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Abstract

The main purpose of this work is the estimation of the
respiratory rate (rR) from the electrocardiogram (ECG).
In this study, the rR was estimated from the same Fit di-
rections of maximum projection (FD) used for multi lead
ECG automatic delineation (ML). A previously developed
and validated methodology for boundaries location was
extended to include wave peaks and estimate FD. The me-
dian of power spectral density obtained over the direc-
tions based on QRS complex main peak, T wave peak and
end spatial loops was used for rR estimation. In a con-
trol database, the proposed method yielded more accu-
rate rR estimates (mean absolute error (MAE), 2.64 bpm,
SD=3.92) than the estimates based on the single-lead ECG
R-peak amplitude (MAE values from 3.29 to 5.26 bpm, SD
≥ 5) and RR series (2.89 to 3.66 bpm, SD >4.6), close to
results from EDR method (2.89 bpm, SD=3.63).

1. Introduction

Direct estimation of respiratory rate (rR) is done with
devices that are intrusive, expensive and uncomfortable for
the patient [1]. Therefore the development of alternative
methods for indirect rR estimation is of great interest. The
respiratory and heart activities are linked through physi-
ological processes. The respiration modulates the heart
rate such that it increases during inspiration and decreases
during expiration [2]. In the same way, during the respi-
ratory cycle, chest movements and changes in the thorax
impedance distribution due to filling and emptying of the
lungs cause a rotation of the electrical axis of the heart
which has an effect over beat morphology [3, 4]. Differ-
ent signal processing techniques have been developed to
extract respiratory information from the modulation of the
ECG R-peak amplitudes (RPA) and heart rate (HR) [4–8].
However, the single-lead RPA and RR series have been

shown not to yield accurate rR estimates as the respiratory
influence in a given ECG lead is subject dependent [4].
Often, in ambulatory and clinical applications, multilead
ECG recordings are available, allowing to construct vecto-
cardiographic (VCG) loops from orthogonal leads. In [4]
the series of rotation angles of the heart’s electrical axis
as induced by respiration are estimated from least-squares
loop alignment, and the rR estimated spectrally (EDR).
The main directions on the wavelet transform (WT) of
VCG loops, taken as parallel to each ECG fiducial point,
have been successfully used for multilead delineation of
wave boundaries [9]. Moreover a strong relation between
the respiration and the T wave end based Fit directions of
maximum projection (FD) used the by multi lead ECG de-
lineation system (ML) was found in [10]. Taking advan-
tage of this relation, in [11] we have been able to estimate
rR with good results from the FD used for T wave end de-
lineation. In this study we aim to combine the information
based in FD found for the delineation of QRS peak and T
wave peak and end to obtain a single rR estimation.

2. Methods

2.1. Data

The data used in this study was a database of ECG
signals from healthy subjects recorded at University of
Zaragoza, which we call control database (CDB). This
database contains the standard 12-lead ECG and a respi-
ration signal of 40 subjects (age 32± 9 years, 26 male / 14
female), recorded during 5 minutes of supine resting and
all were here considered. The MP 150 (BIOPAC Systems)
was used to acquire simultaneously the ECG (ECG100C
amplifier and disposable Ag-AgCl electrodes) at a sam-
pling frequency of 1000 Hz, and the respiration signal
(RSP100C and a strain gauge transducer) at a sampling
frequency of 125 Hz.
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2.2. Multilead ECG delineation

The ML delineation system considered was previously
proposed and validated in [9] and is included in BioSig-
Browser, a user-friendly Matlab interface [12]. It uses two
or three orthogonal leads of the ECG to define spacial vec-
tocardiographic loops (VCG). Denoting the WT of a signal
s(n) ∈ {x(n), y(n), z(n)} at scale m by ws,m[n], the spa-
tial WT loop is defined as:

wm(n) = [wx,m(n), wy,m(n), wz,m(n)]T (1)

As a consequence of the WT prototype used, the WT loop
wm(n) |n∈L is proportional to the VCG derivative and
describes the velocity of evolution of the electric heart
vector (EHV) in a time interval L. The main direction
u = [ux, uy, uz]

T of EHV variations on any time interval
L is given by the director vector of the best straight linear
fit to all points in wm(n) and is here called Fit direction of
maximum projection (FD). The FD can be interpreted as
corresponding to the ECG lead maximizing the local SNR,
and thus, it is the most appropriate for delineation purposes
[9]. The projection of wm(n) over the direction u allows
to obtain a derived wavelet signal wd,m(n) that combines
the information provided by the 3 or 2 available leads:

wd,m(n) =
WT

m(n).u
‖u‖

;n ∈ I (2)

The time intervals L (used for linear fitting) and I (used
for projecting) can be different, depending on each wave
specificities. The strategy proposed for ML boundary lo-
cation using WT loops is based in a multi-step iterative
search for a better spatial lead (with steeper slopes) for de-
lineation. The goal is to construct a derived wavelet signal
well suited for boundaries location, using the same detec-
tion criteria as in the SL delineator proposed in [13]. The
ML system was originally designed for boundaries detec-
tion only, with the ML peak positions defined as the me-
dian of the SL peak positions. This method is very simple,
but represents the main weakness of the ML system as it
is very sensitive to the SL measurements on the original
leads, and does not have a clear physiological interpreta-
tion. In this work, we extend the method for ML delin-
eation of wave peaks, as explained below.

A) New ML wave peak delineation. The strategy is sim-
ilar to the one for ML wave boundaries [9], with the speci-
ficities described in the following general algorithm (par-
ticular details for each wave peak are described in later
sections). For each beat k:

Step 1 - initialization
a1) an initial search window adequate to find the EHV

main direction in the peak is defined as W [1];

b1) the initial main direction of EHV variations u[1] is
estimated as the best line fit in total least squares
(TLS) sense [14] to wm(n) |n∈W [1] , using the ade-
quate scale 2m;

c1) the loop wm(n) |n∈I is projected over u[1] to con-
struct the new derived WT signal w[1]

d,m(n);

d1) SL delineation is performed over w[1]
d,m(n) to locate

the peak position at step 1.
Step i ≥ 2 - iteration
ai
)

the search window W [i] is updated attending to the
peak location provided by at step [i-1]

bi
)

the main direction of EHV variations u[i] is esti-
mated as the TLS best line fit to wm(n) |

n∈W [i] ;

ci
)

the new derived WT signal w[i]
d,m(n) is constructed

by projecting the loop wm(n) |n∈I ;

di
)

IF no significant maximum of w[i]
d,m(n) was found

OR the amplitude of the maximum n
[i]
p is equal or

lower that the amplitude of n[i−1]p (found in the pre-
vious step) THENw

[i]
d,m(n) is less fitted for peak lo-

cation than w[i−1]
d,m (n) and the peak position at step

[i-1] is adopted as ML mark; STOP;
ELSE SL delineation of the boundary is performed

over w[i]
d,m(n) to find the peak position updated

boundary location;

ei
)

IF no relevant change is found in the boundary lo-
cation THEN the location at step [i] is adopted as
ML mark; STOP;
ELSE REPEAT from ai

)
, for i+ 1.

B) Specific parameters for QRS complex peak. In the
new ML system the location of the complex QRS main
wave is determined in the WT loop in scale 22. Noise or
QRS wave morphology bad identification can produce out-
liers if FD chosen at step 1 does not corresponds to the
higher modulus value. To avoid that, the search window
length is reduced depending on the sampling frequency up
to 40% of number of points. Let define n[0]QRS,f

[
n
[0]
QRS,l

]
as the earliest [latest] significant maximum modulus loca-
tion given by the SL methods (over each orthogonal lead).
The initial search window for the peak of QRS main wave
is taken as:

W
[1]
QRS =

[
n
[0]
QRS,f + υ;n

[0]
QRS,l − υ

]
(3)

where υ is the 1/2 reduction in number of samples with
respect to the maximum length search window. The
best line fine is estimated for each υ = 0 to 20% of[
n
[0]
QRS,f ;n

[0]
QRS,l

]
length and the initial main direction of

EHV variations u[1] is taken as the one with maximum
modulus. This ensures the higher signal-to-noise ratio in

 

 

  



the projected derivation. At each iteration [i], the search
window is updated as

W
[i]
QRS =

[
n
[i−1]
QRS,f ;n

[i−1]
QRS,l

]
(4)

where n
[i−1]
QRS,f

[
n
[i−1]
QRS,l

]
is the location of the first

[last] significant maximum modulus of w[i−1]
d,m (n). If

n
[i]
QRS,f

[
n
[i]
QRS,l

]
has the same polarity as n[i−1]QRS,f

[
n
[i−1]
QRS,l

]
and equal or lower amplitude it is considered that the lead
constructed at step [i] is not better for the QRS main wave
peak location than the constructed in the step [i-1] and the
iteration STOP criteria of di

)
is applied. The iteration

STOP criteria of ei
)

is applied if the the same location
is achieved for 3 iterations.

C) Specific parameters for T wave peak. The location
of the T wave is determined in the WT loop in scale 25 if in
the SL delineation scale 25 was used for T wave detection
for at least two out of the three leads, and 24 otherwise. We
defined the initial search window for the T wave peak as:

W
[1]
T =

[
n
[0]
T,fn

[0]
T,l

]
(5)

where n[0]T,f

[
n
[0]
T,l

]
is the location of the first [last] signif-

icant maximum modulus location given by the SL meth-
ods (over each orthogonal lead). At each iteration [i], the
search window is updated to

W
[i]
T

[
n
[i−1]
T,f n

[i−1]
T,l

]
(6)

where n[i−1]T,f

[
n
[i−1]
T,l

]
is the location of the first [last] sig-

nificant maximum modulus of w[i−1]
d,m (n).

2.3. Estimating rR

The ECG signals of CDB were delineated using the ML
delineation strategy over the Frank leads synthesized us-
ing the inverse Dower transformation [15]. From this de-
lineation are obtained the vectors defining FD for each
of heartbeat and fiducial points QRS peak, T wave peak

and end, corresponding to the directions of interest (u[i]
h ,

where h ∈ {Rp, Tp, Te}, respectively). The coordinates
of each u, originally with one value per heart beat, were
resampled uniformly at 2 Hz using cubic spline interpo-
lation. The rR estimation is performed spectrally from

the interpolated directions u[i]
h . Estimation of the power

spectrum is accomplished with Burg’s method [16]. The
spectrum of each directions series (U(f)) is estimated with
non overlapping windows of 60 s duration. The median
of the individual running power spectra of all directions

(Um(f)) is calculated in order to reduce the frequential
peaks not related to breathing and to obtain a single rR
estimation The global respiratory frequency was estimated
on the median spectrum for each window (fR). Estimation
of the respiratory frequency as the largest peak of Um(f)
comes with the risk of choosing the location of a spurious
peak. This risk is, however, considerably reduced by nar-
rowing down the search interval to only include frequen-
cies between 0.15Hz and 0.45Hz of respiratory frequency.
The estimated rR in breaths-per-minute (bpm) is calcu-
lated from the respiratory frequencies. As a reference to
evaluate the estimation of rR from FD, we estimated the
rR from the respiratory impedance waveform. The respi-
ratory impedance waveform was first resampled uniformly
at 2 Hz using cubic spline interpolation, and band-pass fil-
tered between 0.1 Hz and 0.5 Hz. Then, the Burg’s method
was applied to obtain the rRref . The accuracy of the
ECG-based rR estimates was evaluated by averaging their
values in 60-s windows and computing their mean abso-
lute error (MAEu) and the standard deviation (SDu) of
MAE in terms of breaths-per-minute with respect to the
rRref . Additionally, for the sake of comparison, rR was
estimated from the single-lead RPA waveform and RR se-
ries obtained from SL delineation of CDB and using the
EDR method. The RPA, RR and EDR rotation angles se-
ries were re-sampled uniformly at 2 Hz using cubic spline
interpolation. The rleadR RPA and rleadR RR for each stan-
dard lead, and rleadR EDR were estimated spectrally using
the Burg’s method with non-overlapping windows of 60
s duration, considering the median spectra of the 3 rota-
tion angles for EDR. As before, the accuracy of estimation
was evaluated by the MAE in terms of breaths-per-minute
with respect to the rRref and its SD (MAElead

s ±SDlead
s ,

s ∈ {RPA,RR}, MAEEDR ± SDEDR).

3. Results

Table I reports the MAEu±SDu across files estimated
with the proposed method and, for the sake of compar-
ison, the MAEs ± SDs values obtained for the RPA,
RR based and EDR methods. Both the mean errors and
SD in the estimation by proposed method are lower than
any from single-lead RPA and RR based estimations, in-
dicating lower bias and higher stability. Observe also that
the uncertainty of the lead choice is eliminated with the
proposed method. The best results are obtained by EDR
method.

4. Discussion and Conclusion

The results obtained in this study show that it is possible
to extract accurately the rR from the combination of direc-
tions u, obtained from the ML delineator in the QRS peak
and T wave peak and end. Additionally a new algorithm

 

 

  



Table 1. Average error and standard deviation across files
in BPM obtained from single-lead RPA and RR signals.

MAEu ± SDu (Proposed method) 2.64 ± 3.92
Lead MAELead

RPA ± SDLead
RPA MAELead

RR ± SDLead
RR

V1 3.32 ± 5.00 3.20 ± 5.23
V2 3.41 ± 5.13 3.04 ± 5.02
V3 3.82 ± 5.71 2.99 ± 4.63
V4 3.29 ± 5.31 3.28 ± 5.33
V5 3.76 ± 5.82 2.92 ± 4.87
V6 3.52 ± 5.16 2.89 ± 4.86
I 4.35 ± 5.69 3.43 ± 5.58
II 4.25 ± 5.68 3.21 ± 5.16
III 3.90 ± 5.41 3.32 ± 5.02

aVR 3.99 ± 5.53 3.32 ± 5.02
aVL 4.16 ± 5.62 3.66 ± 5.04
aVF 5.26 ± 6.82 3.42 ± 5.52

MAEEDR ± SDEDR 2.12 ± 3.63

of ML delineation is proposed for the QRS complex main
wave and T wave peaks. The use of a multilead method
not only eliminates the variability across leads, but also in-
creases the stability of estimation, outperforming the sin-
gle lead based methods. Thus, the beat-to-beat estimation
of respiratory rate can be obtained as an extra output of ML
delineation with almost no extra effort, with close results
to the EDR method.
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