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Abstract

Autonomic Nervous System (ANS) controls a number of
bodily functions, such as the heart rate (HR). However, the
ANS response is strongly dependent on the surrounding en-
vironment. In particular, changes in barometric pressure
have important effects on ANS response, but they are dif-
ficult to assess in extreme conditions such as a hyperbaric
environment. The main goal of this study was to evalu-
ate the dependence of indices related to the ANS response
derived from the electrocardiographic signal (ECG) with
barometric pressure. In order to do that, a database con-
sisting of ECG recordings of 30 subjects who were intro-
duced into a hyperbaric chamber was used. The anal-
ysed indices were derived from the heart rate variability
signal: the power of the low-frequency band (PLF : 0.04
- 0.15 Hz), the power of the high-frequency band (PHF :
0.15 - 0.4 Hz), the ratio of instantaneous PLF with respect
to the sum of instantaneous PLF and instantaneous PHF ,
and the ratio of instantaneous PLF with respect to instan-
taneous PHF . High inter-subject variability was observed
in the results, but significant differences were found in both
PLF and PHF when pressure gradually increased to 5 atm
(initial phase) and then decreased (final phase) with re-
spect to the baseline. Changes in the power ratios were
not so significant in general.

1. Introduction

Human intrinsic curiosity has made us push our body
to limits that it is not totally prepared to face. For exam-
ple, diving is a common activity many people do that can
be dangerous if it is not performed in a controlled manner.
Water density is considerably higher than air (∼800 times),
so a descent of 10 m in water supposes an increase in baro-
metric pressure of 1 atm. Because of that, recreational div-
ing is limited to 40 m, although professional divers may go

deeper.
Among others, an important factor to take into account

during diving is the change in partial gas concentration that
occurs at higher pressures. This may eventually cause de-
compression sickness, with severe associated health prob-
lems, if the changes in pressure are not performed grad-
ually. Hydrostatic pressure increases with depth, result-
ing in changes in cardiac pumping: increase in the systolic
volume and heart rate (HR) reduction in order to maintain
an adequate cardiac output minimizing the impact on the
body [1]. This adaptation is possible thanks to the response
of the Autonomic Nervous System (ANS). However, due
to the implicit difficulties of deep immersions, assessment
of the response of the ANS to large changes in pressure is
challenging. Studies aiming at monitoring and controlling
this response under these extreme conditions may be in-
teresting to divers, for example in the training of military
personnel.

In this study, we extracted the heart rate variability
(HRV) from the electrocardiographic signal (ECG) to eval-
uate the response of the ANS, since it can be derived from
frequential indices of HRV [2]. Our main goal was to char-
acterize the dependence of indices related to both branches
of the ANS, sympathetic and parasympathetic, on baro-
metric pressure using a hyperbaric chamber. In order to
perform this analysis, ECG signals were recorded for 30
subjects during a protocol of increasing pressure, mimick-
ing descent to 40 m under water, followed by a gradual
decrease, mimicking ascent back to water surface.

2. Materials and methods

2.1. Database

The complete database used in this study consisted of
30 volunteers (26 males and 4 females) with ages ranging
from 21 to 44 years old (mean 28.93±6.42). A significant
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percentage of these volunteers were military personnel (22
of 30; 73% of the subjects). Five of the subjects were dis-
carded due to either highly artifacted signals, leading to
non-physiological values of the indices described in the
following sections, or incomplete recordings due to fail-
ures in the device and/or the electrodes attachments to the
skin. All the volunteers gave written consent validated by
the Ethics Committee.

The device used for ECG recording was Nautilus, de-
veloped by the University of Kaunas, Lithuania [3]. This
device allowed us to record the ECG signal with three non-
orthogonal leads at a sampling frequency of 2000 Hz. Af-
ter the recordings, signals were processed using MATLAB.

The protocol inside the hyperbaric chamber had a dura-
tion of about 2 hours and consisted of four stages, whose
durations were in agreement with the decompression table
recommendations (see www.naui.org/resources/ ):
1. Initial baseline at 0 m (i.e. 1 atm; subjects relax for
∼20 min before immersion).
2. Descent from 0 to 40 m (i.e. from 1 to 5 atm; duration
∼30 min).
3. Ascent from 40 to 20 m (i.e. from 5 to 3 atm; duration
∼10 min).
4. Ascent from 20 to 0 m (i.e. from 3 to 1 atm; duration
∼60 min).

2.2. Heart rate variability signal

First of all, delineation of the recorded ECG signal to
detect the position of the heart beats was performed us-
ing an algorithm based on the wavelet transform [4]. Ec-
topic beats, missed beats and false detections were iden-
tified with the same algorithm [5]. Then, the HR series
sampled at 4 Hz, dHR(n), was obtained using the integral
pulse frequency modulation model (IPFM) [5, 6].

dHR(n) =
1 + M(n)

T (n)
, (1)

where M(n) represents the modulating signal, which car-
ries the information from ANS, and T (n) is the mean heart
period, which is considered to be slow-time-variant by this
model.

A time-varying mean HR, dHRM(n), was obtained by
low-pass filtering dHR(n), with a cutoff frequency of
0.03 Hz:

dHRM(n) =
1

T (n)
. (2)

The HRV signal was estimated as in [6]:

dHRV(n) = dHR(n)− dHRM(n). (3)

Finally, the modulating signal was computed as follows:

M(n) =
dHRV(n)

dHRM(n)
. (4)

2.3. Frequency indices

Time-frequency analysis was applied over M(n) to
characterize the fast response of the ANS to barometric
changes. In order to perform this analysis, the SPWVD
was selected because it provides better resolution than non-
parametric linear methods, independent control of time
and frequency filtering, and power estimates with lower
variance than parametric methods when rapid changes
occur. The SPWVD was calculated as shown in equa-
tion (5). The analytic signal aM(n) is defined as aM(n) =
M(n)+ j · M̂(n), where M̂(n) represents the Hilbert trans-
form of M(n). The terms g(n) and h(l) are time and fre-
quency smoothing windows, chosen to be Hamming win-
dows whose lengths are 2·N+1 = 203 and 2·L+1 = 1025
samples, respectively [7].

In order to observe the dependence of the ANS with
barometric pressure during the four immersion stages, the
recorded ECG signals were divided into segments of 100 s
duration for the computation and averaging of four classic
indices from the SPWVD:
• PLF: power in the LF band (0.04 - 0.15 Hz).
• PHF: power in the HF band (0.15 - 0.4 Hz).
• PLFn : instantaneous power in the LF band over the sum of
the instantaneous powers of both LF and HF bands. PLFn =
PLF/(PLF + PHF)
• RLF/HF: ratio between the instantaneous power in the LF
band and the instantaneous power in the HF band. RLF/HF =
PLF/PHF

Figure 1 shows an example of a time-frequency map for
one subject (PM(n,m)) with the two bands of interest de-
limited: Low Frequency (LF: 0.04 - 0.15 Hz) and High
Frequency (HF: 0.15 - 0.4 Hz).
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Figure 1: Time-frequency map of one of the subjects at 5
atm with LF and HF bands delimited by dotted black and
solid red lines, respectively.
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PM(n,m) = 2 ·
L−1∑

l=−L+1

|h(l)|2 ·

[
N−1∑

n′=−N+1

g(n′)aM(n+ n′ + l)aM
∗(n+ n′ − l)

]
· e−j2l(m/M)π,

m = −M + 1...M.

(5)

2.4. Outliers removal and statistical analy-
sis

In order to identify extreme outliers, the interquartile
range (IQR = Q3 − Q1) for each index was calculated.
Subjects whose indices,Mx, were out of the following lim-
its were identified and removed from posterior analysis:

lowMx = Q1(M
i=1..Ns
x )− δ · IQR(M i=1..Ns

x ), (6)

highMx = Q3(M
i=1..Ns
x ) + δ · IQR(M i=1..Ns

x ), (7)

where Ns is the number of subjects and delta = 3.
Furthermore, respiration frequency, estimated from the
ECG signals as in [8], was used to discard subjects
that presented an abnormally low respiratory frequency
(<0.15 Hz, coincident with the boundary between LF and
HF bands) to avoid misinterpretation of the ANS response.

A statistical analysis of the four frequency indices was
then performed in order to assess statistical significance
of the results. The Shapiro-Wilk test was applied to check
statistical normality of the indices. Then, if the distribution
was normal, the Student’s t-test was applied, whereas if the
distribution was not normal, the Wilcoxon signed-rank test
for paired samples was used. A p-value ≤ 0.05 denotes
significant differences between distributions.

These tests were applied to each one of the four in-
dices extracted from the HRV signal for particular values
of barometric pressure during the different stages of im-
mersion with respect to the distribution at the initial base-
line pressure (1 atm).

3. Results

As shown in Figure 2, significant differences in the
power of the HRV classical bands (PLF and PHF) have been
found for most values of pressure during the immersion
protocol with respect to the initial values at 1 atm. Inter-
estingly, there is an increasing trend in the median values
for both PLF and PHF, although the inter-subject variability
becomes also higher, particularly in PHF. An increase in
PLF is related to the activation of the sympathetic system,
which occurs when the subject is exposed to various types
of stressors [9,10]. The results in this study show a signifi-
cant increase in PLF immediately after the immersion starts
(from 1 to 1.5 atm), whereas the changes in PLF are less
prominent as the immersion progresses. Similarly, PHF,

mainly reflecting parasympathetic activity [2], shows a no-
table initial increase at 1.5 atm followed by slight incre-
ments until maximum depth (5 atm) is reached, in agree-
ment with previous studies [11]. The ratios PLFn and RLF/HF,
reflecting sympathetic dominance and sympathovagal bal-
ance, respectively [2], also show an increasing tendency
when pressure increases. However, their variations with
respect to the measurements at 1 atm are less notable than
those of PLF and PHF, only showing statistical significance
at very high pressures.

3.1. Limitations

In this study we focused on changes in indices related to
the ANS response at specific barometric pressures. Nev-
ertheless, the long time spent in the hyperbaric chamber
(∼2 hours) may also play an important role in the body
adaptation to pressure variations.

Removal of signal segments with low respiratory fre-
quency may affect the comparison between the distribu-
tions of values of powers and ratios. There can be subjects
able to breath slowly at rest (1 atm), whose initial mea-
surements are discarded, but not after the immersion starts.
Complete elimination of the influence of respiration on the
LF band is however a challenging task.

4. Conclusions

Frequency domain HRV indices allow us to differenti-
ate between the different stages during immersion. Both
LF power and HF power increase when more time is spent
at higher pressures than normal. Increments of pressure
also entail slight increases in the sympathovagal balance
evaluated through the relationship between the powers in
LF and HF bands. Observation of these indices may help
in the identification of hyperbaric environments. Time-
based parameters and respiration signal could be used in
further studies since its analysis would add valuable infor-
mation to characterize body response to changes in baro-
metric pressure.
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Figure 2: Boxplots, representing the median and variability in the 25 subjects, of the four frequency indices: PLF, PHF, PLFn ,
and RLF/HF, for barometric pressures between initial 1 atm, 5 atm, and final 1 atm. Distributions of indices displayed every
0.5 atm (*p ≤ 0.05)
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