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Abstract

A non-linear analysis ofheart rate variability is carried
out through two complexity measures (Correlation Dimen-
sion and Pointwise Correlation Dimension) and two reg-
ularity measures (Approximate Entropy and Sample En-
tropy) in order to predict hypotension episodes occurred
during spinal anesthesia in cesarean delivery. These meth-
ods are applied to RR-interval series, during which woman
adopts two alternative positions, one physiologically re-
laxed (PR) and one physiologically stressed (PS). Results
show that women who developed hypotension have signifi-
cantly higher (p-value≤ 0.05) complexity measures at PR
position, (and significantly lower values for the PS posi-
tion), than those who did not developed the disease. Re-
garding the regularity measures, women who developed
hypotension have lower values, but not arriving to signif-
icance, during PS position than those who did not devel-
oped it, whereas those values remain almost constant for
PR position.

1. Introduction

Spinal anesthesia isone of the widely used methods dur-
ing cesarean delivery, due to its lower maternal risk and
the need of less medicalization. However, it has a dis-
advantage: the hypotension episodes suffered by approxi-
mately 60% of women [1]. Apart from the symptoms on
the mother, anomalous pH cord values (a fetal distress indi-
cator) have been observed. The treatment of these episodes
is done through sympathomimetic drugs but, despite their
high effectiveness on the maternal symptoms, the number
of births in which anomalous pH cordon value has been de-
tected does not decrease. One hypothesis that may explain
this fact is that the medication administered to women who
would have not developed hypotension in its absence, has

adverse effects on their fetuses [2]. Therefore, it would be
of great interest to identify women at risk for suffering hy-
potension episodes, in order to administer the medication
only to those women.

Our hypothesis is that hypotension episodes may be
caused by alterations in Autonomic Nervous System
(ANS) regulation due to the stress induced by the impend-
ing surgery. Analysis of Heart Rate Variability (HRV) is
considered as a non-invasive measure of ANS changes that
has been applied traditionally from the linear perspective,
in particular, with both, time and frequency methods [3].
However, in last years, the non-linear analysis of HRV has
become a popular approach with promising results in pre-
diction of hypotension during spinal anesthesia [4].

The aim of this work is to evaluate the capability of the
non-linear measures correlation dimension, pointwise cor-
relation dimension, approximate entropy and sample en-
tropy, to predict hypotension during spinal anesthesia in
a database of women referred for cesarean delivery. For
comparison purposes, also de classical linear indices are
considered.

2. Methods andmaterials

2.1. Non-linear measures

Non-linear analysis ofHRV is based on chaos theory.
Chaotic dynamical systems are non-linear in nature, be-
sides being sensible to initial conditions and evolving very
fast over time. Representation of these systems is done in
a d-dimensional space known asphase space. Disposing
of the d variables that define the system would be desir-
able, but in practice it is usual to have only one of them.
Takens embedding theorem [5] proposes to reconstruct the
phase space from the lagged time series available. For a
time seriesx(n) n = 1, 2, ..., N , wheren denotes beats,
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the reconstructed phasespace can be generated as:






x1 = [x (1 ), x (1 + τ) ∙ ∙ ∙ x (1 + (m − 1 )τ)]
...

xi = [x (i), x (i + τ) ∙ ∙ ∙ x (i + (m − 1 )τ)]

(1)

wherei = 1, 2, ..., Nm andNm = N − (m − 1)τ is
the number ofm-dimensionalvectors reconstructed. The
parametersm andτ are the embedding dimension and the
time delay, respectively. A sufficient condition for the em-
bedding dimension is given asm ≥ 2d + 1.

All non-linear measurements described in the following
are based on the Takens embedding theorem and were ap-
plied to the RR-interval series derived from the ECG as
explained in Section 2.3.

2.1.1. Correlationdimension
Correlation dimension (D2) is a measureof complexity:

the more complicated the behavior of the non-linear sys-
tem, the larger the correlation dimension [6]. For appro-
priatem andτ values,D2 approaches to thetrue system
dimension which, in chaotic systems, can be non integer.

In 1983, Grassberger and Procacia [7] proposed theD2

algorithm. Firstly, the time series is normalized so that
mean(x(n)) = 0 and max(|x(n)|) = 1. Then, the distance
between every pair of vectorsxi andxj, constructed as in
(1), is computed:

rij =

√√
√
√

m−1∑

l=0

(x(i + lτ) − x(j + lτ))2 (2)

The correlation integral is defined as a function of the
threshold distancer:

Cm(r) =
2

Nm(Nm − 1)

Nm∑

i=1

Nm∑

j=1

H(r − rij) (3)

where H(z) is the Heaviside function defined as:

H(z) =

{
1 si z > 0
0 si z ≤ 0.

(4)

The relation between the correlation integral and the
threshold follows a power law:

Cm(r) = K ∙ rD2 (5)

with K an arbitrary constantand D2 the correlation di-
mension.Note that the dependency ofD2 with m has been
made explicit since later will be used.

In practice, aD2 value is calculatedas the slope of
ln(Cm(r)) against ln(r) over the linear region for differ-
ent values ofm. Then, the finalD2 is estimatedas the
value for which the slope function againstm converges.

2.1.2. Pointwisecorrelation dimension
Pointwise correlation dimension(pD2) can be consid-

eredthe time-varying version ofD2, since a correlation
integral is calculated for each vectorxi.

Ci
m(r) =

1
Nm

Nm∑

j=1

H(r − rij) (6)

Then a correlationdimensionDi
2 is estimated foreach

vectorxi, generating a timeseries ofNm points. In this
study, the histogram of theDi

2 series is calculatedand the
maximum is selected as the characteristic value of the se-
ries, denoted aspD2 [4].

2.1.3. Approximate entropy
Approximate Entropy(ApEn) is a family of regularity

measures that quantifies how predictable the fluctuations
in a time series are. The more frequent and regular fluctua-
tions lead to lower ApEn values. The ApEn for parameters
m andr is computed as follows.

Distance between every pair of vectorsxi andxj, con-
structed as in(1) with no normalization and time delayτ
always set to 1, is computed as:

dij = max
k=0,1,...m−1

(|x(i + k) − x(j + k)|) (7)

For agivenxi, a probability functionis obtained:

Ci
m(r) =

1
N − m+ 1

N−m+1∑

j=1

H(r − dij) (8)

The average of the natural logarithm is:

φm(r) =
1

N − m+ 1

N−m+1∑

i=1

ln(Ci
m(r)) (9)

Then,φm+1(r) is calculated andApEn(m, r) is com-
puted as:

ApEn(m, r) = φm(r) − φm+1(r) (10)

2.1.4. Sample entropy
Richman and Moormanproposed an algorithm that out-

performs ApEn in terms of consistency and bias [8]. This
new regularity metric, called Sample Entropy (SampEn),
is calculated as follows for input parametersm andr:

Distance between every pair of vectorsxi andxj is com-
puted asin (7). Then, for a givenxi, a probability function
is computed as:

Ci
m(r) =

1
N − m

N−m+1∑

j=1,j 6=i

H(r − dij) (11)

The probability thattwo sequences match form points:

ϕm(r) =
1

N − m + 1

N−m+1∑

i=1

Ci
m(r) (12)
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Form + 1, Ci
m+1(r) andϕm+1(r) are calculated.

Finally, SampEn(m, r) is:

SampEn(m, r) = −ln

[
ϕm+1(r)
ϕm(r)

]

(13)

2.2. Linear measures

For comparison purposes,classical linear HRV indices
were also computed using software previously developed
by our group [9]. Time domain indices were calculated
from the RR-interval series [3].

Frequency domain indices were obtained from the
power spectral density of the modulating signal with infor-
mation of the ANS, estimated from the beat occurence time
series according to the integral pulse frequency modulation
model as in [10], and sampled at 2 Hz. Then, absolute and
normalized powers were computed in the following bands:
low frequency (LF, 0.04-0.15 Hz), high frequency (HF,
0.15-0.4 Hz) and extended high frequency (HFEXT, 0.15-1
Hz) band, toassure the inclusion of respiratory frequency,
which in pregnant women can exceed 0.4 Hz.

2.3. Data

The ECG signalfrom 11 women with programed ce-
sarean delivery was recorded with Biopac Data Acquisi-
tion MP System at 1000 Hz sample frequency, at the Uni-
versity Hospital Miguel Servet. Five women developed hy-
potension during surgery (H), while six did not (NH). See
Table 1 for additional characteristics.

H NH
Age (years) 32.0±6.4 29.6±6.0

Gestational age (weeks) 38.5±0.5 38.8±0.9
Systolic pressure (mmHg) 106.2±12.9 105.6±18.4

Heart rate (bpm) 77.8±11.8 79.0±8.7

Table 1. Studypopulation characteristics (mean± sd).

Two ECG recordings are available from each woman:
the first one recorded the night before the surgery, which is
associated to a psychologically relaxed condition, and the
second one recorded immediately before the cesarean and
associated to a maximum psychologically stressed condi-
tion. During both records, women adopt two positions,
lasting 7 minutes each one: lateral decubitus, a physio-
logically relaxed (PR) position for a pregnant woman, and
supine position, during which the fetus pressure to the vena
cava introduces a physiological stress (PS).

The RR-interval series were obtained using a wavelet-
based ECG delineator [9]. Linear measures were com-
puted during the central 6.5 minute-interval of lateral de-
cubitus and supine position. Due to the sensitivity of non-
linear measures to the time series length, they were com-
puted during the central 300 point-interval. Note that the

time duration of these intervals is different for each woman
depending on her heart rate.

2.4. Statistical study

Firstly, the Kolmogorov-Smirnov test was applied to
verify the normality of our data. Since the result was neg-
ative, the Wilcoxon signed-rank test was used to compared
the median values of non-linear and linear HRV measures
previously described obtained from H and NH groups. A
p-value≤0.05 was chosen as statistically significant.

3. Results
Non-linear measuresD2 and pD2 were computed us-

ing values of the embedding dimensionm ranging from 1
to 16 (appropriate values for biological signals [6]). Two
time delay values were used, either aτ fixed for all the pa-
tients and equal to 1 or the optimumτ for each RR series,
i.e. the value for which the autocorrelation function drops
to 1/2 times its maximum [11]. Entropy measures were
computed form = 1, 2 and a threshold distancer equal
to 0.1 times the mean of the RR-interval series standard
deviation for all recordings.

Figure 1. RR-interval series from a H subject (top) and
from a NH subject (bottom), in lateral decubitus (left) and
supine position (right).

A statistically significant increase in complexity mea-
suresD2 andpD2 with τ=1 has beenappreciated for H
group during the lateral decubitus position, with respect
to NH group, while a statistically significant reduction has
been observed during the supine position. Both changes
have been detected in the recordings registered immedi-
ately before the surgery, but not in the ones registered
the night before. Regarding to regularity measures ApEn
and SampEn, a no statistically significant decrease has
been observed for H group with respect to NH group in
the supine position but not in the lateral decubitus, for
m=1. As in the complexity measures, these changes oc-
curred only during the recordings registered just before the
surgery. This behavior is displayed in Fig.2.
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Figure 2. Median±MAD for HRV measures (*p-value
≤ 0.05).

Although classical linear measure results were not sta-
tistically significant, some tendencies have been observed.
In the NH group, the normalized power in the LF band
was lower than in the H group during the lateral decubitus
and reverted in supine, while the HFEXT was higher forNH
during both, lateral decubitus and supine position.

4. Discussion

Complexity measuresD2 and pD2 were significantly
differentbetween H and NH groups in both positions when
computed for fixedτ=1, but not for the varying optimum
τ according to [11]. The reason for this behavior remains
unknown.

Just to note that this reverted behavior is coincident with
the reverted LF dominancy, suggesting thatD2 andpD2

information is relatedto that provided by LF, higher LF
results in higherD2 andpD2, and the reverse. Usually LF
components have higher correlation and so the results are
consistent from that point of view, but in case ofD2 or
pD2 they arrive to be significant while LF does not.

Differences were also found for SampEn in both groups
for m=1 and 2, while for ApEn those no significant differ-
ences were only found form=1, supporting the idea that
SampEn is a more robust measurement than ApEn.

Despite the reduced size of the database, results sug-
gest the potentiality of non-linear analysis of HRV for the
prediction of hypotension during spinal anesthesia for ce-
sarean delivery.

5. Conclusions

In this work, a nonlinear analysis of RR-interval series
has been applied to predict hypotension during cesarean
delivery. Results show a reduction in both, complexity and

regularity measures during the position that introduces a
physiological stress (supine position) additional to the psy-
chological stress in women who developed hypotension
with respect to women who did not. During the physio-
logically relaxed position (lateral decubitus) an increase in
complexity measures has been detected for women who
developed hypotension, while regularity measures remain
almost constant. Reasons for this reverted behavior remain
unclear and will require further research.
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