the adaptive c. estimate AHMES has a SNR 
improvement ASNR of  

A S N R - -  SNRy _ N (24) 
SNR di~et ML 

This relation is the SNR improvement at the estimated signals 
with the c. coefficients, which equals the SNR improvement at 
the cn estimation because it is a linear relation of  the cn and the 
fixed ~ ( t ,  b) basis. To have a better estimation with the 
AHMES than with the direct estimation (ASNR > 1), we then 
need the misadjustment M to satisfy 

N 
M < -  (25) 

L 

This condition will depend on the adaptive algorithm and its 
parameters. When satisfied, together with noise conditions, the 
adaptive estimate improves the c, estimation performed with 
this AHMES instead of  with a direct inner product. 

3.2 Effects of  misalignment at QRS detection mark 

In this Section, we analyses the effect of  a misalignment at 
the QRS mark location with respect to the period of  dk. 
AHMES application needs to estimate the occurrence time of  
the repetitive QRS signal (JANI~ et al., 1991b), and in these 
cases errors can appear. When an error of  (+6) appears in these 
estimations, the reference inputs remain periodic with period L, 
but the signal sk changes its period to sk = Sk+L• The value 
of  6 is then of  a random nature, and so varies from period to 
period. We study the effect of  this misalignment, focusing on a 
previous study on this topic when then inputs to the ALC are 
orthogonal functions (JAN~ et al., 1991a). 
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The effect of these errors on the estimated signal are 
reflected through the effect on the P vector. The optimum 
weight vector W * = R - I P  is affected through P vector 
modifications (R does not change). We then analyse the P 
vector in this case 

P = E[dkXk] = E[skXk] + E[nkSk] (26) 

As noise nk is supposed to be not correlated with the QRS 
mark (and thus the reference inputs), in eqn. 26 the second 
term of P is null and P is reduced to P = E[skXk]. 

If we assume that the errors of the occurrence time 
determination 6 are expressed in sample values and have a 
probability distribution p[6], the P vector can be expressed as 

P =E[skXk] = ~ Z si~+aXk p[6] (27) 
6 = - - 0 0  k = l  

L o o  

P = I  ~ Xk ~ sk+rp[6] (28) 
Z k = l  6 = - 0 0  

From this result, we observe that the P vector elements are 
(s~/L), where s~ are the components of a signal s~ to which the 
filter converges, and take the value 

o o  

s~ = Y~. sk + 6P[~] (29) 
6 = - - o o  

Calculating the Fourier transform of this s~ signal (S'(t2)), 
we have 

o o  

S'(f2)=S(g2) ~ eJarp[6] (30) 
6 ~  - o o  

where S(f2) is the Fourier transform of sk. The effect of the 
error in the occurrence time estimation then makes a filtering 
effect on the signal sk at the estimated Yk. The transfer function 
C(f2) of this filter (S ' (f2)= C(f2)S(f2)) is the characteristic 
function of the ~ distribution (BENDAT and PIERSOL, 1986) 

C ( f l ) =  ~ eJa6p[a] (31) 
6 ~ - o o  

In the case that p[6] is a Gaussian distribution with standard 
deviation a, the characteristic function is (ROMPELMAN and 
ROS, 1986) 

o o  

C(f2)= ~ e -(n-2~")~~ (32) 
n ~ - - O o  

which consists of a low-pass filter with a cut-off frequencyfc at 
- 3  dB offe = 132-5/g, wherefe is expressed in Hz and tz in 

�9 �9 ~ . . ! 
ms. The estlmataon of W is then the coefficients s k of a low- 
pass filtered deterministic signal component, whose cut-off 
frequency depends on the error distribution. 

This effect should be taken into consideration when 
estimating high-frequency components (JANI~ et al., 1991b). 
The first-order Hermite functions are already low frequency, 
and so this effect is negligible in the A H M S  estimation. In 
ECG signals the error in QRS estimation (JAN~ et al., 1991b) 
can be lower than 1ms, giving a .low-pass filter with 
f~ = 132.5 Hz that will not affect the AHMES estimation as 
proposed in this work, because the ECG bandwidth is lower 
than this value (THAKOR et al., 1984). 

4 Adaptive algorithms 

The AHMES includes one adaptation process to obtain the 
estimation of the Hermite model coefficients (weight vector) 
and another adaptation process to estimate the optimum width 
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parameter b. We use the least-mean square (LMS) algorithm 
(WIDROW and STEARNS, 1985) to adjust the weight vector, 
which is implemented by the recursive expression 

W k +  1 = W k --~ 2#lekXk(b ) (33) 

To adjust the parameter b we consider a gradient search 
method (bk+l = bk--/.tzVk) with the same approximation 
(WIDROW and STEARNS, 1985) used to obtain the LMS 
algorithm 

VE[e 2] --~ V 4 = 2ekVek (34) 

and then we can write 

OE[~(b)] _"~ 2ek(b) Oek(b____)) (35) 
Ob Ob 

From eqn. 11 we obtain 

Oek(b) Oyk(b) 
- (36) 

Ob Ob 
which leads to the following recursive expression to adapt b 

bk+i = bk + 2/.tEek(bk) Obk (37) 

We have considered different g factors, #1 and #2, for the 
weight vector and b parameter, respectively. In order to 
implement eqn. 37, the value of Oyk(bk)/Obk in each time 
instant k needs to be known. This value can be proved to be a 
linear combination of wn and q~nk(bk). Thus, it can be 
calculated on-line in each iteration�9 Eqn. 37 can be 
reformulated as 

N- 1 O~.k(bk) (38) bk+l = bk + 2/~2ek(bk) ~ w. abk 
n = 0  

and it has been proved that (LAGUNA, 1990) 

O*n(t, b) _ 1 
Ob 2b 

• b) + , / (n+  2)(,+ 1)*n+2('. b)] 
(39) 

From eqns. 38 and 39 it is evident that bk can be recalculated 
from Wk and Xk(b) directly, with no additional calculations. 
On the other hand, this implies that Hermite functions and their 
derivatives, with respect to parameter b, are orthogonal 

0 

These results are used when the convergence of the bk 
adaptation algorithm is studied. 

In the steady-state, the MSE does not reach the minimum 
error ~mi~ because there are oscillations of the weight vector 
around the optimum solution W* and oscillations of parameter 
b around the optimum b*. This effect is measured by means of 
the excess MSE (~ = ~min + excess MSE), which is usually 
measured in terms of the misadjustment M (Wn~ROW and 
STEARNS, 1985), ~ = ~min(1 + M). The value of M depends on 
the adaptation algorithm used. 

To study the convergence of the weight vector and the 
parameter b, it is necessary to study the interaction between 
both adaptation processes. In a first approximation, we study 
the convergence of the weight vector while parameter b 
remains fixed and the convergence of parameter b while the 
weight vector W remains fixed. This is not the real situation, 
but the convergence predictions with this approximation are in 
accordance with experimental results when both adaptations 
act simultaneously. 

Medical & Biological Engineering & Computing January 1996 



4.1 Convergence of the weight vector 

The convergence of the weight adaptation process depends 
on the algorithm used. The LMS algorithm converges 
(WIDROW and STEARNS, 1985) when the #1 parameter satisfies 
the condition 

1 LT 
0 </~l < tr[R] = -N- (41) 

and the convergence time associated with each weight w,(zw.) 
is given (WIDROW and STEARNS, 1985) by 

1 LT 
- -  - -  ( 4 2 )  

�9 w, 2#12 ~ 2# 1 

where ~., is the nth eigenvalue of the R matrix. In this case, all 
the eigenvalues have the same value ()~, = 2 = 1/LT). The 
convergence time associated with the MSE (Zms~) is (WIDROW 
and STEARNS, 1985) 

1 LT 
- -  - ( 4 3 )  Zmse 4#12 4#1 

where both convergence times are expressed in number of 
samples. 

Therefore, the gain constant #1 controls the stability and the 
speed of convergence. Thus, the convergence of weights can be 
obtained in the first record (Zr~s~ < L) if an appropriate value of 
#1 is selected. This possibility will be very useful for tracking 
variations in the time-varying QRS signals. 

The misadjustment M can be approximated, following a 
previous method (WIDROW and STEARNS, 1985), as 

N 
e '~' "1 tr[R] _2. ~1 L---T (44) 

The value of the gain constant #1 is a compromise between the 
rate of adaptation and the excess MSE due to the steady-state 
weight vector oscillations (excess MSE = ~mmM). 

The MSE in the steady-state becomes 

r ~min( l+M)= E[n 2]+ l--m Z ~(b*) 
LT n=u 

x 1 + ~ ~ (45) 

4.2 SNR improvement with LMS 

Considering now the value of the misadjustment M and the 
expression for the ASNR (eqn. 24) of the AHMES, we have 
for the LMS algorithm: 

N T 
ASNR . . . .  (46) 

ML #1 

This agrees with our initial expectation that the adaptive 
estimate, for adequate /~1 values, improves the c, estimation 
performed with this adaptive system instead of with a direct 
inner product. There appears a more restrictive condition at the 
#1 value ~ I  < T) to obtain ASNR > 1, than that reached by 
the LMS stability restriction. The improvement is higher as the 
#1 parameter becomes smaller. However, this gives a longer 
convergence time and then the typical compromise appears for 
the adaptive systems. On the other hand, this ASNR is 
inaccurate when sudden changes appear on the ECG signal. 
This is especially relevant in ectopic beat presence. In those 
cases, the first beats after the change present a lower ASNR 
controlled by the convergence rate. 
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4.3 Convergence of parameter b 

The AHMES presents the adaptation of parameter b with the 
previously proposed algorithm. To study the convergence 
(condition and rate) as a function of #2, we consider expected 
values in the recurrent expression to adapt b. From eqn. 37 and 
using the value of ek(bh), we can write 

E[bh + 1] = E[bh] 

\ L h d L h _I/ 

(47) 

Given that the weight vector is supposed to be constant, 
differentiating the expression E[y~(b)] = r/we obtain 

2E[yh(b Oyh( )l , ) T J  = 0 (48) 

and eqn. 47 becomes 

F ayk(ah) 1 Etbh+,] = E[bh] + 2~2E[dh ~ J  (49) 

To analyse the convergence of this expression we calculate the 
value of E[dh(Oyh(bh)/Ob)] as a function of parameter b. Using 
eqn. 39 and assuming bh is not correlated with qb,h(bh), we 
have 

EFdh ~h(bh)l 1 U- ,  = ~ w*(bo) 
L --ffb--.l 2E[bh] .=0 

x E[dh(-~,/n(n- 1)qb(,_2,h(bh) 

+ x/(n + 2)(n + 1)*~.+=>k(bh)]] (50) 
/ _ I  

r Oyk(bh)l 1 N -  1 
Eldh--~-c--je o .  - = 2Etbk]LT .=0Z w*(bo) 

• 

+ ~/(n + 2)(n + 1)w*+2 (E[bk])) (51) 

where the weight vector is supposed to be optimum for the 
initial value of b, w*(bo). The values w*(E[bh]) are the 
coefficients c~(E[bk]) when parameter b takes the value E[bh]. 
We also slight the variations of w*(E[bk]) with Oh with respect 
to the term 1/E[bh]. We then consider w* constant for each 
parameter b, resulting 

E ctk = 2E[bk]LT 

(52) 

Taking again eqn. 49 and considering the first-order Taylor 
development, we have 

E[bk + 1] = E[bk] #2 
b*2LT 

X - 1)WN-2WN + x/(N+ 1)NWN-1WN+I 

• (E[bk] - b*) (53) 

and calling 

/z2 a - -  
b*ZLT 

• + 

(54) 
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we obtain 

E[bk + l] = E[bk](1 - a) + ab * (55) 

Considering the b initial value at k = 0, b0, we can rewrite 

E[bk] = b*+(1 - a)k(bo -- b *) (56) 

This recursive expression converges when a satisfies 
0 < a < 2 and, recovering the a value, we have the 
convergence condition for the b adaptation algorithm 

2LTb .2 

(N - 1)WN-2* WN* + ~ 1)Nw~_ 1WN+I* 

(57) 
To estimate the right-hand side eqn. 57 we approximate 

- 1) ~ x/(N + 1)N -- N and then 

2LTb .2 
#2 < * * , , ( 5 8 )  

N(WN-2WN + WN- 1W.+I ) 

On the other hand, we can state that for the highest order 
�9 * 

welght w~-2, w~-1 * * , w~vywN+l, the signal energy is lower than 
the average energy in each weight. I f  we call SE = E[s~]LT, we 
can suppose that 

N(wu_  2 w~)  < SE and N(w~v- * I WlV + 1 ) < S E  (59) 

Then we can take a more restrictive convergence limit 

LTb .2 2LTb .2 
#2 < ~ < , , ,  * * * * (60) 

~v t WN - 2 WN + wN - I WN + 1 ) 

and we can consider 

L T b  . 2  

#2 < SE (61) 

as the convergence condition. This condition depends on the 
signal energy SE, and it is in accordance with the adaptation 
expression eqn. 37, where /~2 is multiplied by a factor that 
depends on the primary input signal through yk. The #2 factor 
then has to consider the signal that will be studied. If  this 
signal energy changes with time, it could be necessary to 
readjust ~2. 

The convergence time % of the parameter b can be estimated 
from eqn. 56 as 

1 LTb .2 
Zb ~--- < - -  (62) 

a 2~2SE 

The expressions obtained with the previous derivation result 
from some approximations that require their validity to be 
corroborated through experimentation. In the following we 
include examples of  the AHMES performance and show the 
validity of  previous derivations. 

Fig. 3 
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AHMES ou~vut for two QRS pattern (QRS1 and QRS2) 
sequences when the same QRS repeats itself; uppermost 
signals are original QRS complexes, below are reconstructed 
signals using estimated weights w, and b afler finishing each 
nth of  the first ten adaptations (A-n), using a model order of  
N =  5; lowest signal is that overprinted of the original QRS 
signal and reconstructed after ten adaptations; plotted 
parameters wn, b and Rmse are the values after ten 
adaptations 

5 Performance analysis of AHMES in simulation 

To validate the AHMES, w e  first consider a real QRS 
complex repeating itself to form the dk signal. It can be 
considered as a stationary deterministic component without 
noise (dk = Sk). In this way, we ensure that the deterministic 
component remains constant in the sequence and the AHMES 
reaches the steady state. We consider a real QRS complex 
repeated a number A of  recurrences. In this situation, we can 
calculate exactly the signal energy SE and then verify the 
expressions derived in the previous Section. 

The selected QRS is a signal of  200ms centred in the 
position given by a QRS detector. In order to avoid base-line 
variations being modelled as QRS, the window signals are 
extracted from a high-pass filtered ECG signal. High-pass 
filtering can introduce some errors, especially in monopolar 
(high amplitude and large duration) QRS complexes, that 
require specific filtering (CHRISTOV et al., 1992) or a cubic 
spline interpolation (MEYER and KEISER, 1977) to suppress 
base-line variations. The window signals are extended to 
400 ms, by adding 100 ms of  zero value on the right and on the 
left. The signal is sampled at 250 I-Iz (T = 4 ms); thus L = 100 
samples. Fig. 3 shows the estimation results for two different 
QRS complex patterns (QRS1, QRS2) with N = 5. The 
weights are initialised to zero (w,0 = 0) and the parameter b is 
initialised to 25 ms (b0 = 25 ms). The convergence limit for #1, 
considering that the implementation takes ms as the temporal 
units of  Hem-rite functions, is 

LT 
#1 < -~" = 80 (63) 

and the limit for ASNR > 1 is 

#1 < T =  4 (64) 

We select #1 = 0.75 that satisfies this condition and gives a 
ASNR = 5.33 = 7.27 dB. The convergence limit for #2 is 
calculated using the SE of  QRS1 ( S E =  1.25.101~ and 
assuming b* =20 ms 
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LTb .2 
- 1 - 2 8 . 1 0  -5  ( 6 5 )  

#2 < SE 

Considering a safety factor, we select #2 = 10-8. 
In Fig. 3 the w, and b values are shown after ten recurrence 

adaptations. To measure the percentage of  signal energy that 
has not been modelled, the relative mean-square error (Rinse) 
is defined as 

~LT 
Rmse = --~--  100 (66) 

The value of  Rmse after ten adaptations is also shown in Fig. 3. 
We verify the result reported previously (SORNMO et al., 1981), 
given that with N = 5 we recover more than 90% of the signal 
energy. 

Note that QRSI presents higher b (18.4ms) than QRS2 
(16.8 ms). This is in accordance with the relative QRS width in 
QRS1 and QRS2 (Fig. 3). Note also that the more significant 
components w, are those of  lower order in accordance with 
previous work (SORNMO et al., 1981). 

5.1 Weight convergence 

According to eqn. 42 and 43, the predicted convergence 
time for the weights is 

0"5E+5 - 
W3 

0"1E+5 f w6 

--0~6E+5 

-0"1E+6 

--0"1E+6 I t I ] ~ ~  I 
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C 

Fig. 4 Convergence of  AHMES in the case of  QRS1 pattern: (a) 
weight convergence; it plots the weights values after each A 
recurrence adaptation of QRS1; (b) convergence of Rmse; (c) 
convergence of b 

LT 
- = 266.7samples ~ 2.7QRS recurrences (67) "Cw, -- 2# 1 

and for MSE it is z,,=e = Zw,/2 ~" 1.3 QRS recurrences. Fig. 4a 
shows the weight evolution after each recurrence adaptation in 
the case of QRS1. We can corroborate that, after the third 
recurrence adaptation, all the weights have converged towards 
more than 60% of the final value. Fig. 4b shows the same 
evolution for the Rmse where the convergence time is shown to 
be half the weight convergence time. 

5.2 Convergence o f  parameter b 

According to eqn. 62, the predicted convergence time Zb for 
the parameter b, in the case of  QRS1, can be estimated as 
Zb < 518.4 samples, which supposes five QRS recurrences. 
Fig. 4c shows the b value after each QRS recurrence adaptation 
and we can corroborate that, after four recurrences, the b value 
has already converged to more than 90% of its final value. This 
result agrees with the convergence time for the parameter b 
obtained fromeqn. 62. Thus, the approximations performed in 
the derivation of  this expression are corroborated to be 
appropriate. 

5.3 Influence o f  model order on estimation 

To check the effect of  model order N, we have considered 
the QRS1 signal, and we have applied the AHMES in ten 
different cases, from N ---- 1 to N = 10. Fig. 5 shows the 
reconstructed signal after ten recurrence adaptations and the 
Rinse for each case. The/21, P2 parameter and initial conditions 

Fig .  5 
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QRS1 pattern estimation after ten adaptations for different 
model order (17= 1 . . . . .  10); the following are Rmse value 
and model order: (a) QRS1; Co) N=I ,  Rmse=56.2; (c) 
N=2, Rmse=25.7; (d) N=3, Rmse=18.8; (e) N=4, 
Rmse = 13.6; ( f )  N =  5, Rmse = 9.3; (g) N= 6, Rmse = 9.2; 
(h) N=7,  Rmse=9.2; (i) N=8,  Rmse=7.3; 0") N=9, 
Rmse=5.8; (k) N =  IO, Rmse=5.3 
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for wn and b are the same as in the previous case. We can see 
that low-order estimation results in a low-pass effect of the 
estimated signal with respect to the original, and when the 
model order increases, higher frequency components of the 
original signal are recovered and modelled. However, the high- 
frequency components of the morphology (such as late 
potentials, intra-QRS potentials, absolute peak values etc.), 
which in some cases are clinically relevant, either require a 
larger model order or are not characterised by the AHMES. 
The model order (and indirectly the compression ratio) then 
should be selected with this restriction on the features to be 
maintained. 

6 Appl icat ions of A H M E S  on real QRS complexes  

We now consider the coefficient estimation through AHMES 
of some real sequences of QRS: one that includes ectopic beats 
wider than normal and another that includes complexes from a 
patient affected by the bigeminy phenomenon (sequence 
normal, ectopic etc.) with similar widths. 

~ real QRS 

~ estimated QRS 

real QRS 

~ estimated QRS 
63 125 188 250 313 375 438 500 

ms/4 a 
1 I I I I I ,/1/ / 

~ ~lm:timated QRS 

1 real QRS 

~ l  estimated QRS 
I 

63 125 188 250 313 375 438 500 
ms/4 b. ~ real QRS 

@ @ @ ~  estimated QRS 

real QRS 

~ ~ J  ~ ~  ~ ~  estimated QRS 

0 63 125 188 250 313 375 438 500 
ms/4 c 

Fig. 6 Estimation in real QRS sequences with model order N= 10; 
first and third rows are original QRS sequences," second and 
fourth rows show corresponding estimated QRS sequence 
after each recurrence adaptation: (a) regular QRS sequence 
with no important QRS variations (#t = 0.75, #2 = l O-S ; (b) 
QRS sequence with a PVC in the fifth beat (#1 =3.4, 

8 #e = 10- ; (c) QRS sequence from a patient affected by the 
bigeminy ehenomenon, two different QRS patterns, (#1 = 3.4, 
# 2  = 1 0  - ~  

In real situations, we are interested in studying a regular 
QRS sequence from a patient. Fig. 6a we have the sequence of 
ten consecutive QRS (first and third rows). Below the original 
QRS signal is the estimated signal by the AHMES after each 
QRS adaptation using a model order N = 10. Sampling 
frequency, window size and # values are maintained as in 
the previous simulation study. 

6.1 Estimation with ectopic beat presence 

In this Section we consider the case where the ECG signal 
has abnormal beats like PVC. In this case, it is important to 
evaluate how the AHMES performs and eventually to detect 
and discriminate these abnormal beats. Usually, PVC beats 
have a QRS complex characterised by a greater width than in 
normal cases. Given that parameter b is related to the width of 
the Hermite functions considered in the model, we analyse and 
study the capability of the AHMES to estimate those sudden 
PVCs of greater width, and eventually detect them through the 
parameter b. 

We take a QRS sequence of nine beats that includes a PVC 
at the fifth beat (Fig. 6b). We applied the AHMES over this 
beat sequence (model order N = 10) with #l = 3.4, in order to 
have a weight convergence time lower than one recurrence 
(from eqn. 42 we reach zw, < 1 QRS recurrence) at the 
expense of no significant ASNR. Thus, it allows us to track 
beat-to-beat variations, as in the case of isolated PVC QRS 
complexes. #2 remains with the same value (#2 = 10-8), given 
that all QRS sequences have been normalised to satisfy the 
same convergence condition. Fig. 6b and Table 1 show the 
parameter b value after adaptation of the QRS previous to the 
PVC beat (24 ms), the PVC (35 ms), and the QRS posterior to 
the PVC (23 ms). This result shows that theparameter b value 
after each QRS adaptation can be significantly used to classify 
PVC beats, even if they appear once in the QRS sequence. The 
estimated QRS shape after the PVC bears less resemblance to 
the original than in previous cases, as a result of the great 
distance (in the feature space) from the previous PVC (the 
convergence time is that required to achieve 60% of the 
distance between initial (PVC) and final (regular QRS) value). 

The election of the synchronisation point affects the 
estimation results, and small delays with respect to the window 
centre can improve the estimation in some morphologies. A 
posterior study on this topic and how to determine the best 
synchronisation point would be interesting. Synchronisation 
with the point that reaches half of the signal energy of the first 
QRS recurrence can be attempted. 

There are also possible variations of the synchronisation 
point with respect to the deterministic signal given by the 
variations or jitters of the QRS complex detector marks. This 
effect has been shown to result in a low-pass effect whose cut- 
off frequency is proportional to the standard deviation of the 
jitters. 

Fig. 6b shows that the reconstructed signal from the 
AHMES parameters allows beat-to-beat tracking of the QRS 
shape. This leads us to consider the estimated weights as 
characteristics to classify the QRS complex. Considering the 
wn weight values after each nth QRS adaptation (Table 1), we 
can see their evolution in the beat sequence and in particular in 
the sequence normal-ectopic-normal QRS (4th-5th-6th). 

6.2 Estimation with bigeminy phenomenon 

To study the capability of the AHMES for continuous QRS 
changes, we have selected a QRS sequence from a patient 
affected by the bigeaniny phenomenon (Fig. 6c). The QRS 
signal presents beat-to-beat periodic variations, which basically 
consist of two different QRS patterns with no differences in 
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Table 1 b and w, (n = 0 . . . . .  4)feature values after each nth QRS adaptan'ons incase of  Fig. 6b (wide ectopic beats). 

beat initially lth 2th 3th 4th 5th* 6th 7th 8th 9th 

b, ms 25.0 25-5 24.0 23.3 24.6 35.1 23.5 21.9 22.4 22-0 
w0 0 -130 -91 -82 -94 -186 -57 -102 -72 -71 
wt 0 138 134 138 126 235 110 140 140 134 
w2 0 -85 -69 -46 -73 102 -56 -63 -76 -61 
w3 0 -64  -72 -83 -71 -218 -55 -69  -64 -75 
w4 0 0.7 14 8 7 135 -14 -14  14 7 

* the 5th beat belongs to a PVC 

Table 2 b and wn (n = 0 . . . . .  4)feature values after each nth QRS adaptations incase of  Fig. 6c (bigeminy phenomenon). 

beat initially lth 2th 3th 4th 5th* 6th 7th 8th 9th 10th 

b, ms 25.0 23.9 24.9 24.8 25-9 26.4 27.8 26.5 26.8 27.1 27.4 
w0 0 -97 - 2  -65 52 -89 11 -56 24 -64 34 
wl 0 -186 -168 -172 -166 -152 -189 -162 -166 -160 -169 
w2 0 23 33 37 -90 26 - l l  47 -23 45 -18 
w3 0 58 36 48 39 51 14 44 42 42 44 
w4 0 -46 -17 -41 -65 -48 -19 -48 -68 -48 -10 

width. We have applied the AHMES to this sequence (model 
order N = 10) with the same ]2 values as in the previous case 
(]21 = 3.4, ]22 = 10-8) to obtain convergence in one recur- 
rence. The parameter b in this case remains stable (Table 2), 
and it is not significant to classify the QRS complex sequence. 
On the other hand, the wn parameters are able to track the QRS 
shape variations, as can be corroborated by following the shape 
estimation recovery in Fig. 6c. Those ectopic beats with similar 
width can then be detected by the weight vector. We enumerate 
the wn(n = 0 . . . . .  4) values from the QRS sequence in Table 
2. 

It is clear that w~ parameters are adequate to classify the 
QRS complexes in the two basic shapes (Fig. 6c), following 
classical pattern recognition techniques as described previously 
(RAPPAPORT et al., 1982; SORNMO et al., 1981). The beat-to- 
beat convergence ]21 = 3.4 implies a lower ASNR = 1.18 
with stationary white noise, but still higher than in the case of  
direct estimation. 

When the incoming signal is unknown, we have no idea if 
the ectopics will be wider than normals; thus a combined b and 
w, parameters criterion should be used in general practice for 
ectopic detection. 

7 Conclusions 

An adaptive system based on the Hermite functions has been 
proposed to adaptively estimate and track the QRS complex 
features in the ECG signal. This system presents better signal- 
to-noise ratio at the estimation than in the direct estimation. It 
allows us to model most of  the QRS signal energy in a few 
parameters, due to the similarity of  the first Hermite functions 
with the general shape of  the QRS. The orthogonality of  
Hermite functions leads to non-redundant parameters. The 
system permits the on-line estimation of  the QRS model 
parameters, with the presence of  an on-line QRS detector and 
with Hermite function generator specially designed for this 
purpose. The ASNR obtained with the system with respect to 
direct estimation is a function of  the ]21 (for LMS algorithm) 
adaptation parameter and allows a better estimation of  the 
coefficients than with a direct estimation. 

We have studied the theoretical analysis of  the AHMES. 
This system, based on the multiple-input ALC, presents an 
additional block that adapts the width parameter b. We have 
proposed an adaptive algorithm for the parameter b value, and 
the weights are adapted according to the LMS algorithm. The 

isolated study of  both adaptation processes has led us to obtain 
analytical expressions for the prediction of  convergence 
condition and rate. It has been verified by simulation that 
these expressions remain valid when both processes act 
simultaneously. The adaptation of  parameter b depends on 
the primary input signal energy. Thus, it is necessary to 
estimate this signal energy or to normalise the primary input 
signal before the adaptation. 

It is possible to select the AHMES constants #1 and #2 in 
such a way that convergence is achieved in less than one 
recurrence. Owing to this, it is possible to adapt beat-to-beat 
changes in the deterministic QRS signal. The extraction of  the 
model parameters after each QRS adaptation provides a 
description of  the QRS signal evolution. In particular, 
parameter b can be useful for on-line detection of  PVC beats. 
The Hermite model parameters (weights of  the AHMES) have 
been used previously (SORNMO et al., 1981) as features for 
QRS classification and for data compression of  the ECG (JANI~ 
et al., 1993). The AHMES allows the on-line beat-to-beat 
estimation of  these features with a better SNR than the direct 
estimation. 

We have presented an application example of  the AHMES in 
the case of  wide ectopic beat presence and bigeminy 
phenomena with no width differences, in the QRS complex 
sequence. In these cases, a higher ]21 value is required to 
achieve beat-to-beat convergence at the expense of  lower 
ASNR. We obtain features relevant for beat classification. 

The same study can be performed for the P waves and ST-T 
complexes, with proper parameter modification, representing 
in this way the complete ECG signal and allowing the ECG 
data compression to be presented as previously (JANI~ et aL, 
1993). 
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