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Abstract. Quadratic time-frequency (TF) distributions have an excellent joint TF resolution, but their 
applicability is limited by the presence of interferences. Interferences make a measure of TF coherence 
(TFC) based on these distributions inconsistent, unless a specific methodology is used to reduce their 
influence. In this study, a framework for robustly estimating TFC, based on signal-dependent smoothing 
of the Wigner Ville distribution, is shown to provide a reliable continuous quantification of 
cardiorespiratory and cardiovascular interactions during non stationary conditions. Performance of the 
estimator is evaluated through a simulation example. Linear coupling between heart rate variability and 
pulse transit time variability is then explored during segments of polysomnography recordings 
characterized by decreases in the amplitude fluctuations of photopletysmography related to obstructive 
sleep apnea. It is observed that when a sympathetic activation, related to a decrease in the amplitude 
fluctuations of photopletysmography, occurs TFC increases in low frequency [0.04,0.15 Hz] range and 
decreases in high frequency [0.15, 0.4 Hz] range (p < 0.05). 

Keywords: Time-frequency analysis, spectral coherence, heart rate, pulse transit time, cardiovascular 
interactions, obstructive sleep apnea   

1. Introduction 
Spectral coherence has been widely applied to quantify the strength of linear relationship between 

two signals. This measure, being defined in the frequency domain, can not assess the time evolution of 
the coupling between two signals and it is not appropriate to study non stationary signals or transient 
phenomena. To assess the time evolution of linear coupling an extension of spectral coherence in time-
frequency (TF) domain is necessary. In literature, multivariate parametric analysis has been proposed to 
continuously measure the mutual interaction between heart rate variability (HRV) and systolic blood 
pressure variability during tilting [Mainardi and al, 1997]. Another model based time-varying 
coherence function, able to estimate separately feedforward and feedback path of a close-loop, has been 
recently proposed and applied to explore the coupling of renal blood pressure and blood flow [Zhao et 
al.,2007]. Parametric models are attractive because, thanks to their mathematical modelling, they 
provide a way to disentangle feedback and feedforward mechanisms, to identify systems also in close-
loop conditions [Porta et al.,2006] and to evaluate the causal direction of a coupling [Porta et al.,2002]. 
Nevertheless, their performance in estimating the time varying spectral characteristics of a signal is 
related to the capability of fitting the appropriate underlying model and, in extremely non stationary 
conditions, they have been observed to perform less accurately than non parametric methods [Orini et 
al.,2007]. In a non parametric context, a measure of time-scale coherence, based on Continuous 
Wavelet Transform, has been recently applied to the study of cardio-respiratory interactions [Keissar et 
al.,2009]. Non parametric methods have the advantage that they do not need any kind of assumption on 
the mathematical structure of the observed phenomenon and that they are relatively easy to estimate. 
Quadratic TF distributions represent a very powerful tool for the study of non stationary signals and 
transient phenomena and they have been widely applied to the study of autonomic nervous modulation 
[Mainardi et al.,2009]. Theoretical properties of TF coherence γ(t,f) defined using quadratic 
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distributions have been first described in [White et al.,1990] and [Matz and Hlawatsch,2000], but, to 
our knowledge, it has never been used in biomedical applications. Quadratic TF coherence is defined 
as:  
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where Cxy(t,f) is the cross TF spectrum and Cx(t,f) and Cy(t,f) are the auto TF spectra, of signals x(t) and 
y(t), respectively. In [White et al.,1990] authors claim that choosing the positive distributions of the 
Cohen’s class, the TFC in (1) maintains the desirable properties of the spectral coherence, in particular, 
it results to be bounded almost surely by unity (0 for totally uncorrelated signals and 1 for perfect linear 
correlation). In [Matz and Hlawatsch,2000] it has been shown how (1) is properly bounded for jointly 
underspread processes, i.e. processes x(t) and y(t) should not have a widespread TF correlation. The 
main problem for the definition of a TFC based on quadratic distributions and bounded by unity is 
related to the presence of interference terms (ITs). Biological signals are often highly correlated in time 
and frequency (overspread) and a smoothing is needed to suppress ITs, but at detriment of joint TF 
resolution. The main purpose of this study is to present a robust estimator for TF coherence, which 
should range between 0 and 1 at least in specific TF regions of interest, based on signal-dependent 
quadratic TF representations. Its suitability for the continuous estimation of the interactions in 
cardiorespiratory and cardiovascular systems during non stationary conditions is discussed through a 
simulation study. Real data application aiming at exploring the linear relationship between HRV and 
pulse transit time variability (PTTV) will be also presented. The high frequency component (HF, range 
[0.15-0.4] Hz) of the HRV signal is known to be strictly related to the parasympathetic system, through 
respiratory sinus arrhythmia (RSA), while the low frequency component (LF,range [0.04-0.15] Hz) of 
the PTTV signal is thought to be directly affected by sympathetic vasoconstriction. The other two 
components (LF of HRV and HF of PTTV) are not that clearly related to an unique phenomenon. The 
quantification of the linear coupling between HRV and PTTV spectral components during decrease in 
the amplitude fluctuations of photopletysmography (DAP), may provide useful information for better 
understanding how autonomic modulation is reflected in both signals.  

2. Methods 

2.1. Smoothed pseudo Wigner-Ville distribution 
The Wigner Ville distribution (WVD) is known to provide an excellent joint TF resolution. 

Unfortunately, the presence of ITs makes its applicability very limited. In order to reduce ITs, 
smoothed versions of the WVD, belonging to the Cohen’s Class, have been proposed. Smoothing is 
performed as a 2D convolution between the WVD and a 2D kernel (defined in TF plane), which 
completely defines the properties of the distribution. Each distribution in the Cohen’s Class can be 
interpreted as the 2D Fourier transform of a weighted version of the Ambiguity Function (AF) of the 
signal to be analyzed [Hlawatsch and Flandrin,1991]. The cross-TF spectrum can be defined as:  
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In (2) ** is the 2D convolution on t and f, FT is the Fourier Transform operator and Axy(ν, τ) is the 
cross-AF of signals x(t) and y(t). The weighting (smoothing) function Ф (ν, τ) (φ(t,f)) performs as a 2D 
low pass filter which should be tuned in order to find the better trade-off between ITs suppression and 
joint TF resolution (in TF domain) or, dually, between cross-component suppression and auto-terms 
concentration (in ambiguity domain). As the geometry of the kernel completely defines the performance 
of the TF distribution some efforts should be done toward the definition of versatile kernels, capable of 
automatically adjust to the TF structure of the signals being analyzed [Baraniuk and Jones,1993], 
[Costa and Bourdeau_Bartles,1995]. Here, an elliptical exponential kernel is used:  
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The kernel's iso-contours are ellipsis, ν0 and τ0 affect the length of the axes (the bandwidth of the 
2D low pass filter) whereas λ sets its roll-off. 

2.1.  The signal-dependent smoothing 
Signals affected by the autonomic modulation may be modelled as the sum of complex 

exponentials showing both amplitude (AM) and frequency (FM) modulation, embedded in noise. In this 
study two exponentials are considered to model an AM LF and an AM-FM HF component: 
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where instantaneous frequency is F(t)=(dθ(t)/dt)/2π. 

Quadratic TF distributions of these kinds of signals are expected to present both outer and inner ITs 
[Hlawatsch,1997]. In order to suppress outer ITs, which mainly oscillate in time direction with a 
frequency which locally depends on the frequency lag νi=FHF -FLF, the kernel should be able to filter 
out all ν> νi,min, where νi,min corresponds to the slowest ITs. To obtain νi,min, the estimation of FLF(t) and 
FHF(t) is required. A direct or indirect estimation of respiratory rate can be used for approximating 
FHF(t). For the estimation of FLF(t), which in the AF results to be concentrated along a line, the Hough 
Transform (HT) is applied to | A(ν, τ) |. Due to the hermitian symmetry of the AF, HT can be performed 
just on (ν,τ) > 0 resulting faster than in TF domain.   

The parameter ν0 in (3) is fixed imposing that Ф(νi,min,0; ν0,τ0,λ)=k<<1 : 
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Given that no information can help to retrieve the geometry of inner ITs, which mainly oscillate in 

the frequency direction, to find the τ0 providing a good compromise between inner ITs suppression and 
TF resolution, an iterative process is proposed. The parameter τ0 is gradually reduced (increasing 
smoothing) until auto TF spectra are positive or, eventually γ2(t,f) is bounded to unity in the TF region 
of interest. Using the former criterion, Cx(t,f)>0, the inner ITs are not completely removed, but their 
oscillations never take negative values. Figures 1a-1b represent the case of an insufficient smoothing. 
Outer ITs are still present at midway between the two components and, as expected, they are higher 
where the two signal spectral components are closer. In Fig. 1c-1d the TF map computed with the 
optimized ν0 is shown. It is free from outer ITs but not from inner ones (see Fig. 1d around 0.3 Hz). 
Finally, in Fig. 1e-1f the τ0 for Cx(t,f)>0 is used. 

 
Figure 1. Left: auto TF spectrum Cx(t,f); x(t) components are shown in Fig. 2 and SNR=10dB; Right: Cx(t0,f), with 
t0 marked by a dotted line in the left panels. (a)-(b): insufficient smoothing.  (c)-(d): smoothing performed with a 
kernel optimized for outer ITs suppression. (e)-(f): smoothing performed with a kernel optimized for both outer 
and inner ITs attenuation. 
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2.3. Time-Frequency region of interest 
The restriction of the TF support to a region of interest Ω(t,f) is justified by the desire of finding a 

good compromise between high joint TF resolution and boundness of γ(t,f) by 1 (full suppression of 
ITs). The region of interest is then defined as the TF region Ω(t,f) where: 
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where parameter a<1 and 
Ω(t,f)=Ωx(t,f)∩Ωy(t,f). Once that 
γ2(t,f) has been estimated, it is 
possible to track the time 
evolution of a single component 
coupling γ2

LF(t) and γ2
HF(t) by 

averaging γ(t,f), defined in Ω(t,f), 
in LF and HF bands, 
respectively. In addition, a mean 
spectral coherence γ(f) 
(generally different from 
traditional spectral coherence) is 
retrieved averaging TFC on 
time. In those rare cases when, 
despite the positivity of both 
auto spectra, for some few 
points (t0,f0) γ2(t,f)>1, the 
iterative process to compute τ0 
continues until the number of 
(t0,f0) is decreased to a very 
small, empirically determined, 
percentage of Ω(t,f) and the 
remaining (t0,f0) are excluded 
from (t0,f0). In this way TF 
resolution and the consistency 
of the estimator can be both 
preserved. Those situations are 
due to inner interferences, 
which create small oscillations 
in the auto spectra which are not 
present in the cross-spectrum.  

 

3. Materials 

3.1. Simulation study 

In a simulation study the model 
described in (4) is used to obtain 2 deterministic signals, x(t) and y(t), whose instantaneous frequencies 
and amplitudes are shown in Fig. 2. In both cases FLF is constant and FHF(t) varies sinusoidally, which 
may model a situation of periodic breathing (abnormal respiration in which periods of shallow and deep 
breathing alternate). The amplitudes of the spectral components of x(t) are constant, whereas Ay,LF(t) 
and Ay,HF(t) linearly change in time. Note that x(t) and y(t) are coupled in LF band whereas no coupling 
is present in HF band. Moreover, in order to simulate a strong decorrelating event, during the interval 
Tξ (see Fig. 2) y(t) is replaced by a white noise with the same variance as y(t). This abrupt change also 
introduces a very high amount of ITs in Cy(t,f). One hundred pairs of signals, sampled at 4 Hz, have 
been created for SNR=20,10,5 dB and their TFC have been estimated.  

3.2. Real data application 
Real data application aims at exploring the linear relationship between HRV and PTTV (i.e. the time it 
takes a pulse wave to travel between two arterial sites) during DAP episodes related to obstructive sleep 

 
Figure 2 Instantaneous frequencies (a) and amplitudes (b) of x(t) and y(t) 

used in the simulation study. In Tξ y(t) is replaced by a white noise. 

 
Figure 3  (a) TFC, group average on 100 realization, between signals 

described in Fig. 2 when SNR=10 dB. Color map goes from 0 (white) to 
1 (black). (b) γ2(f) is extracted from γ 2(t,f) averaging TFC on time. (c) 
Band coherence γ2(t). 
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apnea (OSA). As detailed in [Gil et al.,2009], 175 selected signal segments centred on a strong DAP 
were extracted from complete night polysomnography recordings from 21 children (age 4.47±2.04). 
Pulse transit time was estimated as the interval between the peak of the R-wave on the ECG and the 
50% peak value of the corresponding pulse in the finger pad measured by photoplethysmography. For 
every segment, the time evolution of the HRV-PTTV coupling in LF and HF band was extracted from 
γ2(t,f). 

4. Results and discussion 

 4.1. Simulation study 
Simulation results are shown 

in Fig. 3. The parameters ν0 and τ0 
were estimated as explained above, 
using λ=0.25, k=0.002 and a=0.08. 
When the positivity of the auto 
spectra was not sufficient to bound 
γ2(t,f), smoothing continued until 
reaching a quantities of not 
bounded points <0.2% of Ω(t,f). 
Note that γ2(t,f) was high in LF 
band, except for the interval where 
noise replaced y(t). The 
discontinuity introduced in Tξ was 
detected with a good time 
resolution and, as expected, 
correlation decreased with noise. 
The thinning of Ω(t,f) observed in 
the latest part of the simulation 
(see Fig. 3a) was due to the 
contemporary increasing of 
Ay,HF(t) and decreasing of Ay,LF(t). 
Given that the points (t0,f0)ÏΩ(t,f) 
are not taken into account, the 
change in Ω(t,f) did not affect the 
estimation of γ2

LF(t). 
In HF, TFC was always very 

low, excepted when Fx,HF(t) and 
Fy,HF(t) overlapped (two gray 
spots around 60 and 200 s). The 
low but non zero values observed 
during Tξ in HF band were due to 
the fact that the TF region around 
Tξ, Fx,HF(Tξ)ÎΩ(t,f). Note that the 
TFC estimator performed robustly 
even when SNR=5dB.  

4.2. Real data application 
The TFC map of HRV-PTTV coupling in one representative signal segment is shown in Fig. 4. The 

white regions in the TFC map in Fig. 4a represent the TF regions which are not included in Ω(t,f),  i.e. 
in which γ2(t,f) is not defined. When a DAP occurs (vertical lines) γ2

HF(t) decreased and γ2
LF(t) increased. 

In Fig. 5b the median trends of the 175 γ2
HF(t) and γ2

HF(t) are reported. The interquartile ranges of the 
median values of the band coherences estimated, for each signal segment, before (T1), during (T2) and 
after (T3) the central DAP are plotted in Fig. 5a. Using both T-Student's test and Wilcoxon Test, the 
global increase of γ2

LF(t) and the global decrease of γ2
HF(t) during the central DAP resulted significant 

(p<0.05). As shown in Fig. 4, the trend of γ2(T1) and γ2(T3) was affected by the presence of other smaller 
DAPs. Analyzing separately the 26 signal segments with just one DAP, median values of γHF

2(T1) and 
γHF

2(T3) were observed to increase up to 0.9, while median values of γLF
2(T1) and γLF

2(T3)  decreased to 
almost zero. Results support the idea that, in stable conditions, the respiratory component is 

 
Figure 4 (a):TFC map of one HRV-PTTV coupling. (b) γ2(f) is 

extracted from γ2(t,f) averaging TFC on time. (c): band 
coherence. vertical lines marks DAP events 

 
Figure 5 (a) Interquartile range of all the median γ2(t) in T1, T2  

and T3. (b) Median time evolution of HRV-PTTV coupling in LF 
and HF range. DAP occurs in T2 
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equivalently represented in both HRV and PTTV, despite the fact that this oscillation has an autonomic 
origin in HRV and a mechanical one in PTTV. When a change in autonomic modulation occurs, its 
different origin is probably the main cause of γHF

2(t) reduction. Concerning the LF band, it has been 
noticed that a sympathetic activation tends to increase the PTTV-HRV coupling. This observation may 
support the idea that LF in HRV can be interpreted, at least in part, as a measure of sympathetic 
activation.  

5. Conclusion 
In this study a framework to continuously quantify the linear coupling between cardiovascular 

signals using quadratic TF distributions has been presented. It represents an interesting tool for 
multivariate studies which aim at understanding how autonomic modulation is reflected in biomedical 
signals. This first application shows that in stable condition HRV and PTTV signals are highly 
correlated in respiratory frequency band while, during sympathetic activation, their coherence decreases 
in HF band and increases in LF band.   
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