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Automatic Detection of ST-T Complex Changes
on the ECG Using Filtered RMS Difference Series:

Application to Ambulatory Ischemia Monitoring
José García*, Leif Sörnmo, Member, IEEE, Salvador Olmos, and Pablo Laguna, Member, IEEE

Abstract—A new detector is presented which finds changes in
the repolarization phase (ST-T complex) of the cardiac cycle. It op-
erates by applying a detection algorithm to the filteredroot mean
square(rms) series of differences between the beat segment (ST
segment or ST-T complex) and an average pattern segment. The
detector has been validated using the European ST-T database,
which contains ST-T complex episodes manually annotated by car-
diologists, resulting in sensitivity/positive predictivity of 85/86%,
and 85/76%, for ST segment deviations and ST-T complex changes,
respectively. The proposed detector has a performance similar to
those which have a more complicated structure. The detector has
the advantage of finding both ST segment deviations and entire
ST-T complex changes thereby providing a wider characterization
of the potential ischemic events. A post-processing stage, based on
a cross-correlation analysis for the episodes in the rms series, is
presented. With this stage subclinical events with repetitive pat-
tern were found in around 20% of the recordings and improved
the performance to 90/85%, and 89/76%, for ST segment and ST-T
complex changes, respectively.

Index Terms—Automatic ischemia detection, ECG, ST-T com-
plex changes, ST segment deviations.

I. INTRODUCTION

I SCHEMIC heart disease constitutes one of the most
common fatal diseases in the western hemisphere. My-

ocardial ischemia is caused by a lack of sufficient blood flow
to the contractile cells and may lead to myocardial infarction
with its severe sequellae of heart failure, arrhythmias, and
death [1]. During the last years, ambulatory monitoring of the
electrocardiographic (ECG) signal has become the noninvasive
test most widely used for detecting cardiovascular diseases.
Ischemic ECG changes typically precede the onset of anginal
pain and, hence, these may be the only sign of “silent myocar-
dial ischemia” [2]. Therefore, it is essential to develop methods
that detect early changes in the ECG, possibly indicating the
onset of an acute ischemic syndrome.
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Different ECG changes related to the evolution of ischemia
have been described, including T wave amplitude changes, ST
deviations and even alterations in the terminal portion of the
QRS complex [3]. In different situations T wave changes could
precede ST segment deviations during the ischemic process [3],
[4] and, therefore, should be considered in monitoring systems.
The use of global representations for the ST-T complex instead
of using a single point from the ST segment better characterizes
ischemic patterns [5], [6], and yields better identification of an
occluded artery [7]. Unfortunately, commercial equipment usu-
ally considers a fraction of the whole repolarization period, i.e.,
the ST60 or ST80 point.

Different algorithms have been designed for analyzing the ST
segment, either in the ECG signal [8], [9] or in the averaged
ECG [10]–[18]. Several mathematical transforms have been ap-
plied to the ECG for ischemia detection: the discrete cosine
transform (DCT) and the discrete Fourier transform (DFT) were
used for classification of repolarization patterns [19], and the
Karhunen–Loève transform (KLT) was used to detect changes
in the ST segment [20] and the entire ST-T complex [5], [21].
Other techniques such as artificial neural networks [22]–[24]
and fuzzy-logic [25] have been also proposed.

The European ST-T database[26] was developed with the
objective to assess the quality of ambulatory ECG systems. It is
composed of recordings with episodes of repolarization changes
manually annotated by different cardiologists, consisting of ST
segment and T wave changes. This database has recently been
used to test different ST algorithms but the detection of T wave
changes have not been explored yet.

We propose the design and validation of a system that detects
changes either in the ST segment, or in the entire ST-T complex
(including the T wave), thereby providing a wider characteriza-
tion of ischemic events. Section II describes the different parts
of the detector, the database for validation and the performance
measures. A cross-correlation study between episodes is also in-
cluded. The validation results are shown in Section III and are
further discussed in Section IV.

II. M ATERIALS AND METHODS

A. European ST-T Database

The European ST-T database[26] consists of 90
double-channel 2-hour ECG recordings, extracted from
Holter tapes (two-lead ECG’s) that contain ST-T complex
episodes annotated on an individual lead basis by cardiologists.
The events are distributed in 368 episodes of ST segment
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TABLE I
REFERENCEANNOTATION SETS FORST SEGMENT AND ST-T COMPLEX

INTERVALS, ORIGINALLY AT THE EUROPEANST-T DATABASE, AND AFTER

LOGICAL OR COMBINATION (SEE TEXT FOR DETAILS)

Fig. 1. Detector structure.

deviations and 401 of T wave changes. It is possible to combine
the lead-by-lead annotations for each recording using a logical
OR and the widest limits in time into a new lead-independent
set (see Table I). For the study of the ST-T complex changes,
a new annotation set was derived using theOR combination
of ST segment and T wave episodes, andOR combination
between leads. These two sets of 250 ST segment and 392
ST-T complex episodes were used for validation of the detector
performance.

B. Detector Design

The proposed detector includes signal preprocessing, compu-
tation of the root mean square (rms) difference series, filtering,
and a decision algorithm which finds the ischemic events, see
Fig. 1.

The preprocessing consisted of QRS detection and normal
beats selection according to the arrhythmia detector ARISTOTLE

[27], baseline wander attenuation using cubic splines [28], and
rejection of noisy beats [those with low signal-to-noise ratio
(SNR) with respect to an exponentially averaged SNR or with
differences in mean isoelectric level with respect to adjacent
beats larger than 400V]. In order to avoid the influence of
high frequency noise in the rms difference series (e.g., 50/60
Hz noise), the ECG was low-pass filtered using a linear phase
FIR filter (cutoff frequency 25 Hz). Beat segmentation was
done by selecting intervals of 50 and 300 ms for the ST segment
and ST-T complex, respectively, beginning at a distance from
the QRS fiducial point dependent on the RR interval. The onset
of the intervals for theth beat, , is given by

(in milliseconds) (1)

These intervals definitions, related to the QRS fiducial point,
avoid the always problematic estimation of the J point to define
the repolarization windows, although consider the heart rate ef-
fects [29].

The time series was estimated for each recording by
summing the rms difference series of eachth lead,
( is the fiducial point of theth beat). The series were
obtained as the rms difference values between the corresponding
ECG segment (the ST segment or ST-T complex) of length,

( is the sample index), and the average or template
interval, (evaluated from first 100 beats, representative

Fig. 2. Example of beats rejection (preprocessing stage) in the rms series of
ST-T complex, and successive filtering stages (median filtering and exponential
averaging). See text for details.

of the initial ECG). The expression to calculate the time
series is, hence

(2)

A median filter of length 5 samples was used for outlier re-
jection in the series and then the time series was evenly
resampled to 1 Hz (using linear interpolation to obtain
from ). An exponential averager (time constant equal to
20 s) was further applied to smooth the series. The cleaning ef-
fects of the successive filtering stages over the rms series, as well
as the effects of the beat rejection applied in the preprocessing,
are shown in Fig. 2 (record from theEuropean ST-T data-
base). The importance of the noisy beats rejection stage can be
noted

The final stage of the detector incorporates an adaptive ampli-
tude threshold. The threshold accounts for slow drift changes in
the repolarization period as caused by various nonischemic fac-
tors: effects of medication, heart-rate related changes or slow
variations in the electrical axis of the heart. These slow changes
are attenuated by applying an exponential averager that defines
the baseline values for the series,

(3)

and that is estimated only from those beats considered as non-
ischemic by the detection algorithm. Thevalue adjusts the
speed for slow changes to be considered as nonischemic events.

A threshold is finally used to determine the limits in the rms
series where the variations, after subtraction of, are consid-
ered as repolarization (and potentially ischemic) events

(4)

The detection algorithm operates at each instantfollowing
the structure shown in Fig. 3. It tests the expression in (4) and
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Fig. 3. Main structure of the detection algorithm that performs over the filtered
rms[n] series.

Fig. 4. Example of ST-T complex changes detection showing the annotated
(u) and detected (̀a) episodes intervals. The baseline estimation,�[n], (dotted
line) and plus the� threshold (dash-dotted line) are plotted over therms[n]
series.

then either determines the limits of an interval to be considered
as an episode (EP), or updates the baseline. Two parame-
ters are also included for setting up the minimum duration of
episodes (45 s), and the minimum time distance between two
successive episodes (2 min), but these are not shown in Fig. 3
for simplicity.

An example of the detector performance is shown in Fig. 4
as applied to detection of ST-T complex changes in the record

from theEuropean ST-T database. The annotated and de-
tected intervals are shown in the upper part of Fig. 4; the baseline
estimate, , and the threshold are plotted over the
series. The first, second and fourth annotated episodes corre-
spond to T wave changes without ST changes; the third manu-
ally annotated episode, to ST segment deviations; and the fifth
and sixth, to variations annotated in both intervals.

TABLE II
EXTENDED ANNOTATION SETS OBTAINED AFTERINCLUSION OFSUBCLINICAL

EVENTS WITH REPETITIVE PATTERN

C. Performance Measures

The detector performance needs to be evaluated by com-
paring the cardiologists’ annotations and the detector output
with regard to the following aspects [30]:

• detection rate;
• duration;
• magnitude of detected episodes.

First two aspects are evaluated in terms of sensitivity and pos-
itive predictivity for both detection rate (, ) and duration
( , ), respectively [30].

The third aspect, related to the accuracy in the episodes mag-
nitude estimation, is measured by comparing event-by-event the
annotated amplitudes of the episodes (deviation peak as mea-
sured by the cardiologists) to the values obtained by the detector.
The estimated linear correlation coefficient,, between the two
sets provides a measure of the detector linearity.

Two kinds of statistics are commonly used for detector vali-
dation:gross statistics, in which the episodes of all patients are
assigned equal weights, andaveragedstatistics, in which every
patient is assigned equal weights. We will direct our attention to
averaged statistics to summarize the main results, since we did
not find much difference with respect to gross statistics.

D. Correlation Analysis of Episodes with Repetitive Pattern

A repetitive pattern of changes was found in several record-
ings of the database. Although some of these patterns were
not annotated by the cardiologists, thus leading to some false
positive detections as shown in the results section, these may
still have clinical importance; in some cases these subclinical
events have a magnitude or duration slightly below the min-
imum requirements needed for annotation, and can precede
other episodes in time. This finding of several borderline
cases of ischemia has also been reported in other studies using
the European ST-T database[5], [18], [21], [23]. Therefore,
we have expanded the detector with a post-processor which
detects these subclinical events by estimation of the episodes
correlation in the series domain.

We selected, after visual inspection of the series, those
recordings that showed ST segment or ST-T complex episodes
repetitions not annotated by the cardiologists. A repetitive pat-
tern of episodes was found in around 20% of the recordings
(17% for ST segment and 22% for ST-T complex episodes).
New extended sets of annotations (Table II) were obtained by
addition of the new events that presented high likelihood in their
energy evolution with respect to that of the largest episode an-
notated in each recording (the number of recordings where the
new annotations came from are also included in parenthesis).

The post-processing stage analyzes the correlation coefficient
between different episodes. In each recording, the largest de-
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Fig. 5. Example of detection of repetitive ST segment subclinical events for
the recordinge0103 using the cross-correlation post-processor. Top:rms[n]
series with originally annotated (u), manually added (t), and automatically
detected (̀a) episodes. Bottom:� correlation coefficient. Note that
some peaks in� (e.g., around minute 57) are not detected because of the
amplitude protection forrms[n] included in the correlation stage.

TABLE III
PERFORMANCESTATISTICS (IN PERCENTAGE) OF THE DETECTOR FORST

SEGMENT AND ST-T COMPLEX CHANGES DETECTION

tected episode was selected from the time series and
taken as the episode template for that patient. The normalized
correlation coefficient, , between the episode template, ,
and the corresponding time series is defined by

(5)

where is the template length. Those signal excerpts for
which the correlation coefficient exceeded an experimentally
selected threshold ( ), presenting an amplitude in the

series (once the baseline has been subtracted) at
least exceeding 25% of the template episode amplitude (to
remove highly correlated episodes with negligible peaks), were
detected as subclinical events. The validation of the detector
combined with the post-processor was done for the extended
sets of episodes, see Table II.

An example of the performance is shown in Fig. 5 for ST
segment changes in the recording . In the upper panel,
the series with the original annotations, manually added
(centered around minutes 4, 62, and 74) and automatically de-
tected episodes are shown. The estimated correlation co-
efficient, which constitutes the basis for the detection of sub-
clinical events, is shown in the bottom panel.

III. RESUTLS

The detector was applied to theEuropean ST-T database. The
results of the validation on all the recordings, using thesets
described in Table I, are shown in Table III. These results present
performance statistics ( ) for the ST segment episodes of
84.7/86.1% in episodes detection, and 75.3/68.2% for ischemia
duration estimation. For changes in the entire ST-T complex,
the results of sensitivity (both in episodes detection and dura-
tion measure) reached similar levels, but presented a significant
decrease in the positive predictivity.

The receiver operating characteristics(ROC) curves (
versus ) corresponding to ST segment and ST-T complex
episodes detection and obtained for different values ofand

are shown in Fig. 6(a) and (b), respectively. The ROC’s
correspond to episode detection and similar curves define
the performance in episode duration. The optimal point was
selected for each segment maximizing the geometrical mean
of the statistics performance parameters (, , , and

) obtained for each ROC point (defined by a couple of,
values). The ROC’s corresponding to different but close

values yield similar performances, although the optimal points
in each curve may correspond to differentvalues. However,
for values far from the optimal point the performance of the
detector deteriorates.

The detector accuracy was estimated by calculating the linear
correlation coefficient,, between the deviations as measured by
the cardiologists and the output of the detector at the maximum
deviation of the episode. In Fig. 7 the event-by-event compar-
ison is shown between both sets of measurements for ST seg-
ment deviations (the values of the lead-related series at
each annotated episode peak, and signed according to the devi-
ation, are represented in the horizontal axis; the manually an-
notated deviations are shown in the vertical axis). The corre-
lation coefficient was 0.963, and the regression line was
defined by . The detector linearity for
ST-T complex changes was also evaluated (comparing the ST-T
complex series values at each annotated episode peak of
ST segment or T wave with respect to the database annotations)
obtaining a lower correlation coefficient, 0.912, and a re-
gression line defined by .

Once the basic detector structure was validated, the ex-
tended set obtained by adding new annotations (Table II), was
considered. First, the basic detector structure was studied on
this set (composed of 280 and 429 events for ST segment and
ST-T complex, respectively), and then the post-processor was
included ( -stage) for detection of subclinical events. All
these results are presented in Table IV. These results indicate
that the post-processor finds the subclinical events otherwise
missed, providing an improvement of the detector performance
for detecting ST segment subclinical events ( from 85/86
to 90/85) similar to that obtained for ST-T complex subclinical
events ( from 85/76 to 89/76).

IV. DISCUSSION

Comparative performance statistics are presented in Table V
for different detectors using theEuropean ST-T database:
second and third columns (left part of the table) showand

values for each detector in their optimal operating points;
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Fig. 6. ROC curves for detection of (a) ST segment, and (b) ST-T complex episodes. The ROC’s curves (S versus+P representations) have been calculated
varying� for several values of�.

Fig. 7. Accuracy for estimating the ST segment deviation magnitude of the
annotated events: regression line and correlation coefficient. See text for details.

TABLE IV
DETECTORPERFORMANCESTATISTICS (AVERAGED AND EXPRESSED AS

PERCENTAGE) WITH AND WITHOUT USE OF THECORRELATION STAGE

ON THE EXTENDED SET.

the fourth and fifth columns (right part of the table) show
values obtained with the rms detectors (rms and rms),
respectively, after forcing them to obtain the samevalue
as the other detectors (thus, an identicalis found in each
row and the comparison is done attending ). Note that the
new operating points for the rms detectors do not correspond
to their optimal values but facilitates the comparison. The
detectors presented in [18] and [20] were validated using the
same 250 ST segment episodes set used here (see Table I), and

TABLE V
PERFORMANCESTATISTICS COMPARISON WITH OTHER DETECTORS IN

OPTIMAL OPERATING POINTS (COLUMNS 2 AND 3), AND AFTERFORCING THE

rms DETECTORS TOOBTAIN THE SAME S THAN THE OTHER SYSTEMS

(COLUMNS 4 AND 5). SEE TEXT FOR DETAILS.

the detector of [31] was only tested for ST segment episodes
annotated on the first lead (160 events). On the other hand, the
rms -stage detector was tested on the extended annotation
set (280 events). Although our detector is based on simple
processing stages, its performance is of the same order, or
better, than those obtained for algorithms based on much more
sophisticated techniques. The present detector has the great
advantage of detecting both ST segment deviations and ST-T
complex changes: no previous detectors of ST-T complex
changes have been validated. Many of the detectors referred to
in the Introduction have not been validated using an annotated
database, thus making it impossible to establish a performance
comparison.

Most of the previous work in this area did not evaluate the ac-
curacy for estimating the deviation magnitude of the ischemic
events. This information could be important for the clinician:
once an event has been detected, its magnitude should be de-
fined to estimate clinical implications. With respect to this point,
our detector presented a highly linear behavior and a close co-
incidence with the manual annotations. We may conclude the
comparison of the different detectors by asserting that it seems
difficult to increase the present detection performances; further
improvement might be related to an over-training on theEuro-
pean ST-T database. Regarding this, it is important to develop
new databases of this type, e.g., [32], to test algorithms for is-
chemia detection.
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The decrease in positive predictivity when detecting ST-T
complex changes instead of ST segment deviations, may be due
to several factors. One of them is the intrinsic difficulty to man-
ually detect T wave changes (obviously more complicated to
detect than ST deviations, due to the need of a T wave template
for comparison) that would yield to the absence of annotations
for several episodes that get detected by the automatic detector.
Another factor may be the wider variety of changes (not always
related to ischemia) that can be present in the whole repolar-
ization period and, therefore, makes it difficult to avoid false
detections.

The analysis intervals had fixed lengths although starting at a
heart rate (HR)-dependent distance from the QRS fiducial point.
The interval lengths were selected in order to include the appro-
priate signal segment (300 ms was considered long enough to
include most of the T wave energy even for a slow HR and short
enough to avoid inclusion of energy from the next beat in case of
a fast HR). For uses of the detector in situations where the HR is
expected to reach extreme values (e.g.,150 bpm during stress
test), the use of window lengths adjusted to the RR interval is
suggested [29]. However, for ambulatory monitoring purposes
the present structure did not affect the performance. In fact, the
validation results did not change significantly even when the in-
terval onset was selected at a fixed point instead of at a HR-de-
pendent point.

The cross-correlation study showed that a significant
number of patients presented a repetitive ischemic pattern
(around 20%). Such potentially ischemic episodes that
exhibited the same variations pattern could be due to
coronary vasospasms (Prinzmetal’s angina) [33]. When the
basic detector structure was applied to the extended set of
annotations, then the value was obviously reduced (from
85% to 82% for ST segment changes, and from 85% to
83% for ST-T complex changes) as a consequence of that
many new episodes (subclinical events) were not detected,
but the value increased (from 86% to 89%, and from
76% to 80%) since some events that in the original set were
false detections, further accounted for as correct detections.
When the correlation stage was added thevalue increased
significantly (up to 90% and 89%, for ST segment and ST-T
complex, respectively), corresponding to a better detection
of the new episodes, and the value decreased slightly
(to 85% and 76%, for ST segment and ST-T complex,
respectively) due to that the extra stage has associated its
own false positive detections. The correlation stage improved
the detector performance on the extended annotation set,
which contains small episodes or subclinical events below
the usual requirements for ischemia detection.

Changes in body position are sometimes mistaken for as my-
ocardial ischemia during ambulatory ECG monitoring. In this
work the problem of nonischemic events has not been addressed,
although the whole database (including the two recordings that
have axis shifts annotated instead of ischemic episodes) has
been used for the testing. The cancelation of these events and
maybe other potential axis shifts not annotated, which yielded
false detections would imply an improvement in the positive
predicitvity of the detector (the rejection of these two files in
the evaluation yields an improvement of 2% in ). It would

be desirable to expand the present detector structure to handle
changes in body position.

Finally, it should be pointed out that different lead configu-
rations are included in theEuropean ST-T database, thus pre-
senting a large variety of two lead combinations. This property
constitutes an additional difficulty in the selection of the de-
tector parameters since ischemia is reflected differently in dif-
ferent leads. Detection based on identical lead configuration is
likely to yield better performance.

V. CONCLUSION

The present detector is based on simple processing stages.
Its performance is comparable to or even better than those of
more complex algorithms. The detector handles not only ST
segment deviations but also entire ST-T complex changes,
thereby providing a more complete approach to the detection of
ischemic episodes. Validation on theEuropean ST-T database
showed results of sensitivity/positive predictivity of 85/86%,
and 85/76%, respectively, for ST segment deviations and ST-T
complex changes. A post-processor based on a cross-corre-
lation analysis in the rms series domain detected subclinical
events with repetitive patterns (found in around 20% of the
recordings), and improved the performance to 90/85%, and
89/76%, for ST segment deviations and ST-T complex changes,
respectively.
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