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Abstract

A prototype Android application was designed to mon-
itor for apnoea in neonates using a smartphone. The ap-
plication receives data from a wireless pulse oximeter and
uses machine learning techniques to detect apnoea. Distri-
bution of the system requires only the pulse oximeter and
a current mid-range smartphone. This work builds on pre-
vious research, but with a particular focus on classifying
events accurately using a reduced set of information ap-
propriate to a resource-constrained environment. This in-
formation consists only of the photoplethysmogram (PPG)
and a set of PPG-derived physiological variables includ-
ing heart rate and respiration rate. Various methods using
the Support Vector Machine (SVM) were assessed using
data from 27 annotated stays in a neonatal intensive care
unit, divided approximately in half into training and test
data. The best approach was found to be a combination
of a feature selection method based on mutual information
and an SVM with a radial basis function kernel, produc-
ing a classifier with a sensitivity of 98.7%, a specificity of
62.2% and a balanced accuracy of 80.5% on a training set
of 796 events, and a sensitivity of 76.9%, a specificity of
52.0% and a balanced accuracy of 64.4% on a test set of
663 events.

1. Introduction

Apnoea (cessation ofbreathing) is a common issue with
patients in the Neonatal Intensive Care Unit (NICU), par-
ticularly in infants born prematurely. Apnoea causes de-
saturation of oxygen in arterial blood, which can result in
permanent damage to vital organs if the apnoea is not de-
tected and resolved [1]. Although neonates in developed
countries have access to abundant medical resources, those
born in developing countries are far less likely to receive
a high level of care. The ability to detect and intervene
during an apnoeic event in a resource-constrained environ-
ment would therefore be of great benefit in such regions.

Neonates in developed countries are monitored in the

NICU using a set of physiological waveforms. A conven-
tional apnoea alarm sounds when a physiological signal
crosses some threshold, for example when arterial oxygen
saturation (SpO2) drops below90%. Because the mea-
sured signals are prone to noise (such as movement arte-
fact) the resulting alarm has a very high rate of false pos-
itives. In some studies over 90% of alarms have been ob-
served to be clinically insignificant [2].

Recently, more accurate ICU alarms have been created
which utilise data fusion from multiple sources to greatly
reduce the rate of false alarms in critical care units. A study
by Monasterioet al. [3] used machine learning techniques
to reduce the false alarm rate in the NICU. The authors
used a feature selection method based on mutual informa-
tion and combined it with a support vector machine (SVM)
with a radial basis function, producing a classifier with a
sensitivity of 86.2% and a specificity of 91.4% on the test
data. Monasterioet al. emphasised the need for high-
quality reference data, stressing the importance of repre-
sentative training data and accurate annotation.

The approach used by Monasterioet al. [3] produced an
apnoea monitor with considerably better performance than
the traditional method of NICU monitoring, but used a full
set of ICU waveforms to do so. The aim of this research,
however, was to create an apnoea monitor for resource-
constrained environments based on a significantly reduced
set of signals (and therefore information). In order to rep-
resent such an environment this research describes the cre-
ation of a method of false alarm detection using only the
photoplethysmogram (PPG) and PPG-derived variables.

An Android application was therefore created to ac-
quire the PPG waveform from an external Bluetooth pulse
oximeter and compute a series of physiological variables.
During a suspected apnoeic episode these are passed to a
classifier, and an alarm is sounded if the event is deter-
mined to be a real apnoea (rather than one caused by noise
or movement artefact).
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2. Materials and methods

2.1. Dataset

This study usedphysiological variables calculated from
the PPG waveform recorded during 27 randomly-selected
NICU stays. The data were obtained from Physionet’s
MIMIC II (Multi-parameter Intelligent Monitoring in In-
tensive Care II) database, which was created to assist with
the development of intelligent patient monitoring in “criti-
cal care” environments such as the NICU [4].

The annotation process described by Monasterioet al.
[3] was used to produce a reference data set of 1616 desat-
uration events (SpO2 < 90%). Withinthis set, 316 events
were annotated as true positives and 1300 as false posi-
tives, giving an overall NICU false alarm rate of 80.4%.
The reference set was then randomly divided into a train-
ing set of 796 events and a test set of 663 events, ensuring
that all NICU visits were mutually exclusively allocated to
either the training or test sets.

2.2. Physiologicalvariable extraction

All physiologicalvariables were derived from the PPG.
A physiologically relevant period of 300s leading up to
each desaturation was split into 20 non-overlapping 15s
time-windows. Four groups of variables were calculated:
1. Variables related to PPG-derived oxygen saturation:
For each window the minimum value of SpO2 was com-
puted (denotedby min SpO2) and ordinary leastsquares
(LS) regression was used to calculate the SpO2 gradient
(ΔSpO2). RobustLS regression was found to be unneces-
sary due to the use of signal quality indicators [3].
2. Variables related to PPG-derived heart rate:The peaks
of the PPG (corresponding to systole during the heart-
beat) were detected using a modified version of an open-
source beat detector for arterial blood pressure signals de-
veloped by Zonget al. [5]. A time and amplitude thresh-
old adjustment to the PPG beat width and height created
by Li and Clifford [6] was included. The heart rate was
then calculated from the median peak-to-peak interval in
the 15s window. The minimum instantaneous heart rate
(min HRPPG) in each window was calculated since we
expected a bradycardic response during apneoa. Further-
more, the gradient of the heart rate (ΔHRPPG) was cal-
culatedover the 15s window using a LS fit to the instanta-
neous heart rate vector, since we also expected to observe a
strong negative gradient during the bradycardic response.
3. Variables related to PPG-derived respiration rate:A
time series of differences between peaks and troughs of
each beat was formed for each 15s window. An auto-
regressive modelling approach was used to estimate the
dominant frequency (per Nematiet al. [7]), which was
taken to be the respiration rate of the segment. The vari-

able was denoted bymin RR PDRRS .
4. Variables related to PPG signal quality:Several Sig-
nal Quality Indices (SQIs) were used to provide a measure
of trustworthiness of the PPG signal, such as the spectral
purity [7] of the PPG (SQI PPG) andthe PPG-derived
respiratory signal (SQIPDRRS). We also included the
four methods of Liet al. [6] who matched an average beat
template (in each window) to all the beats in a window us-
ing cross correlation directly (SQI PPGDM ), with linear
resamplingof each beat (SQI PPGLR), with dynamic
time warping to stretch each beat (SQI PPGDTW ),
and with detectionof signal saturation or ‘clipping’
(SQI PPGCD). Minimum, maximum,mean and median
values were determined for each of these latter four vari-
ables. Lastly the Hjorth parameters as described by Gil
et al. [8] were included, denoted bySQI PPGH1 and
SQI PPGH2.

In order todeal with missing data, the SQIs were set
to zero when no source data was available, producing the
full data set. A dimensionally-reduced feature set was cre-
ated by performing univariate Receiver Operating Char-
acteristic (ROC) analysis to choose the optimum evalua-
tion interval for each physiological variable. Each variable
was time-windowed every 15s and the time period with the
highest area under the ROC curve (AUCopt) was chosento
be used in the final algorithm. A feature was created for
each variable by taking the value during the optimum eval-
uation interval. The resulting list of features is shown in
Table 1 together with each variable’s AUCopt and corre-
sponding window.

2.3. Feature selection and classification

In order toreduce the dimensionality of the classifica-
tion problem to remove co-linear and confounding vari-
ables and prevent over-fitting, a feature selection method
was used to identify a parsimonious subset. The ‘minimum
Redundancy, Maximum Relevance’ (mRMR) method [9]
was chosen for this purpose. The mRMR algorithm seeks
to select a subset of features that best correlate to a tar-
get classification variable. The selection is subject to the
constraint that the chosen features contain the minimum
amount of redundant information. The algorithm outputs a
score for each feature, and then ranks them.

The n highest-ranked features were then presented to
a Radial Basis Function (RBF) Support Vector Machine
(SVM) classifier for training. The RBF-SVM has two pa-
rameters, the degree of regularisation in the SVM (C) and
the size of the RBF (σ), which were optimised by cross-
validation when training the SVM.

The process of training the SVM using the rankings pro-
duced by feature selection was as follows:
1. Forn = 1...25, then highest-ranked features for each
event were selected by the mRMR algorithm.
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# Variable AUCopt Win

1 min SpO2 0.552 19
2 ΔSpO2 0.509 18
3 SQI PDRRS 0.663 5
4 min RR PDRRS 0.634 3
5 SQI PPG 0.782 3
6 ΔHRPPG 0.569 1
7 min HRPPG 0.645 1
8 min SQI PPGDM 0.588 1
9 max SQI PPGDM 0.585 1
10 mean SQI PPGDM 0.634 1
11 median SQI PPGDM 0.647 1
12 min SQI PPGLR 0.615 1
13 max SQI PPGLR 0.579 1
14 mean SQI PPGLR 0.637 1
15 median SQI PPGLR 0.640 1
16 min SQI PPGDTW 0.603 1
17 max SQI PPGDTW 0.592 1
18 mean SQI PPGDTW 0.638 1
19 median SQI PPGDTW 0.636 1
20 min SQI PPGCD 0.596 1
21 max SQI PPGCD 0.575 1
22 mean SQI PPGCD 0.642 1
23 median SQI PPGCD 0.609 1
24 SQI PPGH1 0.614 1
25 SQI PPGH2 0.634 1

Table 1. Thedimensionally-reduced set of features. ‘#’ is
the feature number, ‘Win’ is the chosen evaluation period
(where 1 is the closest window to the desaturation), and
‘AUCopt’ is the areaunder the ROC for that window.

2. A grid search was performed to find the optimum val-
ues for the parametersC andσ. These values were chosen
by using 10-fold cross-validation to evaluate the classifiers
produced (with ‘balanced accuracy’, the mean of sensitiv-
ity and specificity, being used to assess performance).
3. The full training set was used, together with the chosen
values ofC andσ, to train an RBF-SVM. The trained SVM
was then used to classify the unseen test set.

2.4. Android application

The mobile phoneapplication was created for the An-
droid platform. Since the application is targeted at both
clinicians and non-clinicians, it was decided that the data
should be displayed simply, alongside a series of graphs to
show recent trends in the patient’s history (Figure 1).

The application takes input from multiple sources, in-
cluding the external pulse oximeter connected via Blue-
tooth, the smartphone’s internal microphone and its inter-
nal accelerometer (which could also be used in the future
to add additional information relating to respiration and
movement). Signals derived from these inputs (heart rate,

Figure 1. Screenshotsfrom the developed Android ap-
plication with a normal condition (upper left), an alarm
condition (upper right) and historical data tracing (lower
panel). A video demonstrating of the application can be
found at http://www.youtube.com/watch?v=KdFflpxseDI.

SpO2, audio and actigraphy) are displayed as part of the
user interface, and are also written to a series of text files
stored on the phone. When a desaturation occurs, the re-
quired physiological variables are derived and passed into
an SVM, which classifies the event as either true or false.
Following a true event, the application sounds an alarm;
this alarm can be audible and visible (as with a conven-
tional bedside monitor), can initiate a phone call to a pre-
specified number (so that the receiver can listen in to the
activity, and/or review the data remotely) or can send an
SMS (text message) containing details of the event.

3. Results

The best-performing classifierusing the full feature set
achieved a sensitivity of 98.7%, a specificity of 62.2% and
a balanced accuracy of 80.5% on the training set. On the
independent test set, it achieved a sensitivity of 76.9%, a
specificity of 52.0% and a balanced accuracy of 64.4%.

The best-performing classifier using the dimensionally-
reduced feature set used the eight highest-ranked features
selected using mRMR as shown in Table 2. Using the
training set it achieved a sensitivity of 98.1%, a specificity
of 13.3% and a balanced accuracy of 55.7%. On the test
set it achieved a sensitivity of 67.9%, a specificity of 57.7%
and a balanced accuracy of 62.8%.
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mRMR ranking Variable
1 mean SQI PPGLR

2 ΔHRPPG

3 min SpO2

4 SQI PPG
5 SQI PDRRS

6 ΔSpO2

7 min RR PDRRS

8 SQI PPGH2

Table 2. Thefeatures used in the best-performing classi-
fier trained on the reduced feature set.

4. Discussion andconclusions

The best-performing classifierachieved a balanced ac-
curacy of 64.4% in testing. This classifier, however, was
trained using the full 500-feature set, and not the reduced
25-feature set produced using ROC analysis (see section
2.2). If implemented using the phone application, the use
of this full data set would require much more memory and
processing time than the dimensionally-reduced set would.
Classifiers which use the dimensionally-reduced feature
set are therefore preferred for the purposes of real-time
classification (as part of the Android application). The best
classifier trained on the reduced set achieved a balanced ac-
curacy of 62.8% in testing. Ranking features and training
SVMs using the reduced set led to a considerably faster
execution time with only a small drop in performance.

Existing NICU apnoea monitors produce almost no false
negatives but many false positives, sounding an alarm for
all desaturations. Using existing NICU methods, monitor-
ing the NICU data used in this study would have resulted
in a sensitivity of 100.0%, but a specificity of 0.0% on the
test set. The classifiers produced here are therefore a clear
improvement over simple apnoea alarms.

Table 2 indicates that both signal quality and physiolog-
ical measurements are useful in reducing false alarms and
identifying real alarm conditions. The results show, how-
ever, that the PPG waveform and its derived variables are
insufficient to detect apnoea in a reliable and robust way.

Balanced accuracies of 60-62% suggest that the trade-
off between sensitivity and specificity is too costly when
using a single channel of information (the PPG). Further
features may be required, most likely derived from other
channels of information; these could include accelerome-
try, audio and even video, from which movement and res-
piration (breath sounds) can be evaluated. All of these pa-
rameters can easily be captured using the mobile phone.

The use of a smartphone allows the creation of a com-
pact and portable system which uses existing infrastruc-
ture and functional supply chains (both rarities in most de-
veloping countries), and which can take advantage of the
rapidly growing smartphone market in these regions [10].

In summary, the results of this research show that the use
of the PPG alone is not sufficient for clinical classification
of apnoea. They suggest, however, that with further work a
cheap and accurate neonatal apnoea monitor could be pro-
duced for a resource-constrained region. Given the lack
of alternatives in resource-constrained environments, there
is much potential for leveraging the extensive computa-
tional, sensing and network capabilities of modern phones
to address the lack of facilities for continuous physiologi-
cal monitoring.
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