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Abstract CV variables, namely, the RR interval (RRI), systolic ar-
terial pressure (SAP), respiration (RSP) and pulse transit
In this study we present a new methodology for time- time (PTT). With respect to previous multivariate models
varying characterization of cardiovascular (CV) control, [1-3], in this framework we directly considered the influ-
which includes RR interval (RRI), systolic arterial pres- ence of respiration, through the input RSP, and of vascular
sure (SAP), respiration (RSP) and pulse transit time (PTT). dynamics, through the inclusion of PTT, which is strictly
Within a multivariate model, CV dynamics are represented related to pulse wave velocity and arterial stiffness [4].
as stochastic point processes whose means has a tetravariAdditionally, the multivariate point process approach al-
ate autoregressive structure. Such framework provides thelows to give model’'s goodness-of-fit measures, and offers
simultaneous time-frequency assessment of: (i) both armshe possibility of estimating time-varying indices of causal
of the SAP-RRI loop, along baroreflex and mechanical coupling [5] for the respiratory and low frequency (LF)
feedforward pathways; (ii) Respiratory sinus arrhythmia spectral bands separately. We used this model to charac-
(RSA), through the direct evaluation of the interactions be- terize changes in the dynamic interactions between all four
tween RSP and the RRI; (iii) the coupling between cardio- CV variables during a tilt table test.
respiratory activity and vascular tone through quantifica-
tion of the interactions between PTT and the other CV vari- 2 Methodology
ables. We validated the model by characterizing CV con-
trol in 16 healthy subjects during a tilt table test, and we 9 1 Thetetravariate point-process model
were able to confirm a satisfactory model’'s goodness-of-
fit. We further estimated transfer function gains, instan- | et's defineast® and# the time occurrencef the n-

taneous powers and directed coherences, and observeqn R wave in the ECG and the arrival time of the systolic
that RSP strongly drove respiratory-related oscillations in pressure peak to the finger, respectively (see Fig. 1); be
all the other CV variables, and that PTT depended on &« _ kR 4R andw®™ = #* — % then-th RRI andPTT

n n+1 n n n n ’

RRI dynamics rather than blood pressure variations. Dur- respectively. Ber™s® = z7%(t*) andz5** = 25°°(t"), the

ing head-up tilt, baroreflex sensitivity and RSA decreased, regpiratory signal sampleat heart beat occurrence and the
while the gain from RRI to SAP increased, thus confirming gystolic pressure value estimated at the finger, respectively
previous physiological characterizations. (see Fig. 1).

The probability density function of RRI and PTT can be
described for any > ¢} by an irverse Gaussian (IG) dis-

1. Introduction tribution [6]:

The assessment ofrdiovascular (CV) control, both in

health and disease, is of primarily importance to improve pic ;) _ Ay (1) (_ At —t7 — MJ(t)P)
our understanding and early detection of CV dysfunctions. *’ [t — tR]3 203 (t)[t — t7]
For a comprehensive characterization of CV functioning, Q)

a multivariate non-stationary framework is needed. In this whereJ € {RRI,PTT}, andu,(t) andA,(¢) are the mean
study, we propose a multivariate point-process model to andthe shape parameters. Note that when (1) is used to de-
study the CV system, which takes into account the auto- scribe the statistical structure of PTfT (¢) is well defined
nomic control of the circulation. The model includes four for t® < ¢ < . Whithin thisframework, the variance of
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PTT and RRican be estimated a$ = 13 (t) /), (¢) [6].

=
The probability densityfunction of SAP and RSP is de- % 2R A
scribed by a Normal distribution: Ny
% RSP RSP

T’ — 2 é@
() = ep(- D) @ g

2mo2(t) 202 (t)

whereJ € {SAP,RSP (see Fig. 1). In this case, the
choice of a normal distribution, rather than an IG, is mo-
tivated by the fact that these variables do not represent

=
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i

8

the inter-event-interval of a point process but rather mea- &, ERarS EESSE 0 RTnt1  RTnta

surements of signals for which an additive Gaussian noise 1 1 1 1
model can be assumed. g
& I I

The considered CV variables are continuously interacting, 't s
so that at any time the value of one variable depends on Time [s]
its recent history as well as on the recent history of any gigyre 1. An example of RSP, ECG and SAP signals.

other variable. This dependence is embedded in the point-cjrcles and crosses mark the occurrence time of a R wave,
process framework by assuming a multivariate autoregres-= and arrial time of pulse wave at the fingef,, used as

sive structure for any., (?): reference testimate the PTT.

should be uncorrelated [6]. To quantify the degree of cor-

) relation in the rescaled series, two indices were estimated:
where M(t) = [prn(t), pori(t), frsne(t), frese(t)]" 1S the  the number of the lag points for which the correlation was

vector of the means of distributions (1)-(24, ,;(t) = outside the confidence interval,, and the ratidbetween

[ai”’(t)] is the 4 x 4 matrix of the time-varying model  the highest correlation and the confidence lewel,
coefficients, andV, = [wi® WP, 25" 2R is the \ec-

n ?%n

tor of the observed regressors. Importantly, coefficients2 2. Time-frequency CV assessment
a\”’(t) provide atime-varying quantification of the inter-

action alongj — 4. For examplea{'®(¢) quantifies the The non-stationary transfefunction of the system,
linear contrilution thatz$¥,, i.e. SAP alue att’ _,, has  H(t, f) = [H,(t, f)], is estimated as:

ON peei(t), With 7 < ¢ < 7. Thus,a”(t), ai'® (t)

n+1"

M(t) = Ao (t) + iék (t)wn—k (3)

-1

anda|'* (t) correspond to pathays that can be associated Q _

to the mechanical feedforward influence of RRI on SAP, H(t, f) = [J - ZAk(f)emfk] (4)

baroreflex feedback from SAP to RRI, and respiratory si- k=1

nus arrhythmia (RSA), respectively. where [ is the identitymatrix. Time-frequency spectra,
The order of the model was empirically set@t= 5, S,,(t, f), anddirected coherence,"c(t, ), aredefined

while the temporal resolution was 0.001 s. Time-varying for {;, j} € {1,...,4}, as [2,5]:

model coefficients are identified by Newton-Raphson max-

imization of the local likelihood, which also includes right * ) i

censoring, and using a weighting functioii(t — t}) = Sult, f) = Z Ho(t, f)os, () H, (8 f) ®)

0.98¢, with t — t* < 120 s [6]. m=1

To assess the capability of the model to describe the Vet f) = o, H,(t, f) (6)

statistical properties of the multivariate point processes, \/Eé o2 (O Hoou(t, )2
i.e. RRI and PTT, the model’'s goodness-of-fit is quan- B
tified. = Goodness-of-fit is evaluated by representing Directed coherence’°(t, f) represents theatio between

the Kolmogorov-Smimov (KS) plot which measures the the part ofS,, (¢, f) due toprocessj andS,, (¢, f) [5]. By
largest distance between the cumulative distribution func- definition,>* _Rett, HE=1.

tion of RRI and PTT series transformed to the interval

(0,1] by using the time rescaling theorem [6], and the cu- 2.3, Estimation ofthe indices of interaction
mulative distribution function of a uniform distribution on

(0,1]. The smaller the KS distances, the closer is the agree- To estimate théime course of the indices of interaction,
ment between original RRI and PTT series and the pro-two TV spectral bands are localized in the time-frequency
posed model. If the model completely captures the sta-domain. The first one, related to respiratory activity, is de-
tistical properties of RRI and PTT, the transformed series fined as: Qxsp = {(¢, f)| f € [fase(t) £ Ag]}, Where
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frse(t) is the respiratoryate, estimated frons,, (¢, f), Table 1. Goodness of fit as meanstandard deviation of
and Ap = 0.05 Hz. The secongpectral band, related KS distancesg andcrg.

to LF spectral range, is defined &, = {(¢, f)| f € Model's goodness-offit

[0.04, min(0.15, frsp(t) — Ar)]}. NotethatQgrsp andQ; Signal KS-dist cu R
cannot oerlap, and wherfrsr (¢) is low, Qs can include PTT | 0.08740.028 | 1.3754 258 | 1.18910.254
portions ofthe traditional LF band. If for a given,, the RRI | 0.05140.022 | 1.31341.352 | 1.21540.355

width of Q, . is lowerthanA,., thenQ, .., = 0.

705 (t) is estimated aghe global maximum inside each
spectral bandl , while transfer functiomains,| H; 5 (¢)],
and instantaneous pers, P, ;(¢), are estimated bypv-
eraging |H;(t, )| and S, (¢, f) inside Qz, with B €
{LF,RSP}.

of SAP andRRI was high, and during tilt directed co-
herence from RRI to SAP decreased (Fig. 2(b)). Dur-
ing tilt, | H,, (t)| and|Hj, (t)|, representing RREPTT and
RRI—SAP interactions, increased, whilH,;(¢)|, repre-
senting baroreflepathway, decreased. Interestingly, the
decrease inH,,(t)| is fasterand happens earlier than the
increase in|H,,(t)| and |H; (t)| (Fig. 2(g)-(h)). This
may be explained by a slower response of the mechanical
feedforward pathway with respect to the faster neurally-
mediated feedback baroreflex. During tilt, LF power of
PTT and SAP increased (Fig. 2(0)-(q)). %sp, RSP
had great influencen RRI, PTT and SAP, while, as ex-
pected, these three variables had virtual no influence on
RSP (Fig. 2(d)-(f)). A decrease in RSH/,.,(t)|, suggests
|that parasympathetic acitly is reduced during tilt. Note
that by construction the increase in RSA is independent
from the increase in respiratory power observed during tilt.

3. Experimental setting

Sixteen volunteer§28.6+2.9 years, 10 males) without
any previous cardiovascular history underwent a head up
tilt table test according to the following protocol: 4 min in
early supine position (), 5 mintilted head up to an angle
of 70 degreesi(;r) and 4 minback to later supine position
(T.s) [7,8]. Thepressure signal was recorded at the finger
by the Finometer system with a sampling frequenty 6f
250 Hz andwithout correction for the hydrostatic gradient
change during tilt, whereas standard lead V4 ECG signal
was recorded withf,=1 KHz. Time occurrence of each R
wave in the ECGt?, and systolic peakis the pressure sig-
nal, {t*, 254"}, were automatically determineshd manu-
ally revised. The respiratory signal was recorded through
a strain gauge transducer, wiftF125 Hz. 5. Discussion anctonclusions

4. Results In this study we presented an innovative point-process
model for the time-varying characterization of CV regula-
Table 1 reportshe mean and standard deviation of the tion. The model provides the simultaneous assessment of:
KS distancecy, cg estimated for alsubjects, and shows (i) both arms of the SAP-RRI loop, along baroreflex and
that the model was able to capture the statistical propertiesmechanical feedforward pathways; (i) RSA, through the
of the CV variables. direct evaluation of the interactions between the respira-
The median time courses, estimated across subjects, of théory input and the RRI; (iii) the coupling between cardio-
indices characterizing the most relevant CV interactions respiratory activity and the vasculature, which is possi-
are shown in Fig. 2. Upper, middle and lower graphics re- ble thanks to the quantification of the interactions between
ferto~;,(t), [Hp,,;(t)| and Py ,;(t), respectivelywhile PTT and the other variables. In addition, since the CV vari-
the first and the last three columns report indices estimatedables are embedded in a point process framework, model
in Q,» and Qp, respectively Note that the indices of coefficients and parameters are estimated in continuous
those subjects for which a given index was not estimatedtime, respecting the physiological order of discrete-time
for more than 75% of the duration of the experiment (when events such as systole and pulse arrival time. Importantly,
Q.7 IS too narrav or when there is not a maximum inside this framework offers the possibility of quantifying the
the spectral band) were not included in the calculations. model's goodness-of-fit [6]. The assumption of a tetravari-
To assess whether the changes in the indices were statisate autoregressive structure for the model allows to ana-
tically significant, temporal median values were estimated lyze the causal interactions between the CV variables in
in Tys, Tyr andT;s and compared bgigned rank test.  the time-frequency domain [2,5]. Results confirm that res-
To exclude fast changes during transients, the first and lasipiration can be considered as a critical external input which
30 s of each interval were not considered in the statistical drives respiratory-related oscillations in other CV variables
analysis, and significance was assumed fo0R5. [9]. Head-up tilt provoked a decrease in the baroreflex sen-
In Q.r, PTT dependedn RRI dynamics rather than blood  sitivity and in RSA, and a simultaneous increase in the gain
pressure variations (Fig. 2(a),(c)); The mutual influence of the feedforward mechanical effect. Also of relevance,

275



Indices estimated if),

Indices estimated if;qp

_RRI_PTT  SAP__RRI SAP_PTT  RSP_RRI  RSP__PTT  RSP_ SAP
= '[(@ (b) (c) d (e f)
s
a1
= iy
0 o] 4] 0 0 o]
2 RRITPTT SAP _RRI SAP T PTT RSP RRI RSP~ PTT RSP ~"SAP
= |(&) (h (i) m (m) (nw
=
= PTT RRI RRI SAP PTT SAP RRI RSP PTT RSP SAP RSP
o<
— |(o) (p) (q) (r) (s) (t)
Q@.
0 258 558 T80 0 258 558 T80 ] 258 568 780 (1] 258 556 780 0 258 558 780 0 258 558 T80
Time [s] Time [s] Time [s] Time [s] Time [s] Time [s]
Figure 2. Mediartime course of the indices estimated across subjects. Upper graphics: directed cohgie(ge,

pathwaysj — i andi — j are plottedn blue and red, respect

ively. Graphics on the middle: gains of the transfer functions,

|H,;(t)|. Lower graphicsinstantaneous powerE;;(t). Gains and peers are in arbitrary units [au], for easier comparison
(we are mainly interested in temporal changes). Vertical lines MayKl;r and7 .

autonomic-mediated barorefleohanges were faster than
vasculature-mediated changes along the-RBAP direc-
tion.

Future works should include the exploration of additional

variables, such as diastolic arterial pressure or central ve-

%

nous pressure, different model orders, the assessment
the latencies between coupled oscillations, and other in-

dices of interaction, including statistical analyses to assess

significant strength of the directional couplings.
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