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Abstract

In this work we analyze several scalar quantizers
applied to transform coding of ECG signal. In or-
der to reduce the variance of the transform coefficient
series predictive coding is used improving scalar quan-
tizers performance. Due to the non-stationary nature
of ECG signal, adaptive predictors and quantizers are
more suitable than fixed configurations. Best results
are obtained with an adaptive-predictive adaptive uni-
form quantizer for on line operation mode.

1. Introduction

The compression of biomedical signals is often used
in clinical applications where high volumes of data are
generated [1]. The aim of any data compression sys-
tem is to minimize the volume of data without loss
of significant clinical information. Data compression
can be defined as the process of detecting and reduc-
ing redundancies in a signal.

In the case of ECG signals we can distinguish sev-
eral kinds of data redundancies. One reflected as a
statistical dependence between adjacent samples of
the same beat. Other reflected in the non-uniform
probability density function (pdf) of the amplitudes.
This will lead us to consider optimal quantizers. Fi-
nally, there exist correlation between samples of dif-
ferent beats due to the quasi-periodic characteristics
of the ECG signals.

While source coding can be performed on the orig-
inal signal directly, it is usually more efficient to find
an appropriate transform. The first useful property of
appropriate transforms is their energy packing prop-
erty, that is, the signal energy is almost completely
concentrated in a few number of transform coeffi-
cients. Another advantage of transform coding is that
the new domain is often more appropriate for quanti-
zation. Firstly, some basis functions are more relevant
for coding the signal, so optimal bit allocation algo-
rithms improve coding performance. Secondly, the
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correlation between ECG samples of different beats
due to the quasi-periodicity of ECG signals produces
high correlation between adjacent transform coeffi-
cients. Predictive quantization techniques [2] are suit-
able in this case.

In this work we analyze several uniform and non-
uniform scalar quantizers for coding the coefficients
obtained when the Karhunen-Loeve (KLT) transform
is applied to the ECG signal [3]. Results are obtained
for all signals from MIT-BIH Arrythmia database.

2. Scalar Quantization of KLT
Coefficients
Assume X=[z1,xq, - ,:I:N]T a vector of N con-

secutive samples representing a beat of the ECG sig-
nal. Typically, these samples are correlated and in-
dependent coding of the samples is inefficient. The
idea is to apply a linear transform T (see figure 1) so
that the signal energy is more concentrated in the first
transform coefficients (y1,y2, -, ym) M << N . The
orthogonal transform that achieves the best energy
packing is the KLT [4]. Moreover, in this domain the
transform coeflicients are decorrelated. While there
is no general formal result that guarantees more ef-
ficient compression by decorrelation, it turns out in
practice {(and for certain cases in theory) that scalar
quantization of decorrelated transform coefficients is
more efficient than scalar quantization of the sam-
ples [5]. Details of the application of the KLT to the
ECG signal can be found in [3].
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Figure 1: Transform coding.
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In order to achieve compression in the transform
domain we need to map the real value coefficients
(y1,y2, -, yn) into a discrete set or codebook. This
process of mapping the real line to a countable dis-
crete alphabet or codebook is called guantization [5].
In practical situations the discrete alphabet is finite.
When the samples are individually quantized we call
it scalar quantization. The process of quantization
is crucial in compression systems because is where
the compression and reconstruction error is gener-
ated. The fundamental trade-off in quantization is
between rate (number of bits used) and distortion
and is known as rate-distortion theory.

Scalar quantizers can be classified as uniform and
non-uniform. Uniform quantization, while not opti-
mal for nonuniform pdf’s, is very simple and thus
often used in practice. The only design parameters
are the quantization step A, and the number of lev-
els. For selecting the step A there are some different
approaches [2]: for Gaussian pdf’s the optimum step
A is proportional to the standard deviation of the in-
put signal o, for non-Gaussian pdf’s A is selected to
minimize distortion (usually measured as MSE) with
an iterative minimization procedure.

When the pdf is not uniform, optimal quantiza-
tion will not be uniform either. An optimal MSE
quantizer is one that minimizes the distortion for a
given number of quantization levels., Optimal quan-
tizers can be calculated using the Lloyd-Maz algo-
rithm [5). While distortion of non-uniform quantizers
is less than for uniform ones, the overhead informa-
tion needed for coding the non-uniform codebook is
much larger. This effect is more important when the
quantizer should be periodically actualized in order to
follow the non-stationary behavior of the input signal.
This will be the case of transform coefficients of ECG
signal.

3. Predictive Quantization

An important and useful technique is when, in-
stead of quantizing the samples y[n] of the signal
to be compressed, one quantizes the difference be-
tween a prediction 7[n] and y[n], or e[n] = y[n] —zin].
Obviously, if the prediction is accurate, e[n] will be
small and for a given number of quantization levels,
the quantization error will decrease as compared to
straight quantization of y[n] (see figure 2). Prediction
is usually linear and based on a finite number of past
samples. Closed loop quantization is an efficient and
very well known quantization technique (DPCM) [2].

The predictor order was selected with Akaike’s
criteria. A reasonable value of the model order ex-
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Figure 2: Predictive quantizer.
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perimentally obtained for the prediction of the KL
coefficients of ECG signals was P=4.

When the input signal is non-stationary adaptive
prediction models (ADPCM) are necessary in order
to maintain prediction error variance at low values.
There are two main approaches for adaptive predic-
tion [2]: forward and backward. We selected back-
ward adaptation where predictor coefficients are up-
dated on the basis of quantized and transmitted data
Yq[n), so there is no overhead information. Several
algorithms for adapting such a predictor have been
presented in estimation theory literature. Gradient
Adaptive Lattice (GAL) is a steepest descent itera-
tion [6] designed to minimize the sum of forward and
backward prediction error of the lattice predictor of
figure 3. Reflection coefficients of the lattice structure
K and K! are adaptively estimated with a gradi-
ent method as LMS algorithm resulting the updating
equation

K};[n+1]
K,bn[n%-l]

K] [} +pd [n) b 1] frna 0]
Ko ]+ g 0] fn[n] b fn—1] (1)
where by, [n] and f,[n] are the backward and forward
prediction errors respectively and uf,[n] and u?,[n]
are the normalized updating steps
1-5

Buwln —1]+ (1= ) f7_[n]
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with 0< 8 <1 and wy,[n] the recursive estimation of
prediction error energy.
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Figure 3: Block diagram of lattice predictor.



Bit Allocation

The coefficients resulting of transform coding the
ECG signal {y1,y2, --,yn) are not of equal signifi-
cance and there is good reason to allocate bits in an
unequal way to quantize these values. The problem of
bit allocation can be stated as find the number of bits
b; for every coefficient series to minimize a distortion
function (usually mean squared reconstruction error)
subject to the constraint of a total number of bits
> ;bi < B. Several solutions have been presented
for this problem [5]. A simple (not optimal) algo-
rithm consists of, in each of B iterations, allocating
one bit where the overall distortion is minimized at
each step given the current partial allocation. In the
special case where the high resolution quantizer as-
sumption holds (high number of quantization levels),
the distortion is proportional to the variance of the
ith quantizer times the factor 272%. Then, the greedy
algorithm simplifies as follows: use the standard devi-
ations as the initial demands for each coefficient. For
each iteration, one bit is assigned to the coeflicient
with higher standard deviation and then it is reduced
it by a factor of 2.

4.

5. Results

The aim of this work is to compare the perfor-
mance of several scalar quantizers for coding the KLT
coefficients of ECG signals from MIT-BIH Arryth-
mia database. The following quantizers were selected:
DPCM with fixed and uniform quantizer, and with
fixed predictor (Q1); DPCM with adaptive and uni-
form quantizer, with the same fixed predictor (Q2);
and ADPCM with adaptive-uniform quantizer with
adaptive GAL predictor (Q3). Non-uniform quan-
tizers designed with Lloyd-Max algorithm were also
tested. For the same bit-rate non-uniform quantizers
performance was lower than quantizer Q1 due to the
high overhead information needed by the codebook.

The non-stationary behavior of the ECG signal
usually leads to a non-stationary series of transform
coefficients, where the adaptive quantizers schemes
are suitable configurations. This behavior is illus-
trated for example in figure 4 where the first KL co-
efficient series y1[n] of normal beats of record 106 is
shown.

If the compression system should work on line,
a fixed predictor should be trained during the first
beats, giving large prediction error variances where
mismatches between input signal and predictor oc-
curred. The prediction error signal obtained with
an order P=4 linear predictor trained with the first
10 samples is shown in figure 5. Some redundancies
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Figure 4: Suddenly changes in the first KL coefficient
series yi[n] of normal beats of record 106.

are removed (reduction rms value from 1106 to 157),
but the dynamic range of prediction error is high due
to the non stationarities. In off line systems, the pre-
dictor can be trained with the complete variant signal.
The off line predictor gets only a bit larger energy re-
duction (rms value 137).
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Figure 5: Prediction error with an order of N=4.

If we apply a fixed uniform quantizer Q1 to pre-
diction error signal we will have some troubles: if our
compression system should work on line, quantizer Q1
should be trained and suited during the first samples.
In the example of figure 5 the step factor A will be
low (1.80 for a quantizer with N=7 bits) producing
many overload errors where the prediction error vari-
ance is high (overload errors represents 99.9% of total
error). If the compression system can work off line,
the step factor A will be a compromise between gran-
ular and overload errors. Step factors are calculated
minimizing the mean squared value of quantization
error. Results of step factor A, quantization error
variance o, and percentage of overload errors %0OL
are shown in table 1.

on line off line
Aln] o, | %OL A o | %OL
Q1 1.80 93.9 99.9 12.35 | 3.73 1.34
Q2 12.146.1 | 4.54 27.7 — — —
Q3 10.14+6.9 | 3.57 85.24 — — —
Table 1: Quantization results for selected quantizers

Q1 and Q2 with 7 bits of 1°¢ KL series of rec. 106.

High values of overload quantization error in on
line systems are highly undesirable because these er-
rors are unbounded, and the clinical information of
the ECG signal may be hardly distortioned. For non
stationary signals adaptive uniform quantizers (Q2)
may improve performance of on line systems updating



the step factor A[n] according to the variance of the
input signal. Backward adaptation should be made
with quantized and transmitted prediction errors of
previous samples in order to avoid overhead informa-
tion. Results for the adaptive quantizer Q2 applied
to the input signal of figure 4 are much better than
results achieved with an on line fixed quantizer Q1
and similar to off line Q1 (see table 1).

Quantizers Q1 and Q2 need some little overhead
information for predictor coefficients. If an adaptive
GAL predictor is used (quantizer Q3) this overhead
can be avoided. Moreover, the adaptive GAL pre-
dictor achieves lower values of prediction error stan-
dard deviation ¢, than fixed predictor for most of the
KL transform coefficients of record 106 as it can be
seen in figure 6.
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Figure 6: Improvement of adaptive GAL predictor vs
fized predictor.

If we apply the GAL adaptive predictor with fac-
tor 4=0.97, and then the same uniform adaptive quan-
tizer as Q2 (based on transmitted prediction errors),
the performance of the on line system is a bit im-
proved, considering that no overhead information is
needed for the predictor (see oy in table 1).

Finally, we applied quantizers off line Q1, Q2 and
Q3 to the first lead of all records from MIT database
in order to evaluate their performance and to give
more consistent results. For coding the ECG signal
N=30 KL functions were used for normal beats, 25
for left bundle branch block beats and 20 for ectopic
beats. A total of B=150 bits/beat were allocated us-
ing the greedy algorithm explained in section 4. The
KL coefficient series were quantized with the quantiz-
ers Q1 on line, Q2 and Q3. The mean results of com-
pression ratio and distortion (values of mean MSE
and RMS value measured in adquisition resolution
LSB=5uV) are collected in table 2. Mean absolute
error values (rms) are given because the signal energy
can be very different for each record.

I [ Qloffline | Q2 | Q3 |
CR 21.5 21.5 224
MSE (%) | Lit15 | 13+10 | 1.2%17
RMS(LSB) | 62535 | 7.5t47 | 6.7+4.2

Table 2: Mean results of the compression system.
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6. Conclusion

In this paper we have analyzed several scalar quan-
tizers for transform coding the ECG signal. Beat to
beat variability of ECG signal leads to non station-
ary transform coefficient series with sudden abrupt
changes. The selection of the step factor for off line-
fixed uniform quantizers is a trade off between granu-
lar and overload noise. Quantization error in on line-
fixed quantizers was mainly due to overload errors
produced in the fast changes of the signal. It has
been corroborated that for these situations adaptive
quantizers are more appropriate because they can be
adapted to the input signal. A bit performance im-
provement is obtained with an adaptive GAL predic-
tor considering that predictor overhead information
can be avoided.

Results obtained from whole MIT-BIH Arrythmia
database show that an adaptive quantizer with AD-
PCM is the best scheme for on line coding the KLT
coefficients of ECG signal obtaining similar results
than for off line quantizers.
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