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Abstract

Aim of this study is to extract near-continuously respi-
ratory rate by a contactless method. An industrial camera
was used to record subjects face. Video data were pro-
cessed offline to derive the video-photoplethysmographic
(videoPPG) signal. Three features were extracted from
videoPPG and finger PPG signal: pulse rate variability
(PRV), pulse amplitude variability (PAV) and pulse width
variability (PWV). A combination of these methods has
been exploited to estimate the respiratory rate for each
time window of 5 second. The results showed relative er-
ror with median around 0.5% and interquartile range of
5% both for finger PPG and videoPPG system.

1. Introduction

The monitoring of breathing rate can be a predictive in-
dicator of adverse events, i.e. cardiac arrest or admission
to the intensive care units [1–3]. Different techniques have
been explored to monitor respiratory rate. Airflow based
methods use attached sensors to the airways like face-
mask, or mouthpiece to measure the volume of air exhaled.
Despite the great accuracy, they result cumbersome and
unpractical outside the clinical environment. Thus non-
invasive technological alternatives arised as impedance
plethysmography and respiratory inductance plethysmog-
raphy that, by the use of sensors placed on the chest, mea-
sure the ribcage movement directly associated to the respi-
ratory process.
However new frontiers such as telemonitoring and stress
level monitoring in work environment require minimally
invasive technologies that do not need user’s active inter-
vention in the measurement.
The video-photoplethysmography (videoPPG) is a tech-
nology based on the use of a camera as monitoring device
of patient vital parameters. The main benefit is the absence
of any sensor attached to the user that makes it suitable for
daily monitoring.
Respiratory content modulates the pulse occurrence and
the wave morphology in terms of speed and amplitude of

PPG signal. Therefore the extraction of pulse rate variabil-
ity (PRV), pulse amplitude variability (PAV) and of pulse
width variability (PWV) from PPG signal can provide in-
formation on the breathing rate. In this work a combina-
tion of these methods is presented to recover the respira-
tory rate.

2. Materials and Methods

2.1. Experimental protocols

Twenty healthy subjects were recruited for the experi-
ment. They were seated on chair facing the camera device
at a distance of approximately 0.5 − 1 m. An industrial
camera was selected with a spatial resolution of 659× 494
pixels and 60 fps. The camera was equipped with 15 mm
fixed focal length lens. Simultaneously the PPG signal
was recorded from index finger, while the respiratory sig-
nal was recorded by a respiratory belt placed on subject’s
chest. Both signals were sampled at 256 Hz using the Flex-
Comp Infiniti by Thought Technologies, Inc.
The protocol was the following: 2 minutes of normal
breathing (Normal), a period of apnea (whose duration de-
pended on subject’s capacity), 2 minutes of recovery (Re-
covery) and a phase of controlled breath at 10 breaths per
minute (Controlled).

2.2. VideoPPG signal extraction

Videos were saved in RGB, uncompressed, AVI raw for-
mat and processed offline to derive the videoPPG signal
according to the algorithm presented in [4]. Three re-
gions of interests (ROI) were considered: forehead, nose
and cheek. ROI detection and tracking were performed re-
spectively by the Viola-Jones face detection algorithm [5]
while ROI tracking along X-Y axis by the LKT motion
flow tracking algorithm [6].
Within each ROI a spatial average of pixel intensities of
each channel (red, green and blue) has been calculated for
each frame to generateN raw signals (whereN is the num-
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Figure 1. Derived respiratory signals defined by a set of
fiducial points.

ber of color channels). Considering M as the number of
ROI, a total of M ∗ N raw traces is obtained. The time
series were first detrended [7] and band-pass filtered with
a cut-off frequencies of f1 = 0.1Hz and f2 = 5Hz. To
enhance the pulsatile component of the reflected light and
reduce the motion noise, the ZCA method [8] was applied
in each ROI. As a result, M videoPPG signals were ob-
tained. Among them, the selection of the target videoPPG
signal was achieved by calculating the power spectral den-
sity (PSD) on the entire signal and by measuring the SNR
using the following formula:

SNR =10 ∗log10


∫ f2

f1

PSD(f) df∫ f1

0.1

PSD(f) df +

∫ 4

f2

PSD(f) df


(1)

where PSD(f) with i ∈ {1, 2, . . . , NROI} is the PSD of
ith videoPPG signals, f1 = fc − 0.15Hz, f2 = fc +
0.15Hz and where fc is the cardiac frequency (measured
in Hz). The signal with the highest SNR was selected as
target videoPPG signal.

2.3. Detection of fiducial points
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Figure 2. Boxplot of the respiratory rate relative error ob-
tained respectively with videoPPG (a) and fPPG (b) sys-
tem.

The method implemented by [9] was applied to de-
rive Pulse Width Variability (PWV), Pulse Rate Variability
(PRV) and Pulse Ampitude Variability (PAV) both from

fingerPPG (fPPG) and videoPPG signals. Briefly the sys-
tolic peaks nAi were identified by an automatic PPG pulse
detector based on a low-pass filter differentiator and an
adaptive time-varying threshold [10]. Next the dyastolic
points nBi

were identified inside a temporal window pre-
vious to nAi :

nBi = argmin
n
{s(n)}, n ∈ [nAi − 0.3fs, nAi ],

where s(n) is the PPG signal and fs the sampling fre-
quency of the signal. Finally nMi

was detected as the half
of the rising edge of the cardiac pulse:

nMi
=argmin

n

{
s(n)− s(nAi

) + s(nBi
)

2

}
, n∈ [nBi , nAi ],

The width of each pulse wave was measured by consider-
ing the onset nOi and the end of the wave nEi

, while the
distances between nMi+1and nMi are used to estimate the
pulse rate (see Fig. 1). More details are shown in [11].

2.4. Derived respiration signals

Three derived respiration (DR) signals were calculated
using pulse-to-pulse methods PRV, PAV and PWV. The DR
signal based on PRV was obtained as pulse-to-pulse series:

duPRV (n) =
∑
i

fs
1

nNi
− nNi−1

δ(n− nAi
)

where ’u’ indicates that the signal was unevenly sampled,
and nNi

represents the arrival of pulse after removing the
ectopic and missdetected pulses from nMi

by using the
method proposed by Mateo et al [12]. The other two de-
rived signals based on PAV and PWV were obtained as
follows:

duPAV (n) =
∑
i

[s(nAi
)− s(nBi

)]δ(n− nAi
)

duPWV (n) =
∑
i

1

fs
[nEi − nOi ]δ(n− nAi)

An outlier rejection rule based on median absolute devi-
ation was applied [13] and the signals were sampled at
4Hz using the cubic spline interpolation. A band-pass fil-
ter was applied with the cutoff frequencies f1 = 0.075 and
f2 = 1Hz.

2.5. Respiratory rate estimation

The respiratory rate has been estimated from DR signals
every 5 s using a running window of 30 s length by adapt-
ing the method described in [9].
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Figure 3. Bland-Altman plot illustrating the agreement between instantaneous breath rate measured by the respiratory belt
reference and vdieoPPG system (a) and by the respiratory belt reference and fPPG (b).

Briefly the method uses a combination of PWV, PAV, PRV.
Let’s indicate Sj the power spectral densities for each DR
signal. From this spectra an average is computed as:

S̄(f) =
∑
i

χA
j χ

B
j Sj(f)

where χA and χB are two weighting factors used to in-
clude in the average S̄(f) only peaked spectra. For this
reason the following quantity Pj has been included:

Pj =

∫ fp(j)+0.05 Hz

fp(j)−0.05 Hz

Sj(f)df∫ 0.5 Hz

0.15 Hz

Sj(f)df

where Pj is the percentage of power of Sj contained in the
interval centered around the highest peak (fp(j)) respected
to the total power contained in [0.15 − 0.5] Hz. Peaked
spectra are defined as those which have Pj greater than a
threshold defined by ξ = 40%, thus:

χA
j =

{
1, Pj ≥ ξ
0, otherwise

while the condition χB selects the Sj whose Pj is not less
than λ = 30% of the maximum Pj :

χB
j =

{
1, Pj ≥ max{Pj} − λ
0, otherwise

The respiratory frequency f̂ is finally calculated as the fre-
quency that corresponds to the maximum of S̄(f) in the
frequency band [0.15− 0.5]Hz:

f̂ = argmax
f∈[0.15−0.5]

{S̄(f)}

After initialization, the frequency band for the searching
of f̂(i) was centered around the previous estimated value

f̂(i− 1). If no spectra is enough peaked, the search of f̂ is
performed in a larger frequency band [0.09− 0.55] Hz.

The overall results have been expressed according to the
relative error (%):

εR = f̂−fR
fR
× 100

where f̂ is the estimated respiratory frequency and fR
is the respiratory frequency obtained from the respira-
tory belt used as a reference for the analysis of fPPG and
videoPPG.
Moreover it has been quantified the respiratory modula-
tion strength contained in derived breathing signal for each
method (PAV, PRV and PWV). The following measure has
been obtained considering the percentage of spectra that
contributed in the calculation of the averaged spectra.

3. Results

The boxplot of relative errors have been expressed for
videoPPG system (Fig.2(a)) and for the fPPG system
(Fig.2(b)) according to the three different conditions Nor-
mal, Recovery and Controlled. The fPPG system outper-
formed the videoPPG one in all the conditions: the me-
dian/interquartile (IQR) range in fPPG are maintained be-
low the 2 %, while in the videoPPG the median/IQR is
higher (in Normal 1.36/6.33 %, in Recovery 1.14/7.14 %
and in Controlled breath 0.58/2.43 %). Both systems had
the worst performance (ε > 15 %) for the same subjects
(subject 1 and 15). Interestingly the following subjects
showed a respiratory frequency higher than 0.35 Hz in
Normal and Recovery phase.
Bland-Altman plots in Fig.3 show the accuracy of instan-

taneous breathing rate (BR) measurements (calculated ev-
ery 5 s and expressed as breath/min) of the whole popu-
lation comparing the videoPPG method with the reference
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Table 1. Percentage of spectra taking part to the estimation
of breathing rate for videoPPG system.

Condition PAV PRV PWV
Normal 45.96 46.66 40.46
Recovery 40.47 51.11 38.13
Controlled 83.86 35.43 51.23

respiratory belt (Fig.3(a)) and the fPPG method with the
gold standard (Fig.3(b)). In each Bland-Altman plot the
centered line represents the bias and the other two lines
represent the 95 % limits of agreement. In videoPPG sys-
tem the bias is equal to −0.04 breaths/min , with 95 %
of agreement inside±5.53 breaths/min. Considering the
fPPG system the bias is −0.10 breaths/min, while the
95 % of instantaneous breathing rate values are contained
in the range ±2.22 breaths/min.

4. Discussions and Conclusions

We proposed a fully automatic method based on con-
tactless camera-based technology to extract instantaneous
breathing information and compared the results to the ones
obtained from fPPG system.
Considering Tabs. 1 and 2, in the videoPPG the respi-
ratory content was almost equally distributed between all
the methods for Normal and Recovery condition. In Con-
trolled breath, the respiratory content was more expressed
in the breathing signal derived from PAV method. While
for the fPPG system, the PWV method enhanced the respi-
ratory modulation more than the other two methods dur-
ing Normal and Recovery session, while in Controlled
breath the respiratory content was mainly included in PRV
method.
The overall results look promising, despite the respira-
tory modulation looks to be less evident for higher RR
values. Future work is needed to investigate this aspect
more sistematically on a database which includes con-
trolled breathing frequencies at different values.
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