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Abstract

In this study, we present a new methodology for time-
varying characterization of cardiovascular (CV) control,
which includes RR interval (RRI), systolic arterial pres-
sure (SAP), respiration (RSP) and pulse transit time (PTT).
Within a multivariate model, CV dynamics are represented
as stochastic point processes whose means has a tetravari-
ate autoregressive structure. Such framework provides the
simultaneous time-frequency assessment of: (i) both arms
of the SAP-RRI loop, along baroreflex and mechanical
feedforward pathways; (ii) Respiratory sinus arrhythmia
(RSA), through the direct evaluation of the interactions be-
tween RSP and the RRI; (iii) the coupling between cardio-
respiratory activity and vascular tone through quantifica-
tion of the interactions between PTT and the other CV vari-
ables. We validated the model by characterizing CV con-
trol in 16 healthy subjects during a tilt table test, and we
were able to confirm a satisfactory model’s goodness-of-
fit. We further estimated transfer function gains, instan-
taneous powers and directed coherences, and observed
that RSP strongly drove respiratory-related oscillations in
all the other CV variables, and that PTT depended on
RRI dynamics rather than blood pressure variations. Dur-
ing head-up tilt, baroreflex sensitivity and RSA decreased,
while the gain from RRI to SAP increased, thus confirming
previous physiological characterizations.

1. Introduction

The assessment ofcardiovascular (CV) control, both in
health and disease, is of primarily importance to improve
our understanding and early detection of CV dysfunctions.
For a comprehensive characterization of CV functioning,
a multivariate non-stationary framework is needed. In this
study, we propose a multivariate point-process model to
study the CV system, which takes into account the auto-
nomic control of the circulation. The model includes four

CV variables, namely, the RR interval (RRI), systolic ar-
terial pressure (SAP), respiration (RSP) and pulse transit
time (PTT). With respect to previous multivariate models
[1–3], in this framework we directly considered the influ-
ence of respiration, through the input RSP, and of vascular
dynamics, through the inclusion of PTT, which is strictly
related to pulse wave velocity and arterial stiffness [4].
Additionally, the multivariate point process approach al-
lows to give model’s goodness-of-fit measures, and offers
the possibility of estimating time-varying indices of causal
coupling [5] for the respiratory and low frequency (LF)
spectral bands separately. We used this model to charac-
terize changes in the dynamic interactions between all four
CV variables during a tilt table test.

2. Methodology

2.1. Thetetravariate point-process model

Let’s defineastR
n andtP

n the time occurrenceof the n-
th R wave in the ECG and the arrival time of the systolic
pressure peak to the finger, respectively (see Fig. 1); be
wRRI

n = tR
n+1− tR

n andwPTT
n = tP

n − tR
n then-th RRI andPTT,

respectively. BexRSP
n = xRSP(tR

n) andxSAP
n = xSAP(tP

n), the
respiratory signal sampledat heart beat occurrence and the
systolic pressure value estimated at the finger, respectively
(see Fig. 1).
The probability density function of RRI and PTT can be
described for anyt > tR

n by an inverse Gaussian (IG) dis-
tribution [6]:

f IG
J (t) =

√
λJ(t)

2π[t − tR
n]3

exp

(

−
λJ(t)[t − tR

n − μJ(t)]2

2μ2
J(t)[t − tR

n ]

)

(1)
whereJ ∈ {RRI,PTT}, andμJ(t) andλJ(t) are the mean
andthe shape parameters. Note that when (1) is used to de-
scribe the statistical structure of PTT,f IG

J (t) is well defined
for tR

n ≤ t ≤ tP
n. Whithin thisframework, the variance of
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PTT and RRIcan be estimated asσ2
J = μ3

J(t)/λJ(t) [6].
The probability densityfunction of SAP and RSP is de-
scribed by a Normal distribution:

fN
J (t) =

√
1

2πσ2
J(t)

exp

(

−
[xJ

n − μJ(t)]2

2σ2
J(t)

)

(2)

whereJ ∈ {SAP,RSP} (see Fig. 1). In this case, the
choice of a normal distribution, rather than an IG, is mo-
tivated by the fact that these variables do not represent
the inter-event-interval of a point process but rather mea-
surements of signals for which an additive Gaussian noise
model can be assumed.
The considered CV variables are continuously interacting,
so that at any time the value of one variable depends on
its recent history as well as on the recent history of any
other variable. This dependence is embedded in the point-
process framework by assuming a multivariate autoregres-
sive structure for anyμJ(t):

M(t) = A0(t) +
Q∑

k=1

Ak(t)W n−k (3)

where M(t) = [μRRI(t), μPTT(t), μSAP(t), μRSP(t)]T is the
vector of the means of distributions (1)-(2),Ak,ij(t) =
[a(ij)

k (t)] is the 4 × 4 matrix of the time-varying model
coefficients, andW n = [wRRI

n , wPTT
n , xSAP

n , xRSP
n ]T is the vec-

tor of the observed regressors. Importantly, coefficients
a(ij)

k (t) provide atime-varying quantification of the inter-
action alongj → i. For example,a(13)

2 (t) quantifies the
linear contribution thatxSAP

n−2, i.e. SAP value attP
n−2, has

on μRRI(t), with tR
n < t < tR

n+1. Thus,a(31)
k (t), a(13)

k (t)
anda(14)

k (t) correspond to pathways that can be associated
to the mechanical feedforward influence of RRI on SAP,
baroreflex feedback from SAP to RRI, and respiratory si-
nus arrhythmia (RSA), respectively.

The order of the model was empirically set atQ = 5,
while the temporal resolution was 0.001 s. Time-varying
model coefficients are identified by Newton-Raphson max-
imization of the local likelihood, which also includes right
censoring, and using a weighting functionW (t − tR

n) =
0.98(t−tR

n), with t − tR
n ≤ 120 s [6].

To assess the capability of the model to describe the
statistical properties of the multivariate point processes,
i.e. RRI and PTT, the model’s goodness-of-fit is quan-
tified. Goodness-of-fit is evaluated by representing
the Kolmogorov-Smirnov (KS) plot which measures the
largest distance between the cumulative distribution func-
tion of RRI and PTT series transformed to the interval
(0,1] by using the time rescaling theorem [6], and the cu-
mulative distribution function of a uniform distribution on
(0,1]. The smaller the KS distances, the closer is the agree-
ment between original RRI and PTT series and the pro-
posed model. If the model completely captures the sta-
tistical properties of RRI and PTT, the transformed series
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Figure 1. An example of RSP, ECG and SAP signals.
Circles and crosses mark the occurrence time of a R wave,
tR

n, and arrival time of pulse wave at the finger,tP
n, used as

reference toestimate the PTT.

should be uncorrelated [6]. To quantify the degree of cor-
relation in the rescaled series, two indices were estimated:
the number of the lag points for which the correlation was
outside the confidence interval,c#, and the ratiobetween
the highest correlation and the confidence level,cR.

2.2. Time-frequency CV assessment

The non-stationary transferfunction of the system,
H(t, f) = [Hij(t, f)], is estimated as:

H(t, f) =

[

I −
Q∑

k=1

Ak(t)e
−i2πfk

]-1

(4)

whereI is the identitymatrix. Time-frequency spectra,
Sij(t, f), anddirected coherence,γDC

ij (t, f), aredefined
for {i, j} ∈ {1, . . . , 4}, as [2,5]:

Sij(t, f) =
4∑

m=1

Him(t, f)σ2
m(t)H∗

jm(t, f) (5)

γDC
ij (t, f) =

σj(t)Hij(t, f)
√∑4

m=1
σ2

m(t)|Him(t, f)|2
(6)

Directed coherenceγDC
ij (t, f) represents theratio between

the part ofSii(t, f) due toprocessj andSii(t, f) [5]. By
definition,

∑4

m=1
|γDC

im (t, f)|2 = 1.

2.3. Estimation ofthe indices of interaction

To estimate thetime course of the indices of interaction,
two TV spectral bands are localized in the time-frequency
domain. The first one, related to respiratory activity, is de-
fined as: ΩRSP = {(t, f)| f ∈ [fRSP(t) ± ΔF]}, where
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fRSP(t) is the respiratoryrate, estimated fromS44(t, f),
and ΔF = 0.05 Hz. The secondspectral band, related
to LF spectral range, is defined asΩLF = {(t, f)| f ∈
[0.04, min(0.15, fRSP(t)−ΔF)]}. NotethatΩRSP andΩLF

cannot overlap, and whenfRSP(t) is low, ΩRSP can include
portions ofthe traditional LF band. If for a givent0, the
width of ΩLF is lowerthanΔF, thenΩLF|t=t0

= ∅.
γDC

ij,B(t) is estimated asthe global maximum inside each
spectral bandΩB, while transfer functiongains,|Hij,B(t)|,
and instantaneous powers, Pii,B(t), are estimated byav-
eraging |Hij(t, f)| and Sii(t, f) inside ΩB, with B ∈
{LF, RSP}.

3. Experimental setting

Sixteen volunteers(28.6±2.9 years, 10 males) without
any previous cardiovascular history underwent a head up
tilt table test according to the following protocol: 4 min in
early supine position (TES), 5 mintilted head up to an angle
of 70 degrees (THT) and 4 minback to later supine position
(TLS) [7,8]. Thepressure signal was recorded at the finger
by the Finometer system with a sampling frequency (fs) of
250 Hz andwithout correction for the hydrostatic gradient
change during tilt, whereas standard lead V4 ECG signal
was recorded withfs=1 KHz. Timeoccurrence of each R
wave in the ECG,tR

n, and systolic peaksin the pressure sig-
nal,{tP

n, xSAP
n }, were automatically determinedand manu-

ally revised. The respiratory signal was recorded through
a strain gauge transducer, withfs=125 Hz.

4. Results

Table 1 reportsthe mean and standard deviation of the
KS distance,c#, cR estimated for allsubjects, and shows
that the model was able to capture the statistical properties
of the CV variables.
The median time courses, estimated across subjects, of the
indices characterizing the most relevant CV interactions
are shown in Fig. 2. Upper, middle and lower graphics re-
fer to γDC

B,ij(t), |HB,ij(t)| andPB,ii(t), respectively, while
the first and the last three columns report indices estimated
in ΩLF and ΩRSP, respectively. Note that the indices of
those subjects for which a given index was not estimated
for more than 75% of the duration of the experiment (when
ΩLF is too narrow or when there is not a maximum inside
the spectral band) were not included in the calculations.
To assess whether the changes in the indices were statis-
tically significant, temporal median values were estimated
in TES, THT and TLS and compared bysigned rank test.
To exclude fast changes during transients, the first and last
30 s of each interval were not considered in the statistical
analysis, and significance was assumed for P<0.05.
In ΩLF, PTT dependedonRRI dynamics rather than blood
pressure variations (Fig. 2(a),(c)); The mutual influence

Table 1. Goodness of fit as mean± standard deviation of
KS distances,c# andcR.

Model’s goodness-of-fit
Signal KS-dist c# cR

PTT 0.087±0.028 1.375±1.258 1.189±0.254
RRI 0.051±0.022 1.313±1.352 1.215±0.355

of SAP andRRI was high, and during tilt directed co-
herence from RRI to SAP decreased (Fig. 2(b)). Dur-
ing tilt, |H21(t)| and|H31(t)|, representing RRI→PTTand
RRI→SAP interactions, increased, while|H13(t)|, repre-
senting baroreflexpathway, decreased. Interestingly, the
decrease in|H13(t)| is fasterand happens earlier than the
increase in|H21(t)| and |H31(t)| (Fig. 2(g)-(h)). This
maybe explained by a slower response of the mechanical
feedforward pathway with respect to the faster neurally-
mediated feedback baroreflex. During tilt, LF power of
PTT and SAP increased (Fig. 2(o)-(q)). InΩRSP, RSP
had great influenceon RRI, PTT and SAP, while, as ex-
pected, these three variables had virtual no influence on
RSP (Fig. 2(d)-(f)). A decrease in RSA,|H14(t)|, suggests
that parasympathetic activity is reduced during tilt. Note
that by construction the increase in RSA is independent
from the increase in respiratory power observed during tilt.

5. Discussion andconclusions

In this study, we presented an innovative point-process
model for the time-varying characterization of CV regula-
tion. The model provides the simultaneous assessment of:
(i) both arms of the SAP-RRI loop, along baroreflex and
mechanical feedforward pathways; (ii) RSA, through the
direct evaluation of the interactions between the respira-
tory input and the RRI; (iii) the coupling between cardio-
respiratory activity and the vasculature, which is possi-
ble thanks to the quantification of the interactions between
PTT and the other variables. In addition, since the CV vari-
ables are embedded in a point process framework, model
coefficients and parameters are estimated in continuous
time, respecting the physiological order of discrete-time
events such as systole and pulse arrival time. Importantly,
this framework offers the possibility of quantifying the
model’s goodness-of-fit [6]. The assumption of a tetravari-
ate autoregressive structure for the model allows to ana-
lyze the causal interactions between the CV variables in
the time-frequency domain [2,5]. Results confirm that res-
piration can be considered as a critical external input which
drives respiratory-related oscillations in other CV variables
[9]. Head-up tilt provoked a decrease in the baroreflex sen-
sitivity and in RSA, and a simultaneous increase in the gain
of the feedforward mechanical effect. Also of relevance,
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Indices estimated inΩRSPIndices estimated inΩLF

Figure 2. Mediantime course of the indices estimated across subjects. Upper graphics: directed coherence,γDC
ij (t);

pathwaysj → i andi → j are plottedin blue and red, respectively. Graphics on the middle: gains of the transfer functions,
|Hij(t)|. Lower graphics:instantaneous powers,Pii(t). Gains and powers are in arbitrary units [au], for easier comparison
(we are mainly interested in temporal changes). Vertical lines markTES, THT andTLS.

autonomic-mediated baroreflexchanges were faster than
vasculature-mediated changes along the RRI→SAP direc-
tion.
Future works should include the exploration of additional
variables, such as diastolic arterial pressure or central ve-
nous pressure, different model orders, the assessment of
the latencies between coupled oscillations, and other in-
dices of interaction, including statistical analyses to assess
significant strength of the directional couplings.
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