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Abstract 1 

Aim 2 

Artificial Intelligence (AI) has the potential to transform cardiac electrophysiology (EP), particularly in 3 

arrhythmia detection, procedural optimization, and patient outcome prediction. However, a standardized 4 

approach to reporting and understanding AI-related research in EP is lacking. This scientific statement aims 5 

to develop and apply a checklist for AI-related research reporting in EP to enhance transparency, 6 

reproducibility and understandability in the field. 7 

Methods 8 

An AI checklist specific to EP was developed with expert input from the writing group and voted on using 9 

a modified Delphi process, leading to the development of a 29-item checklist. The checklist was 10 

subsequently applied to assess reporting practices to identify areas where improvements could be made 11 

and provide an overview of the state of the art in AI-related EP research in three domains from May 2021 12 

until May 2024:  atrial fibrillation management, sudden cardiac death (SCD), and EP lab applications.  13 

Results 14 

The EHRA AI checklist was applied to 31 studies in atrial fibrillation management, 18 studies in SCD, and 6 15 

studies in EP lab applications. Results differed between the different domains, but in no domain reporting 16 

of a specific item exceeded 55 % of included papers. Key areas such as trial registration, participant details, 17 

data handling, and training performance were underreported (<20%). The checklist application highlighted 18 

areas where reporting practices could be improved to promote clearer, more comprehensive AI research 19 

in EP. 20 

Conclusion 21 

The EHRA AI checklist provides a structured framework for reporting AI research in EP. Its use can improve 22 

understanding but also enhance the reproducibility and transparency of AI studies, fostering more robust 23 

and reliable integration of AI into clinical EP practice.  24 ACCEPTED M
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Graphical Abstract 1 

AI=Artificial Intelligence, EP=Electrophysiology, AF=Atrial Fibrillation, SCD=Sudden cardiac death  2 

  3 

 4 

  5 
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Introduction 1 

Artificial intelligence (AI) is an emerging technology that holds great promise for the field of clinical 2 

electrophysiology (EP).1 This includes early detection of arrhythmias like atrial fibrillation (AF), 3 

personalized diagnosis and risk prediction for sudden cardiac death (SCD), procedural optimization and 4 

guidance for EP procedures. The integration of AI into clinical practice has the potential to improve 5 

personalized treatment strategies and improve patient outcomes.   6 

Over the past decade there has been a substantial increase in the number of publications reporting on the 7 

use of AI and machine learning (ML) in AF.2-6 This is due to both the advancement in AI/ML techniques as 8 

well as the availability of open access databases, such as the PhysioNet repository and MIMIC-III which 9 

provide rich datasets for training and validating AI models in EP research. 7 As research in this field 10 

continues to grow, there is increasing potential for AI to provide real-time decision support, enhance 11 

diagnostic accuracy, and streamline workflow in EP laboratories, paving the way for more efficient and 12 

effective patient care.8, 9 13 

While the recently released TRIPOD (Transparent reporting of a multivariable prediction model for 14 

individual prognosis or diagnosis) +AI statement10 aims to improve the quality, reproducibility, and clinical 15 

relevance of AI research in general, there is a pressing need for an AI-specific reporting framework tailored 16 

to EP, as the field presents unique challenges, such as integrating complex algorithms into clinical 17 

workflows, ensuring transparency in model development and validation, addressing data heterogeneity, 18 

and managing the potential for bias. To facilitate the application of AI to the field of arrhythmia and to 19 

enhance understanding, reviewing and reporting of AI studies in EP, a checklist is proposed. This checklist 20 

explains essential terms for a novice reader of AI, helps guide studies on clinically relevant questions and 21 

provides scientists with a standardized approach to reporting and evaluating AI-related research. 22 

We consequently developed an EHRA AI checklist tailored to EP and reviewed recent studies across three 23 

key areas: AF management, SCD, and AI applications in the EP lab. By applying the checklist, we assessed 24 

reporting practices, identified areas for improvement, and summarized the current state of the art in these 25 

relevant topics. A glossary of terms in the field of AI in EP is shown in table 1.  26 

 27 

 28 

 29 
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Table 1. European Heart Rhythm Association (EHRA) Artificial Intelligence in Electrophysiology glossary  1 

EHRA AI in EP glossary 

Artificial intelligence 

(AI) 

A branch of computer science focused on creating algorithms with the aim 

of performing tasks usually requiring human intelligence, such as 

recognizing patterns, making decisions and predicting outcomes. AI can 

supersede human level intelligence in domain specific tasks 

Open science in AI The practice of promoting transparency, reproducibility, and accessibility in 

artificial intelligence research through open sharing of data, code, and 

methodologies to enhance collaboration and accelerate innovation in the 

field. 

Machine learning (ML) A subset of AI where algorithms learn patterns from data to make 

predictions or perform classifications (binary or multi-class) without explicit 

programming for each task. ML includes supervised learning, where specific 

labels are defined by the user, as well as unsupervised learning, which 

identifies patterns and structures in data without predefined labels. In EP, 

ML models are used to diagnose arrhythmias, predict outcomes, and 

optimize arrhythmia treatment.  

Deep learning (DL) A subset of ML that uses artificial neural networks to process and analyze 

information, where the features of interest are learned directly from the 

data, and not defined by the user.   

Artificial neural 

network (ANN) 

A foundational method in AI that teaches computers to process data in a 

way that is inspired by the human brain, using interconnected nodes or 

“neurons” in a layered structure. It provides a means for dealing with 

complex pattern-oriented tasks, including classification, regression and 

pattern recognition. The nonparametric nature of ANN enables models to 

be developed without having any prior knowledge of the distribution of the 

data population or possible interaction effects between variables as 

required by commonly used parametric statistical methods. 

Deep neural network 

(DNN) 

A DNN is a neural network with multiple layers between the input and 

output layers required for high dimensional data analysis. DNNs encompass 

a variety of architectures designed for different tasks. 
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Convolutional neural 

network (CNN) 

A specific type of DNN aiming to process spatial data using convolution 

layer and pooling layer, often used for image and signal analysis. In EP, CNNs 

can be applied to analyze ECG and imaging data to identify abnormalities.  

Recurrent neural 

network (RNN) 

A type of neural network designed for sequential data, such as time series 

and natural language. It retains memory of previous inputs to process 

sequences and produces outputs that depend on the entire input 

sequence. 

Long short-term 

memory (LSTM) 

A specialized type of RNN capable of learning long-term dependencies and 

patterns in sequential data, making it suitable for tasks requiring memory 

across many iterations. 

Natural Language 

Processing (NLP) 

NLP is a branch of AI that enables computers to process and interpret 

human language, both written and spoken. By combining computational 

linguistics with machine learning and deep learning, NLP can analyze 

unstructured data like clinical notes and electronic health records. In 

cardiology, it might help extract meaningful insights and identify patterns to 

potentially improve decision-making and patient outcomes. 

Generative AI (GenAI) A type of AI technology that uses algorithms and models, such as large 

language models (LLMs), to learn patterns from a dataset and then 

generate new data, including text, imagery, audio and synthetic data, that 

follows those patterns. 

Transformer 

architecture 

A neural network design at the basis of GenAI, especially effective for 

sequence data and NLP. By processing large volumes of text with the simple 

task of predicting the next word in every sentence, transformers give 

computers the power to understand language, learn facts, build abstract 

concepts about these facts. 

Explainable AI (XAI) Explainable AI is defined by a set of processes or methods for analyzing or 

complementing AI models to make their internal logic and output 

transparent and interpretable, so that the underlying process could be 

better understood and meaningful by a human user, to increase trust 

towards AI.  
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Multimodal AI Multimodal AI is based on the concept of multimodal models, where 

several unimodal neural networks are processing information available in 

different data types (i.e., text, images, audio, and video) in order to perform 

complex tasks.  

Supervised learning A category of ML that uses labeled datasets (i.e., with a label provided by a 

gold standard human interpretation) to learn the relationship between the 

input features and the output labels and train algorithms to predict 

outcomes and recognize patterns.  

Unsupervised learning A type of ML that learns from unlabeled data (i.e., without the need for 

human supervision) and allows to discover potentially interesting patterns 

and insights without any explicit guidance or instruction making it useful for 

exploratory analysis. 

Digital twin A virtual representation of a patient, created by combining real-world data 

with computational models. In EP, a digital twin could simulate a heart’s 

responses to ablation therapies or predict arrhythmia recurrence risk.11 

Internal validation The process of testing an AI model on data originating from the same 

source (i.e., hospital, equipment, patient group, …) as the data with whom 

it was trained on, to evaluate performance. This is an initial step to ensure 

the model can generalize within a single dataset. 

External validation The testing of an AI model on data originating from different sources (i.e., 

hospital, equipment, patient group, …) than those used in its training, thus 

ensuring the model’s robustness and reliability across varied populations 

and settings. This is a critical step for wider clinical deployment. 

Area Under the 

Receiver Operating 

Characteristic Curve 

(AUROC) 

A metric used to evaluate the performance of a binary classification model. 

It measures the ability of a model to distinguish between classes by 

calculating the area under the ROC curve, where a value of 1 indicates 

perfect discrimination and 0.5 indicates no better than random guessing. 

Area Under the 

Precision-Recall Curve 

(AUPRC) 

A performance metric for evaluating binary classifiers, particularly in 

datasets with imbalanced class distributions. It measures the trade-off 

between precision (positive predictive value) and recall (sensitivity), with 
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higher values indicating better performance in identifying true positives 

while minimizing false positives. 

F1 Score 

 

A harmonic mean of precision and recall, providing a single metric that 

balances the trade-off between the two. It is especially useful in evaluating 

classification models where there is an uneven class distribution. The F1 

score ranges from 0 to 1, with higher values indicating better model 

performance.  

Creation of the EHRA AI checklist 1 

In alignment with the EQUATOR (Enhancing the QUAlity and Transparency Of health Research) project12, 2 

and to enhance the quality of health research reporting in journal articles, several valuable manuscript 3 

checklists for reporting the evaluation of AI and ML models in medicine have been proposed (see 4 

Supplementary Table 1). These documents provide guidance to authors and reviewers, helping to 5 

standardize and validate content in a more reproducible way, ultimately enhancing transparency and 6 

completeness in reporting.   7 

In the field of cardiovascular (CV) medicine, only one specific document currently exists, which focuses on 8 

proposed requirements for evaluating ML in CV imaging. 13 More recently, other publications have 9 

highlighted the need for quality evaluation criteria in prediction models for CV diseases, also proposing 10 

initial solutions. 14-16  11 

Checklist development 12 

The members of the EHRA AI in EP Writing group were identified via nominations and recommendations 13 

from international professional CV EP societies, and first convened virtually to discuss and obtain 14 

consensus on aims and generating process of the scientific statement. 15 

To define the items to be included into the dedicated checklist for group evaluation, a review of published 16 

literature proposing criteria or checklists relevant to AI 10, 13, 17-31, as well as recent systematic reviews on 17 

the topic was performed. 15, 32, 33 The proposing team (E.S., D.D., E.G.C.) identified the potential items that 18 

could be relevant with a focus on the need for clinical EP experts and listed them as candidate reporting 19 

items, including variables, definitions and rationale. This list was sent to the writing group for individual 20 

comment and refinement, thus resulting in the AI checklist that included 33 items (Supplementary). The 21 

development process is outlined in Figure 1. 22 
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To encourage robustness and completeness in AI research reporting within clinical EP, the EHRA AI in EP 1 

writing group decided to utilize a modified prospective Delphi method based on the RAND/UCLA process.34   2 

 3 

 4 

 5 

Figure 1. Workflow schematization of the Delphi process adopted to define the final European Heart 6 

Rhythm Association (EHRA) AI in EP checklist. 7 

AI=Artificial Intelligence, EP=Electrophysiology, EHRA= European Heart Rhythm Association  8 

 9 

Delphi process for consensus 10 

In early 2024, the first round of virtual, electronic survey-based, individual Delphi voting was conducted, 11 

with no interaction amongst voting members. The survey included the initially selected 33 items, and for 12 

each of them participants were asked to vote on each item using a 5-point Likert scale, as follows: 1 to 2: 13 

not relevant, should not be included; 3: may be appropriate to include 4-5: appropriate to include. In 14 

addition, for each item, a question asking the need for further refinement (i.e., in case of an unclear 15 

description) was also proposed, for which an open-ended response was possible.  16 

The working group reviewed responses for each checklist item, categorizing consensus levels based on the 17 

percentage of votes scoring 4 or 5. Consensus was defined as follows: weak for 50% to 75% agreement, 18 

moderate for 76% to 90%, strong for 91% to 99%, and unanimous for 100%. For items achieving a score of 19 

1-2, ≥75% consensus was needed to exclude the item from the checklist. From this first Delphi round, 82% 20 

responses were received.  21 

ACCEPTED M
ANUSCRIP

T

D
ow

nloaded from
 https://academ

ic.oup.com
/europace/advance-article/doi/10.1093/europace/euaf071/8100285 by Facultad de M

edicina H
em

eroteca user on 02 April 2025



 

13 

In April 2024, a combined in-person and virtual meeting of the EHRA AI in EP writing group members was 1 

convened during the EHRA 2024 congress in Berlin, where results of the first round of Delphi voting were 2 

revealed, including a distribution of their ratings. Based on these results, 8 items did not exceed the 3 

predefined 75% threshold for being directly included. Ratings and checklist items were discussed to better 4 

understand those that had poor consensus and/or conflicting votes, also considering the received open-5 

ended responses, to further refine those items by proposing amendments. No attempt was made to force 6 

the panel to consensus during this meeting.  7 

After further adjustment of the 8 items according to the discussions, a second round of virtual, electronic 8 

survey-based, individual Delphi voting was conducted between 25 April 2024 and 2 May 2024, with no 9 

interaction amongst voting members. For this round, 77% of the authors responded, where 6 reformulated 10 

items reached consensus while two items were finally discarded, thus resulting in the final consensus on 11 

the EHRA AI checklist shown in Table 2.  12 

After finalization of the EHRA AI checklist, the checklist was validated retrospectively on papers on AI in EP 13 

having been published recently. Three representative topics from the field in EP were chosen to perform 14 

a structured review of articles connected to AI for 1) AF management, 2) SCD and 3) EP lab management. 15 

For each section, studies of the respective topic were retrieved from PubMed by members of the author 16 

group. Only studies published between May 2021 and May 2024 were included to keep a contemporary 17 

focus, without intending to be exhaustive. For each study, the EHRA AI checklist was applied, and results 18 

were recorded for each item of the checklist. A summary of the results is presented in figure 2. A practical 19 

example of the extraction is provided in the Supplement, Supplement Table 3.  20 

Detailed results of the checklist application are presented in Table 3.  21 

  22 

 23 

Figure 2. Overview of the application of the EHRA AI checklist in three different areas of electrophysiology. 24 
Each of the three areas are depicted in rows, and a summary of all the checklist items is provided in the 25 
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columns. In each area a literature review was performed, and the summary index of the reporting of each 1 
checklist item is provided. Items reported in > 85 % of the reviewed papers are reported in green; items 2 
reported in <20 % of the reviewed paper is reported in red, with items between  20% and 85% shown in 3 
yellow.  4 

EHRA=European Heart Rhythm Association, AI=Artificial Intelligence 5 

 6 

AI in atrial fibrillation management  7 

Checklist application for AI studies on AF management 8 

In total, 31 papers on AF management were identified (Table 3). Most focused on the use of AI for AF 9 

detection. The application of the EHRA AI checklist to all identified papers showed that 16 of 29 items 10 

(55%) were reported at a very good level (i.e., reported by ≥85% of papers). The most robust reporting 11 

was for checklist items under “methods” section with ≥85% papers reporting 8 of 13 items (61.5%). 12 

Reporting was least robust for checklist items under “open science”; notably, only 2 of 31 papers (6%) 13 

addressed trial registration (checklist item 21).  14 

While reporting was generally good across methodological items, areas like open science, specifically trial 15 

registration, were poorly addressed. The lack of transparency regarding trial registration may limit the 16 

ability to track study protocols and outcomes, posing a barrier to reproducibility and potential bias in 17 

published results.  18 

AF detection using photoplethysmography 19 

The intermittent nature of AF can lead to low detection rates and inaccurate burden estimates with short-20 

term monitoring. 35 36 Photoplethysmography (PPG), readily available in wearables like smartphones and 21 

smartwatches, offers semi-continuous monitoring.37, 38  Several consumer wrist‐worn devices have been 22 

cleared by the US Food and Drug Administration (FDA) for PPG based AF detection and use AI in their 23 

algorithms.38  Recent studies have evaluated the accuracy of PPG-based AI algorithms for detecting AF in 24 

ambulatory settings39-42 and although PPG-based AF detection using smartphones was shown to be 25 

effective in different settings detecting or monitoring AF,5, 43-46 a meta-analysis of data suggested that 26 

publication bias remained.47 In international guidelines for the management of AF, an ECG is still required 27 

for diagnosis.48, 49 28 

When evaluating studies focused on the detection of AF using PPG, several key areas need careful 29 

consideration to ensure clarity and precision, Figure 3.  30 
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 1 

Figure 3. An overview of key issues to consider for the use of photoplethysmography within atrial 2 

fibrillation detection.  3 

AF=Atrial Fibrillation PPG=Photoplethysmography PPV=Positive predictive value NPV= Negative 4 

predictive value AUC=Area under the curve ROC= Receiver Operating Characteristic OS=Operating 5 

System 6 

ECG for detection and prediction of AF 7 

Of the 31 identified papers, all covered the use of ECG for the detection of AF. Application of the EHRA AI 8 

checklist showed that 13 of the 29 items were reported by ≥85% of these papers.  9 

ECG is a common source of data, and their increasing digitization is making computerized interpretation 10 

commonplace. 50, 51  Irregular RR intervals during AF serve as simple inputs that can train traditional ML 11 

models for automated AF detection. 3, 4  The loss of coordinated atrial activity in the form of ‘f’ waves with 12 

small voltages and the issue of noise poses greater technical challenges for which additional signal 13 

processing steps, optimization and AI-training may need to be introduced, for accurate definition and 14 

extraction. With the progression of AI/ML algorithms, including Deep Neural Networks (particularly 15 

Convolutional Neural Networks or more recent Transformer Architectures), there has been a reduction in 16 

the need for pre-processing steps and less emphasis on predefined features, which are now achieving 17 

impressive algorithm performance results.50, 52 18 

Photoplethysmography 

(PPG) 
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Several independent research teams have now shown that an AI-enabled ECG using a convolutional neural 1 

network could detect signatures of AF present during sinus rhythm. 53 It is intriguing to conceptualize that, 2 

during sinus rhythm, factors that predispose to and eventually lead to AF could be identified using AI. 3 

These include substrate abnormalities, such as myocyte changes, fibrosis and electrical / structural 4 

remodeling, or trigger factors like atrial premature beats, autonomic signatures or multiple simultaneous 5 

non-linear signal changes not readily apparent to human readers like those seen in signal-averaged P wave 6 

properties.54 This allows point of care assessment of the risk of developing AF and is particularly important, 7 

for instance, in patients with embolic stroke of undetermined source, where a positive diagnosis from 8 

documented AF poses challenges in prolonged recording, but an early AI-enhanced strategy would allow 9 

prompt appropriate treatment with anticoagulation.55  10 

There are technical aspects of AI algorithms that need to be understood to appraise the output and their 11 

utility and clinical application. The confirmation of ground truth in the diagnostic labelling is a prerequisite 12 

so that data with high confidence may be used to train the AI-algorithm.  13 

AI in sudden cardiac death  14 

Checklist application for AI studies on sudden cardiac death  15 

In total, 18 papers were identified for the field of AI in SCD. All papers focused on the use of AI for 16 

malignant arrhythmia or cardiac arrest prediction. Application of the EHRA AI checklist to all identified 17 

papers showed that 8 of 29 items (28%) were reported by ≥85% (very well reported). The most robust 18 

reporting was for checklist items under “methods” section with ≥85% papers reporting 6 of 13 items (46%). 19 

Reporting was less robust for checklist items under “open science”; notably, only 3 of 18 papers (17%) 20 

addressed data availability/sharing (checklist item 20).  21 

The relatively low percentage of well-reported items across all sections raises concerns about the 22 

consistency and robustness of reporting practices. Poor reporting of data sharing and external validation 23 

is particularly concerning from a clinical perspective, as models that have not been validated externally 24 

may not perform well across diverse patient populations.  25 

Data challenges in SCD studies present significant obstacles, particularly due to the rarity of events across 26 

diverse cardiovascular conditions and the prolonged time required for sufficient event accrual. 56 An 27 

underutilized resource in this context are historical datasets, which often include valuable ECG recordings 28 

constrained to paper formats. Ongoing efforts are focused on developing methodologies to extract and 29 

analyze data from image-based ECGs, unlocking the potential of these archival resources for predictive 30 
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modeling and research in ventricular arrhythmias and sudden cardiac arrest. 57 1 

Current clinical criteria for implantable cardioverter-defibrillator (ICD) candidacy, left ventricular ejection 2 

fraction (LVEF) <30–35%, captures a mere 20% of patients at risk for SCDs.58-62 New markers and methods 3 

for risk-stratification of SCD are urgently needed and there is an opportunity for AI, including machine and 4 

deep learning to move towards high yield, multiparametric scores to improve accuracy of prediction. 63 AI 5 

tools could enable personalized risk prediction of SCD by the customization of preventive strategies based 6 

on the unique characteristics of individual patients using subtle indicators and predictors of SCD that may 7 

be overlooked by traditional analytical methods. 64Recent efforts by the international PROFID consortium, 8 

using multiparameter analysis with CMR data, failed to improve risk prediction.65  9 

AI models for SCD prediction  10 

Currently the use of AI for SCD risk prediction is a burgeoning field with fewer (but increasing) publications 11 

when compared to the use of AI for AF. As such it may be unsurprising that there was limited checklist 12 

item reporting for these papers, when compared to papers focusing on the use of AI in AF.   13 

Screening for SCD could be performed differently depending on the population or setting:  14 

a) In a low-risk population (general population) the 12-lead ECG holds significant potential as a non-15 

invasive screening modality for evaluating arrhythmic risk, primarily due to its low cost and 16 

widespread availability. 66 An ECG-AI model developed using data from two prospective, 17 

community-based studies predicted SCD with an area under the receiver operating characteristic 18 

curve (AUROC) of 0.82 in an external validation cohort over a follow-up period of 1.6 ± 2.1 years.67 19 

When combined with clinical variables, the AUROC increased to 0.90, outperforming a 20 

conventional ECG risk score based on human-interpretable ECG parameters. 53 68-74 In ambulatory 21 

patients a deep learning (DL) analysis of ambulant 24h ECG-monitoring might capture a more 22 

comprehensive reflection of electrical instability over time, as a study showed good predictive 23 

score (AUROC 0.80) for SCD in a heterogeneous cardiac population. 75 24 

b) In a moderate risk population (heart failure patients without ICDs), ECG-AI models outperform 25 

current clinical criteria for primary ICD implantation and traditional ECG parameters despite only 26 

achieving moderate predictive abilities. 76, 77 27 

c) For high-risk patients (i.e. ICD carriers) ECG features alone do not suffice for accurate ventricular 28 

arrhythmia (VA)/ SCD prediction, possibly due to the extent of baseline abnormalities in their ECG. 29 

Dynamic ECG changes over time could reflect on the changing arrhythmic substrate,  potentially 30 

providing a more powerful tool as shown in a model using a dynamic AI prediction model that 31 
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updated predictions with new ECG recordings which outperformed (AUROC 0.74) a static model 1 

that used baseline information alone (AUROC 0.64).78 Moreover, a DL model using intracardiac 2 

electrograms from ICDs accurately predicted VA treated by the ICD 3 seconds before onset with 3 

an AUROC of 0.83.79 However, this performance decreased significantly to an AUC 0.55 when 4 

attempting to predict beyond a 30-day timeframe.  In addition, AI could aid improved ICD patient 5 

selection by predicting non-arrhythmic mortality combining ECG and clinical data (AUROC 6 

0.8).80  Another source of data is remote monitoring device data for prediction of VA and ICD 7 

therapy.81, 82 A study demonstrated high accuracy in the real-time prediction of imminent 8 

ventricular arrhythmia (<30 days), using remote monitoring device data including device-derived 9 

parameters such as activity levels, thoracic impedance, atrial arrhythmia burden, and lead 10 

impedance. 83  11 

In addition, for patients admitted to general wards or ICUs, baseline 12-lead ECG, continuous monitoring 12 

of the heart rate and other vital signs provide opportunities for ML models to detect ventricular 13 

arrhythmias and cardiac arrest before its occurrence, providing critical advance notice. 66, 84   14 

Apart from ECGs, other data modalities, particularly cardiac imaging can provide anatomical and functional 15 

information that reflects on arrhythmic substrates. Several studies have assessed the value of cardiac 16 

magnetic resonance imaging (CMR) on VA and SCD prediction.85, 86 Multimodal DL models have been 17 

developed, using late gadolinium enhancement (LGE)-CMR data combined with clinical covariates,.87, 88  18 

Future holistic representations using AI for SCD prediction 19 

The potential of AI may be maximized when multiple modalities are integrated to construct a 20 

comprehensive characterisation of the physiological cardiac state. This encompasses anatomical image 21 

features that reflect substrate-specific details such as tissue characteristics and 3D cardiac geometry, 22 

genome-wide associations studies to assess genetic predispositions, and the electrical conduction patterns 23 

and electrical physiology. Recent studies showed that neural networks can learn holistic representations 24 

across ECG and CMR, which may be associated with genetic variants.89 An example is a multimodal AI 25 

approach (the DEEP RISK model) which integrated DL features from both ECG and LGE-CMR in patients 26 

with non-ischemic cardiomyopathy, along with clinical patient data, to predict the 1-year risk of ventricular 27 

arrhythmia (AUROC 0.84).90 Personalized virtual heart models (Digital Twins) that integrate cardiac imaging 28 

and electrophysiological properties have also proven effective for assessing substrate complexity, guiding 29 

VT ablation, and predicting post-ablation arrhythmia recurrence 91-93 94, 95Another promising avenue to 30 

explore is capturing temporal dynamics using telemonitoring and wearable devices. The risk of SCD is 31 
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dynamic and fluctuates over time due to factors such as lifestyle, hormones, medication changes, 1 

progression of underlying conditions, and acute cardiac events. 63In addition to the information 2 

continuously captured by cardiac implantable electronic devices remote monitoring and wearable devices 3 

can register behavioral and electrophysiological data, activity patterns or stress levels. The high volumes 4 

of data that are collected through these digital tools can be analyzed through AI algorithms and leveraged 5 

for personalized prediction. Novel tools such as smartwatch-based loss of pulse detection to transform 6 

out-of-hospital cardiac arrest care by enabling early recognition and automated activation of emergency 7 

services through AI-driven algorithms.96 8 

AI in the electrophysiology lab   9 

Checklist application 10 

Literature review identified a total of 6 papers on the use of AI within the EP lab. Applying the EHRA AI 11 

checklist to these papers showed that 13 of 29 items (45%) were reported by ≥85% of papers (very well 12 

reported). The most robust reporting was for checklist items under “regulatory”, with ≥85% papers 13 

reporting 2 of 4 items (50%), followed by checklist items under “methods” section, with 6 of 13 items 14 

(46%) very well reported. Three items were reported poorly: balanced groups, missingness/poor data 15 

(items 13 & 14 under “methods”) and external validation (item 25 under “results”) which were reported 16 

by one paper (17%) each respectively. (Figure 3).  17 

In this field, regulatory items were reported more consistently, reflecting growing awareness of regulatory 18 

considerations for AI tools used in clinical environments. However, poor reporting on missing data and 19 

balanced groups suggests a need for better guidance on handling and reporting missingness, as this can 20 

significantly impact model performance and clinical utility. Similarly, external validation remains a concern, 21 

as AI models used in procedural settings must be robust across different populations and settings to ensure 22 

safe clinical application. 23 

Overall, the ability of ML and DL to learn and automate pattern recognition of biological signals relevant 24 

to arrhythmias such as ECGs, bipolar electrograms (EGM) has the potential to reduce both human feature 25 

engineering and inter-observer variability in identification of arrhythmia substrates as well as improve 26 

precision of ablation targets.97  New classification features of arrhythmia substrates have emerged, 27 

complementing existing electrical and imaging parameters that previously required manual or semi-28 

automated annotation on 3D electroanatomical mapping systems during catheter ablation.  98 29 
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The concept of creating a “digital twin” of individual patients, based on personalized computational 1 

modelling, enables simulations to be performed before and after treatment of arrhythmias and prediction 2 

of response to treatment strategies, to inform and optimize pre-procedural clinical decision making. 99  3 

This methodology offers the potential for in silico clinical trials comparing treatment strategies without 4 

subjecting patients to the potential risk of procedural complications of catheter ablation and potentially 5 

reducing the need for further procedures if the first ablation guided by an AI method was effective.   6 

AI for AF ablation 7 

Of the 6 identified papers in the review, 5 covered the use of AI in AF ablation. Of these, none reported 8 

≥85% of EHRA AI checklist items (range 52-83%). 9 

An example of one of the studies is showcased in Figure 4 and supplemental Table 1. In the study a DL-10 

based architecture for automated assessment of triggers as targets for AF ablation.100   11 

 12 

 13 

Figure 4. The Figure illustrates the process of evaluating scientific publications on the use of AI methods 14 
in EP, based on the 29-items checklist.  The numbers shown correspond with the individual checklist item 15 
numbers and where in the evaluation process they should theoretically be applied.  In this example based 16 
on a study by Liao et al.100, intracardiac electrograms (EGMs) serve as data input into a deep learning (DL) 17 
model of AI involving convolutional neural network (CNN) with the output as classification of EGMs into 18 
focal source and triggers (FaST) to identify and ablation targets.  After data preparation, the data is split 19 
into a training set and a testing set for internal validation. In the training set a DL model is developed 20 
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extracting features of EGMs to differentiate FaST from non-FaST EGMs.  The model then undergoes internal 1 
validation using the testing data set. The results of the internal validation are used to fine-tune the AI 2 
model to improve its accuracy.  The final AI model is compared with manual classification of FaST EGMs 3 
during an AF ablation as gold standard.  The accuracy of the AI model is then assessed using a standard 4 
performance matrix (AUC on ROC analysis, specificity, sensitivity, NPV, PPV and F1 score).. If the model 5 
shows good performance against a gold standard, it may provide additional clinical benefit over existing 6 
methods in automating the location of arrhythmia substrates to target AF ablation.  Note that not all items 7 
on the AI checklist were reported in the study., for example, external validation, trial registration and legal 8 
framework were not described, Supplement Table 1. 9 

AI=Artificial Intelligence, EP=Electrophysiology, AF=Atrial Fibrillation, FaST=Focal source and triggers, 10 
EGMs=Intracardiac electrograms, CNN= Convolutional neural network, PVI=Pulmonary vein isolation 11 
PPV=Positive predictive value NPV= Negative predictive value AUC=Area under the curve ROC= Receiver 12 
Operating Characteristic 13 

 14 

In contrast to other studies using ML methods using retrospectively processed data off-line, the 15 

proprietary Volta software (Volta Medical) classifies intracardiac EGMs during mapping in real time with 16 

high probability of atrial spatial-temporal dispersion (DISPERS) as drivers of AF can guide catheter ablation 17 

in addition to pulmonary vein isolation (PVI) in treatment of persistent AF.  101, 102 A recent study analyzed 18 

the outcome and safety of catheter ablation guided by the Volta VX1 software in patients with long-19 

standing persistent AF 103.  Among 50 consecutive patients undergoing catheter ablation for persistent AF, 20 

recurrence of any atrial arrhythmia was documented in 26 patients (52%) after a 6-week blanking period.  21 

Tailored-AF was a multicenter RCT, using the AI-based Volta AF-XplorerTM software, that was recently 22 

presented (ClinicalTrials.gov NCT04702451).103AI-guided ablation in addition to PVI showed higher 23 

freedom from AF at 12 months than the PVI only arm (88% vs 70% and 66% vs 15%).  24 

The proof-of-concept OPTIMA (Optimal Target Identification via Modelling of Arrhythmogenesis) pilot 25 

study used digital twins from imaging data to identify and refine optimal ablation targets for AF, improving 26 

treatment precision and outcomes. 99 The process was repeated until the substrate was no longer inducible 27 

and the final set of targets were imported into the 3D electro anatomical navigation system to successfully 28 

guide ablation.104 An RCT of PVI and non-PVI substrates guided by OPTIMA is ongoing (NCT04101539).   29 

ML methods have also been applied to imaging data to identify features that may predict AF recurrence 30 

after AF ablation, including a study using DL method based on pre-ablation pulmonary vein computed 31 

tomography image that has been shown to predict recurrence of AF from non-pulmonary vein (NPV) 32 

triggers in patients who received catheter ablation for paroxysmal AF. In additional studies, ML that 33 

combine LGE-CMR 95, 105, CT, clinical features and the body surface ECG have been shown to predict 34 
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recurrence of AF after PVI better than a variety of clinical risk scores. 106, 107 Further prospective studies are 1 

needed to validate these findings.108   2 

 3 

AI for VT ablation 4 

Of the 6 identified papers, 2 covered the use of AI in VT ablation.  One paper reported 18 of 29 (62%) and 5 

the other paper reported 15 of 29 (52%) of EHRA AI checklist items, neither meeting the ≥ 85% threshold 6 

of very good reporting. 7 

ML methods have been applied to predict from 12 lead ECGs the site of origin of focal VT or the site of VT 8 

exit in scar-related re-entrant VT, with the aim of enabling pre-procedural planning and improving the 9 

accuracy and efficiency of localizing VT target for ablation. 109  Patient-specific virtual heart models 10 

reconstructed from CMR data, including LGE, have shown promise in improving VA ablation outcomes. 11 

These models can localize arrhythmogenic substrates and predict ablation targets pre-procedurally by 12 

simulating VT induction, helping to reduce unnecessary ablation and associated complications. 13 

Additionally, by enabling precise target localization and effective pre-procedural planning, these models 14 

can shorten procedure durations, reduce operator fatigue, and optimize resource utilization. This 15 

integration of predictive tools into clinical workflows enhances patient outcomes and represents a 16 

significant advancement in personalized EP care. 110   17 

AI-aided 3D image integration for EP procedures 18 

There have been significant advances in development of computing software which can process and 19 

analyze raw image data acquired from CMR and CT scans to enable pre-procedural planning of catheter 20 

ablation. AI-guided software can quantify total scar volume, predict acute hemodynamic decompensation, 21 
111predict post-infarct VT isthmuses112, 113 for successful VT ablation. Heterogeneous tissue channels can 22 

be defined and classified automatically as sub-endocardial, sub-epicardial and transmural using AI-guided 23 

image analysis and further guide ablation.114  24 

Recently, in a single center pilot study “Ablate by LAW”, it was shown that a personalized AF ablation 25 

strategy with titration of ablation index, based on left atrial wall thickness obtained from multidetector 26 

computed tomography post-processed with a software tool and integrated into a mapping system resulted 27 

in reduction in duration of procedure and fluoroscopy time, with similar rates of first pass PVI and AF 28 

recurrence to conventional catheter ablation. 115  There is currently an ongoing multi-center clinical trial 29 

using this approach to optimize AF ablation (NCT04218604).  30 
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Application of AI in guiding left ventricular lead placement for cardiac resynchronisation therapy (CRT)  1 

Of the 6 identified papers a single paper covered the use of AI for guidance of CRT lead placement. This 2 

paper reported 23 of 29 (79%) of EHRA AI checklist items.  3 

Recent advancements in patient-specific cardiac modeling and machine learning (ML) have demonstrated 4 

significant potential to optimize left ventricular lead placement in cardiac resynchronization therapy (CRT). 5 

Personalized heart models derived from MRI and CT imaging enable in silico simulations of electrical 6 

activation patterns under intrinsic rhythm and biventricular pacing, providing insights into optimal pacing 7 

strategies. 8 

In one study, supervised ML classifiers were trained on model-derived ventricular activation characteristics 9 

combined with clinical data to predict CRT response with an accuracy of 0.77 (ROC AUC = 0.84). The ML 10 

approach identified an optimal LV pacing site that improved the predicted CRT response by 17% compared 11 

to the clinical pacing site. Additionally, 20% of non-responders were reclassified as responders when paced 12 

at the ML pacing site, demonstrating the technique’s ability to refine patient stratification.  13 

These findings underscore the utility of combining ML and personalized heart modeling to enhance CRT 14 

outcomes, improve patient selection, and refine lead placement strategies, addressing the high non-15 

response rate in CRT. 116  16 

Future role of AI in EP lab 17 

It is expected that AI will enhance several aspects of the treatment of cardiac arrhythmias in the near 18 

future. This includes refining patient selection, improving pre-procedural target identification and 19 

substrate analysis, optimizing the intraprocedural mapping process, and enabling precise assessment of 20 

ablation lesions as the chosen energy is delivered to the arrhythmia’s origin (Figure 5). 117  Ideally, this 21 

approach will allow for the use of fewer catheters, enhancing patient safety and comfort while ultimately 22 

leading to better clinical outcomes. 118 23 

Looking ahead, the future role of AI in the EP lab holds significant promise. Beyond the procedural 24 

enhancements mentioned, AI has the potential to reduce procedural complexity and risk, shorten 25 

procedural durations, enhance ablative durability, and improve downstream health outcomes. 26 

Additionally, it is conceivable that data from AI-derived ECG analyses and other biological metrics could 27 

be integrated into multiparametric databases. These databases would provide a comprehensive platform 28 

for predicting arrhythmia substrates, facilitating more effective and precise catheter ablation strategies.  29 
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To realize this vision, it is essential to adhere rigorously to standards like the EHRA checklist, which 1 

promotes reproducibility and reliability in AI-based studies. By combining visionary innovation with 2 

rigorous methodology, AI can truly transform the art and science of managing cardiac arrhythmias.  3 

 4 

Figure 5. A future vision of the use of artificial intelligence to guide robotic catheter ablation of atrial 5 

fibrillation in the EP lab using computer software that processes and analyses intracardiac electrograms in 6 

real time to indicate ablation targets.  7 

EGM= electrograms, EP=Electrophysiology, ECG=Electrocardiogram, AI=Artificial Intelligence  8 

 9 

Limitations and gaps in evidence 10 

The current body of evidence regarding AI models in the field EP is growing but still remains limited, 11 

necessitating further research and validation. There is wide heterogeneity between studies in terms of 12 
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study population, incidence of the endpoint and input data used. It is therefore critical to establish and 1 

follow standards for reporting AI studies in the field.  2 

The application of the checklist within three key areas of EP suggests that while there is increasing 3 

awareness of methodological rigor, there are key gaps in open science and validation practices. To improve 4 

the quality of AI studies in EP, several steps could be taken: 5 

• Journals and reviewers should emphasize the importance of trial registration, data availability, 6 

and external validation. 7 

• Research institutions and funding bodies could incentivize these practices through funding and 8 

recognition mechanisms. 9 

• Authors could be encouraged to adhere to reporting guidelines like the EHRA AI checklist to 10 

improve the transparency and reproducibility of their work.  11 

The observed reporting gaps, particularly in external validation, data sharing, and missing data handling, 12 

have direct implications for clinical care. AI models that are not externally validated may perform well in 13 

research settings but fail in real-world clinical practice, leading to potential risks for patients. Similarly, a 14 

lack of data availability limits the ability of other researchers to replicate findings or improve existing 15 

models, ultimately slowing the translation of AI innovations into clinical practice. Addressing these gaps 16 

through improved reporting standards would therefore contribute to safer, more effective deployment of 17 

AI tools in EP. 18 

A further limitation of this study is the use of a threshold of >85% as a benchmark for a "good level" of 19 

reporting, which was selected based on practical considerations but lacks a universally established 20 

justification in the context of reporting standards. While this threshold provides a useful point of 21 

comparison, further research is needed to validate its appropriateness and to explore whether alternative 22 

thresholds might better reflect optimal reporting practices. Addressing this limitation in future efforts 23 

could help refine reporting benchmarks and provide more nuanced guidance for quality improvement in 24 

study designs. 25 

Since the field is rapidly evolving, it could be necessary to adapt the list of items in the future. The writing 26 

group will reassess the need for adaptation at regular intervals.  27 

AI models are not automatically the solution for all challenges in clinical EP. AI algorithms can lack 28 

transparency, making it difficult for clinicians to understand the rationale behind a model’s clinical 29 
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decision. Furthermore, AI models trained on specific patient populations or device types may not 1 

generalize well across diverse patient groups, EP labs, or specific catheters or devices. For example, the 2 

outcome SCD is heterogenous and includes proxies for SCD such as sustained ventricular arrhythmia, ICD 3 

therapy (shock or anti-tachycardia pacing), out-of-hospital cardiac arrest, in-hospital cardiac arrest or any 4 

unexpected death. An AI framework trained on an imperfect ground truth, such as poorly defined or 5 

unadjudicated outcomes, inevitably compromises the reliability of the model. Many of the studies 6 

reviewed lacked proper external validation, potentially resulting in overfitting and optimistically biased 7 

model performance.  8 

To be accurate, AI models require large, high-quality datasets for training and external validation. Effective 9 

deployment of AI in cardiac EP must therefore include rigorous validation, a collaborative approach 10 

between research groups and careful consideration of ethical and privacy concerns.  11 

 Conclusions 12 

This scientific statement on the state of art of AI in clinical EP underscores the importance of a structured 13 

and standardized approach to reporting AI-related studies. The introduction of the EHRA AI checklist for 14 

EP will improve the quality, transparency, reproducibility and understandability of research in this rapidly 15 

advancing field. By standardizing reporting elements – such as study design, participant demographics, 16 

trial registration, AI model specifics, and evaluation metrics – the checklist seeks to address current gaps 17 

in how AI studies are reported. 18 

Applying the EHRA AI checklist across the three areas of AF management, SCD, and the EP lab revealed 19 

several key trends. First, we observed that reporting practices are generally more robust for 20 

methodological items. This suggests that researchers in the field of AI in EP are aware of the importance 21 

of methodological rigor. However, the notably weaker reporting in areas such as "open science" (e.g., trial 22 

registration and data availability) highlights critical gaps that need attention to improve transparency and 23 

reproducibility in AI studies. These gaps may hinder broader validation and implementation of AI tools in 24 

clinical practice, as key information about data sharing, reproducibility, and trial registration is essential to 25 

build trust and foster collaboration across institutions.  26 

This scientific statement emphasizes that adopting this checklist widely can support the critical evaluation 27 

and validation of AI tools in clinical EP. The authors advise using this EHRA AI checklist for AI in EP studies 28 

for submission processes of manuscripts and for critical appraisal during peer review, as well as for readers 29 

of AI in EP studies for personal assessment.  30 
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Continuous validation of the checklist will ensure that it remains relevant and robust as AI applications in 1 

EP evolve. Reevaluation and refinement of the checklist may be appropriate in some years.  2 

In conclusion, the EHRA AI checklist serves as a foundational tool for improving AI research quality in EP, 3 

fostering better collaboration, and supporting evidence-based AI implementation in clinical settings.  4 

 5 
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 1 

Table 2. The EHRA AI checklist. The table presents the final checklist, with the items that reached >75% consensus after the two rounds of the 2 

Delphi process. 3 

 4 
 5 
THE EHRA AI checklist for reporting, reading and understanding AI studies in clinical EP 

Item # Category/Section Explanation Rationale Page # 

 TITLE 
  

 

i) Title 

Include clear terms to identify the 

study as using artificial intelligence, 
machine learning or other specific 
terms 

To facilitate paper retrieval the terms artificial intelligence/machine 
learning/neural network in the context of EP should be used 

 

 INTRODUCTION 
  

 

1 Intended clinical use 

Clearly describe the intended use and 
where in clinical workflow the model 
can be used and the objective of the 

study 

To provide clear information of the clinical context in which to use 
the suggested AI solution in the context of EP 

 

2 Clinical benefit 
Added benefit of AI compared to 
standard clinical care (gold standard) 

To explain how the AI is performing compared to clinical care (gold 
standard/standard practice) to better evaluate the performance of 
the AI model and its potential added benefit 

 

 METHODS 
  

 

3 Data Collection Describe how data was collected 
To provide a clear description of the dataset generation process, for 
example was data retrospectively of prospectively collected, from a 
single center, or multicenter? 

 

4 Source (of data) 
Describe the study design or source of 
input data and how it was acquired 

To describe how the input data was acquired including the study 
design - for example RCT, cohort, registry data 

 

5 
Development data 
set (model training 

data set) 

Describe the data set 
To describe the data set that was used for training of the model (i.e 
12-lead ECGs from a specific population) 
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6 Participants 
Describe the participants in the data 
sets, including eligibility criteria 
(inclusion and exclusion criteria). 

Flow chart of participants (or table) suggested  

7 Comparator 

Provide clear definition of how the 
gold standard was collected.  

Clearly describe the gold standard and 
ground truth including limitations. 

To describe in detail how ground truth the model was trained on was 
established - human interaction, consensus, review type). For 

example, how was the diagnosis of atrial fibrillation established (12 
lead ECG interpreted by independent electrophysiologists) 

 

8 Testing data set 
Describe the testing data set, in 
particular defining the data set split. 

To describe in detail the data set that was used for testing the model, 
and the rationale bases on which the whole dataset was split and 
how.  

 

9 Sample Size 
Explain how the study size was arrived 
at.  

For supervised models: Focus in particular on the training set 

including number of positives/negatives and the use of data 
augmentation/reduction (legitimization). For unsupervised models: 
focus on the number of participants 

 

10 Outcome 
Clearly define standardized and 
reproducible outcome of clinical 

relevance.  

To clearly describe the outcome, for example the accuracy of a 

specific algorithm 
 

11 Data type (source) 
Clearly describe the data type for the 
study, including pre-processing 

To describe the data used (i.e.,  ECG, image, EGM, omics, EHR..) and 
its specification used to train and validate the model (i.e., was the 
information from an ECG in a image or a digital format) 

 

12 Data Preparation 

Input data handling, data 

augmentation and selection prior to 
analysis by the AI system, application 
of techniques to prevent data leakage.  

To describe every step of handling the data (i.e.,  was the data reused 

at any time in the model, like using one ECG to provide several data 
points) 

 

13 Balanced groups 
Clearly state how/if groups were 

balanced 

To describe in detail the data set that was used for validating the 
model, and the rationale bases on which the whole dataset was split 

and how.  

 

14 

Data issues 
(missingness / poor  
data / duplication / 

outliers) 

Describe how handling of data of poor 
quality/noise/missing data was 
performed  

To provide information about possible issues in the utilized data, as 
well as how these were identified and handled. It should also be 
specified if there was a minimum standard for quality required for 
the input data, and where this standard was not achieved, how this 

was handled 

 

15 
Feature engineering 
( extraction / 

If features are used, feature selection 
should be described including by 
whom features were extracted.  

To describe the process of feature selection (i.e., handcrafted or 
automatically generated), as well as the strategy adopted to reduce 
their number (i.e., threshold on cumulative explained variance) 
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selection / 
reduction) 

 REGULATORY 
  

 

   16 Legal framework 

Clearly state if the software has been 
approved by legal authorities, e.g. 

Certificate of conformity (EU) or FDA 
approval or other, and add further 
details, where appropriate (e.g. risk 
class). 

To provide information about the certification process undergone by 

the AI software specific version, and associated risk class for its use 
as declared by the manufacturer  

 

   17 Explainability 

Is the AI model explainable on the 

patient level or on a global or local 
level. 

To provide a description of the methodology used to provide model 

explainability 
 

18 Ethical approval 
Provide information on ethical 
approval of the study. 

To clearly describe which entity evaluated and released the ethical 
approval for the study 

 

19 Fairness  
Describe inclusion of relevant groups 
in the dataset  

To describe the efforts made to ensure fairness in the study, 
including for example age, ethnicity and gender 

 

 OPEN SCIENCE 
  

 

20 
Data availabilit y/  
Code sharing 

Is the data available on a public 
website? Is the code available? 

To provide details on how to access the anonymized data used for 
training/validating the model, as well as code sharing 

 

21 Trial registration 
In case of a trial, clearly state if and 

where the trial is registered. 
Provide the number and the reference for the trial registration.  

 RESULTS 
  

 

22 Participants  
Baseline demographics (internal and 
external validation data). 

To clearly describe the participant demographics in 

the study/trial/inclusion to perform internal validation of the AI 
model, as well as the dataset used for external validation." 

 

23 
Training 
performance 

Provide results from the training data 
set    

To provide results using proper metrics describing the model 
performance when applied to the training set, in order to provide a 
reference for the expected model performance and allow overfitting 

assessment in non-externally validated studies 
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24 Internal validation The results from the testing data set 
To provide results using proper metrics describing the model 
performance when applied to the validation set, as obtained from 
the same population/hospital/study/equipment 

 

25 External validation 
The results from the external 
validation data set  

To provide results using proper metrics describing the model 

performance when applied to a validation set obtained from a 
different population/hospital/study/equipment 

 

26 
Model performance  
Internal and 

external validation 

Choose appropriate metric selection 

for reporting 

"To provide appropriate metrics (threshold dependent or 
independent), for example: 

AUC/Sensitivity/Specificity/NPV/PPV/F1/Uncertainty Failing cases" 

 

27 Performance errors 
Analysis of performance errors and 
how they were identified 

To provide description about how errors in the model were detected, 
possible explanations, and potential corrections taken 

 

28 
Performance 

compared to classic 
statistical methods 

What did the model add? 

To provide a comparison with a regular statistical model if 

applicable, potentially using net reclassification indices (i.e., what 
would have been the results of a regression model compared to the 
AI-algorithm)" 

 

29 Generalizability 
Discuss the level of generalizability of 

the results obtained.   

To discuss how and within which limits the obtained results could be 
generalized to a more general population, with regards to internal 

and external validation data sets 

 

 CONCLUSION 
  

 

ii) Conclusion  
Is the conclusion supported by the 

dataset? 
  

1 
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Table 3 Overview of checklist items for each extracted paper  1 

The extracted papers, categorized by topic area, were further divided into three distinct review areas. For each checklist item (#1–29), a color 2 

code was assigned: green to indicate that relevant information was provided in the study, and red to indicate that relevant information was not 3 

provided. 4 

 5 

Author Year 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 

AF 
management  

     
           

             

Baek, Y S119 2021                                                           

Jo, Y Y120 2021                                                           

Michel, P121  2021                                                           

Rabinstein, A55  2021                                                           

Bahrami Rad, A 122 2021                                                           

Raghunath, S 123 2021                                                           

Schwab, K124 2021                                                           

Sekelj, S125 2021                                                           

Taniguchi, H126 2021                                                           

Chen, B 127 2022                                                           

Kaminski, A128 2022                                                           

Mannhart D 129 2022                                                           

Noseworthy. P130 2022                                                           

Pujadas, E R 131 2022                                                           

Schnabel, R B132 2022                                                           

Asadi, M 133 2023                                                           

Gadaleta, M 134 2023                                                           

Kim, J Y 135 2023                                                           

Kim, Y 136 2023                                                           

Laghari, A137 2023                                                           
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Sarkar, S 138 2023                                                           

Weidlich, S 139 2023                                                           

Choi, J 140 2024                                                           

Kim, J 141 2024                                                           

Mandala, S 142 2024                                                           

Wan, X 143 2024                                                           

Christopoulos, G 144 2022                                                           

Duan, J 145 2022                                                           

Hygrell, T 6 2023                                                           

Dupulthys, S146 2024                                                           

Goettling, M 147 2024                                                           

SCD                               

Wang, Q 148 2021                                                           

Lee, Y J 84 2021                                                           

Smole, T 149 2021                                                           

Krebs88 2021                                                           

Popescu87 2022                                                           

Sammani, A 77 2022                                                           

Balaban, G 85 2022                                                           

O'Hara, R P 92 2022                                                           

Ginder C83 2023                                                           

Lee, H 150 2023                                                           

Shiraishi, Y  76 2023                                                           

Kolk, M 80 2023                                                           

Zaidi, H A 86 2023                                                           

Cha, Y M 79 2024                                                           

Kolk, M 78 2024                                                           

Barker, J75 2024                                                           

Holmstrom, L 67 2024                                                           

Coriano, M 81 2024                                                           

AI in EP lab                               
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Liao, S100 2021                                                           

Baalman, S151 2021                                                           

Seitz, J101 2022                                                           

Krummen, D 152 2022                                                           

Dokuchaev, A 116 2023                                                           

Fox, S118 2024                                                           

 1 
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