
In Silico Characterization of Repolarization Duration and Variability in the
Long QT1 Syndrome Under β-Adrenergic Stimulation

David A Sampedro-Puente1, Fabien Raphel2, Jesus Fernandez-Bes1, Pablo Laguna1, Damiano
Lombardi2, Esther Pueyo1

1 University of Zaragoza, IIS Aragón & CIBER-BBN, Zaragoza, Spain
2 INRIA & LJLL Sorbonne Université, Paris, France

Abstract

Enhanced temporal repolarization variability facilitates
ventricular arrhythmias in the long QT 1 (LQT1) syn-
drome, particularly under β-adrenergic stimulation (β-
AS). The underlying mechanisms are, however, not fully
elucidated. In silico investigation of such mechanisms first
requires methods able to reproduce the experimental ob-
servations. Here, we describe a method for identification
of in silico action potential (AP) models from input voltage
traces and we apply it to investigate repolarization vari-
ability in LQT1. A combination of Double Greedy Dimen-
sion Reduction (DGDR) Unscented Kalman Filter (UKF)
was used to estimate the ionic conductances and phospho-
rylation levels of coupled AP and β-AS models. Over syn-
thetic AP traces from an experimentally-calibrated pop-
ulation of LQT1 cells, combined DGDR-UKF accurately
estimated the model parameters, with reduced estimation
uncertainty and convergence time. Importantly, combined
DGDR-UKF was able to reliably replicate the statistical
distributions of AP duration and short-term variability,
both at baseline and under β-AS, with relative errors be-
low 4%. Arrhythmogenic AP alternans were reproduced
too. In conclusion, our method allows characterization of
repolarization duration and variability in LQT1, which is
expected to help disentangling the mechanisms underlying
adrenergic-induced arrhythmias in this syndrome.

1. Introduction

Long QT (LQT) syndrome is a congenital disease that
causes abnormal QT prolongation and leads to high risk
of life-threatening arrhythmias. The most common LQT
variant is LQT type 1 (LQT1), in which more than 90%
of lethal events occur during physical or emotional stress,
in association with strong sympathetic stimulation [1]. In
vivo and in vitro LQT1 studies have reported a link be-
tween enhanced spatio-temporal repolarization variabil-
ity and increased risk of ventricular arrhythmias and sud-

den cardiac death, particularly in response to β-adrenergic
stimulation (β-AS) [2]. Further investigation into the
mechanisms behind such observations and the establish-
ment of robust markers that anticipate arrhythmic risk is
still needed, which could be highly relevant for the devel-
opment of improved therapies for the LQT1 syndrome.

Computational modeling and simulation has become a
powerful tool to complement experimental and clinical re-
search, contributing to advance our understanding of car-
diac electrophysiology in health and disease. In particular,
methodologies for parameter estimation of action poten-
tial (AP) computational models from available experimen-
tal data has demonstrated great potential towards the de-
velopment of personalized in silico models. Such models
could allow investigating the mechanisms underlying elec-
trophysiological properties and their relation to increased
arrhythmic risk, narrowing the number of experiments by
guiding them according to simulation predictions. In re-
cent studies, parameter estimation approaches based on
Double Greedy Dimension Reduction (DGDR) [3] and the
Unscented Kalman Filter (UKF) [4] have been shown to
accurately identify the parameters and state variables of
stochastic human ventricular AP models [5, 6].

In this work, we test the performance of individual and
combined UKF and DGDR methods to identify the pa-
rameters of coupled electrophysiology and β-AS compu-
tational models from given input voltage AP traces. Based
on such identification, we establish the capacity of the
methods to reproduce spatio-temporal repolarization vari-
ability in LQT1 and investigate arrhythmogenic phenome-
nal related to enhanced variability.

2. Material and Methods

2.1. Stochastic Population of AP Models

A population of stochastic AP models with representa-
tion of spatio-temporal variability was constructed from a
stochastic version of the O’Hara et al. human ventricular
model [7] by varying the conductances of eight ionic cur-

Computing in Cardiology 2020; Vol 47 Page 1 ISSN: 2325-887X DOI: 10.22489/CinC.2020.430

Authorized licensed use limited to: Universidad de Zaragoza. Downloaded on February 13,2021 at 17:29:36 UTC from IEEE Xplore.  Restrictions apply. 



rents in the range ±100% of their nominal values. The
currents were: IKs, IKr, Ito, ICaL, IK1, INa, INaCa

and INaK . From the 8000 models initially generated by a
Monte-Carlo method, only 2373 models were retained af-
ter a calibration step based on physiological limits of elec-
trical properties, as described in [6]. The calibrated models
represent virtual cells with distinct ionic properties.
β-AS effects were described by the Xie et al. model

[8, 9], with the updates described in [10]. Here, we con-
sidered β-AS effects to be equal for all cells except for
phosphorylation of the three cellular substrates with more
remarkable impact on the AP, namely IKs, ICaL and INaK

[10]. Multiplying factors applied to the PKA phosphoryla-
tion levels of these three substrates, denoted by fCaL, fKs

and fNaK , were varied in ranges spanning from baseline
values to values reached after application of a saturating
isoproterenol dose of 1µM. A Monte-Carlo method was
used to generate a population containing variations in such
multiplying factors.

By combining the described variations in eight ionic
conductances and three phosphorylation levels, a popula-
tion of 2373 stochastic cell models was constructed that
represented both baseline and β-AS conditions. LQT1
conditions were modeled by 90% reduction in the IKs cur-
rent conductance.

2.2. Parameter Estimation

For a given input voltage trace, which could eventually
be obtained experimentally or from a computational simu-
lation, a method was used to estimate the parameters of
an underlying AP model. As described in Section 2.1,
these parameters represent ionic conductances and phos-
phorylation levels of an electrophysiological-adrenergic
AP model. The employed approach combines DGDR and
UKF methods.

DGDR, a methodology for high-dimensional data anal-
ysis [3], was first applied to estimate the AP model pa-
rameters by projecting the input data into a low subspace
through a sparse linear combination of dictionary entries.
The dictionary was composed by different AP markers,
like AP duration at different percentages of repolarization,
short-term variability (STV) of AP duration, peak volt-
age, resting membrane potential or wavelet decomposition
components, among others, as well as linear combinations
of these markers [6].

The parameter estimates obtained by application of
DGDR were used to initialize the estimates of a subse-
quently applied UKF-based method. This UKF method al-
lowed estimation of the AP model parameters by formulat-
ing a nonlinear state-space representation and approximat-
ing the posterior distributions of the states through prop-
agation of so-called Sigma Points [11]. Additionally, at
the end of each cardiac beat, UKF estimates were updated

based on the mean and covariance of the DGDR estimates
so as to avoid local minima that could lead UKF estimates
far from the actual parameter values.

The performance of the combined DGDR-UKF method
was tested on the experimentally-calibrated population of
models described in Section 2.1 and compared to the per-
formances of the individual DGDR and UKF methods at
baseline and in response to β-AS. For that purpose, the
model population was split into a training subpopulation
of 2000 virtual cells and a validation subpopulation of 373
virtual cells. In a next step, LQT1 conditions were ap-
plied onto the input and estimated populations and these
were compared in terms of reproduction of the AP-derived
markers described in the next section.

2.3. AP Markers

AP-derived markers were calculated from N beats of
actual and estimated AP traces and included: APD, calcu-
lated as the mean of AP durations at 90% repolarization
(APD90) of individual beats, and STV, calculated as the
average distance perpendicular to the identity line in the
Poincaré plot of APD90 [5]:

APD =
1

N

N∑
n=1

APD90(n), (1)

STV =

N−1∑
n=1

|APD90(n+ 1)− APD90(n)|
(N − 1)

√
2

. (2)

3. Results and Discussion

3.1. Repolarization Variability in LQT1

Fig. 1 shows the Poincaré plots of APD90 for two vir-
tual cells of the model population described in section 2
(models #5 and #330) at four different scenarios: base-
line, β-AS, LQT1 and LQT1 with β-AS. When the volt-
age traces of each of these cells, both at baseline and under
β-AS, were input to the DGDR, UKF and DGDR-UKF
methods described in section 2.2, estimates of ionic con-
ductances and phosphorylation levels were obtained, from
which AP traces were generated. The Poincaré plots of es-
timated APD90 for each of the three tested methods are
presented in the same figure. As can be observed, the
combined DGDR-UKF method outperformed individual
DGDR and UKF in reproducing not only the mean APD90

but also its temporal variability, with DGDR-UKF render-
ing data points closely matching the input ones. After sim-
ulation of LQT1 conditions by IKs inhibition, differences
between the tested estimation methods were even more ac-
centuated, with DGDR-UKF reproducing APD and STV
with high reliability.
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Figure 1. Poincaré plots of APD90, for two different virtual cells (models #5 and #330 in the population of Section 2.1),
calculated from input voltage traces (blue) and from DGDR (yellow), UKF (purple) and DGDR-UKF (orange) estimates
under four conditions: baseline, β-AS, LQT1 and LQT1 with β-AS.

The superior performance of DGDR-UKF illustrated in
Fig. 1 for two particular cells were confirmed in the whole
population of cells. Fig. 2 shows the probability density
function of the error computed as the difference between
mean APD (analogously for STV) from input and esti-
mated AP traces. Those density functions are presented
for two of the analyzed scenarios, namely β-AS and LQT1
with β-AS. From these results, it can be concluded that
DGDR-UKF is able to more accurately represent the du-
ration and beat-to-beat variability of AP repolarization as
compared to individual DGDR and UKF methods.

It is interesting to highlight that DGDR-UKF was able
to closely reproduce APD and STV in all models of the
population independently of whether β-AS and LQT1 led
to increased, decreased or preserved APD. This is relevant,
particularly considering the high level of inter-individual
variability in such responses, with APD changes ranging
from -86 ms to 12 ms in response to β-AS under control
conditions, from 1 ms to 196 ms under LQT1 as compared
to control and from -24 ms to 178 ms under LQT1 with
β-AS as compared to control without β-AS.

3.2. Proarrhythmic Repolarization Alter-
nans in LQT1

To further assess the performance of the analyzed es-
timation methods, their capability to reproduce arrhyth-
mogenic adrenergic-induced APD alternans in LQT1 was
tested. Fig. 3 shows input and estimated AP traces for
a virtual cell in the model population under pacing at a
frequency of 5.3 Hz. As can be observed from the fig-
ure, APD alternans ocurred at this frequency. For that cell,
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Figure 2. Probability density function of the error between
input and estimated APD (top) and STV (bottom) over the
population of models described in Section 2, for two dif-
ferent scenarios, β-AS (left) and LQT1 with β-AS (right).

APD alternans were observed for all frequencies spanning
from 4.5 to 5.5 Hz. This phenomenon was well reproduced
by DGDR-UKF estimation, with the alternating pattern of
the APD time series and of the whole AP morphology for
the input and estimated traces being very similar. On the
other hand, for the same virtual cell of Fig. 3, individual
DGDR and UKF methods did not produce alternans for
any tested pacing frequency from 2 to 10 Hz. This result
emphasizes the need for accurate identification methods,
as small errors in the estimation of ionic current conduc-
tances and/or phosphorylation levels can lead to AP mod-
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Figure 3. Left: Input (blue) and estimated (orange) AP
traces by DGDR for a virtual cell of the model population
described in Section 2, showing adrenergic-induced APD
alternans under LQT1 when paced at 5.3 Hz. Right: Cor-
responding APD time series.

els not able to reproduce relevant proarrhythmic phenom-
ena observed in the original input data, like repolarization
alternans, or to reproduce them but in a different range
of pacing frequencies, as observed for other cells of our
experimentally-calibrated population. It is interesting to
note that, although the alternans pattern shown in Fig. 3 is
not the typical 1:1 short-long pattern with all short (respec-
tively, long) APDs having similar values, the presented
APD time series shows differences between consecutive
beats that are above 14 ms in all cases.

4. Conclusion

A method combining the dimension reduction DGDR
method and the nonlinear UKF reliably identifies an under-
lying AP model for any input ventricular voltage trace, al-
lowing in silico characterization of repolarization duration
and variability in the LQT1 syndrome. Importantly, proar-
rhythmic phenomena occurring in LQT1 under β-AS, like
APD alternans, are well captured by the proposed method.
This research sets the basis for investigations aimed at dis-
entangling the mechanisms underlying arrhythmias in the
LQT1 syndrome in response to β-AS.
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