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Abstract

It has been shown that computation of atrial fibrillation
(AF) electrogram (EGM) indices based on activation times
is limited by the accuracy of the activation detector. In this
work, a wavelet-based detector is proposed as a method to
reliably extract activation time locations from the wavelet
decomposition of non-linearly pre-processed bipolar EGM
signal. A more classical amplitude adaptive threshold-
based detector was also implemented for comparison pur-
poses. Evaluation and validation was made by means of
two scenarios due to the lack of standard databases: First,
a simulation study where four real EGM signals, selected
for its high SNR, were contaminated with noise at differ-
ent SNR levels and detection performance was evaluated.
Second, the inverse of the median activation cycle length
(ACL) obtained from both detectors was compared with
the spectral dominant frequency considered as gold stan-
dard. The proposed detector is more accurate and reli-
able than the threshold-based approach in the presence of
noise, allowing a more reliable computation of activation-
time-based AF clinical indices.

1. Introduction

Atrial fibrillation is one of the most common arrhyth-
mias whose prevalence increases with population aging
[1]. AF is characterized by a very rapid, chaotic and desyn-
chronized electrical activity of the atria followed by irreg-
ular ventricular response. As a result, there is an ineffi-
cient contraction of the atrium which may be cause of heart
stroke, cerebrovascular accident and/or congestive heart
failure.

The mechanisms sustaining AF are continuously inves-
tigated, involving rapid foci and/or reentry circuits with
rotors and multiple wavelets [2,3]. Thus, EGM signals are
characterized by very non-stationary, irregular and noisy

2 2.5 3 3.5 4

0.1
(m

v
)

-0.1

Time (s)

a)

b)

c)

d)x(t)

≈ ≈

Figure 1. EGM pre-processing filtering steps: a) Origi-
nal EGM signal, b) band-pass filtered signal, c) rectified
version of b), and d) low-pass filtered signal.

signals as shown in Figure1.a).
A recent simulation study showed that time-based mea-

surement of EGM organization and synchronization were
more affected by noise than frequency-based or cross-
correlation-based indices [4]. This can be explained by the
lack of robustness against noise of the activation detector
used for deriving those indices.

Activation detection is a challenging task due to the
morphology variability of EGM signals during AF. Sev-
eral approaches have been previously proposed, Barbaro
and coworkers proposed an amplitude thresholding detec-
tion [5] and based on this idea, an adaptive thresholding
approach was proposed in [6]. Other approaches have been
proposed for atrial activation location using the non-linear
energy operator [7] or the continuous wavelet transform for
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activation cycle length measurements [8] and for location
and analysis of fractionated unipolar EGM signals com-
bined with template matching techniques and rules [9].

In this work, we propose and evaluate an automatic al-
gorithm based on the wavelet transform for reliable loca-
tion of activation times on bipolar EGMs.

2. Materials

Recordings used for this study belong to 20 patients ad-
mitted for ablation procedure during AF at Hospital Gre-
gorio Marañón, Madrid (Spain), registered using a 20-pole
circular Lasso R© catheter (Biosense Webster Inc.) placed in
pulmonary veins with 977 Hz sampling frequency.

3. Methods

3.1. EGM pre-processing

A non-linear filtering technique based on [10] was ap-
plied to the signal, i.e., band-pass filtering using a fourth
order Butterworth filter with 40 and 250 Hz cut-off fre-
quencies, then output rectification and finally a low-pass
filtering using a fourth order Butterworth filter with 20 Hz
cut-off frequency. This pre-processing allows to simplify
the signal removing baseline and high frequency compo-
nents and enhance the high energy components which are
more feasible to belong to an atrial activation. These filter-
ing steps are shown in Figure 1.

3.2. Frequency indices

For every ten-second segment of EGM the power spec-
tral density (PSD) was estimated by means of Welch’s
method with a two-second length Hamming window and
50% overlapping. Then, the dominant frequency (DF) ,fD,
was defined as the maximum spectral peak within 1.5 to 20
Hz.

From the estimated PSD, we also measured the regular-
ity index (RI), defined as the percentage of the total power
area lying within fD ± 0.75 Hz and organization index
(OI), defined as the percentage of total power area around
fD and its harmonics.

3.3. Wavelet transform

The wavelet transform (WT) is a decomposition of the
signal as a combination of a set of basis function obtained
by dilation a and translation b of a single prototype wavelet
ψ(t). Thus the WT of a signal x(t) is defined as

Wax(b) =
1√
a

∫ +∞

−∞
x(t)ψ

(
t− b
a

)
dt, a > 0, (1)
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Figure 2. Equivalent transfer functions of the discrete
wavelet transform at scales 2k , k = 1 · · · 4 for an inter-
polation sampling frequency of 1000 Hz.

where scale parameter a modify the bandwidth and time
resolution at each scale. If the prototype wavelet ψ(t) is
the derivative of a smoothing function θ(t), the WT of a
given signal x(t) at scale a can be written as

Wax(b) = −a
(
d

db

)∫ +∞

−∞
x(t)θa(t− b)dt, (2)

where θa(t) = (1/
√
a)θ(t/a) is the scaled version of the

smoothing function. Therefore the WT at scale a is propor-
tional to the derivative of the filtered version of the signal
with a smoothing impulse response at the current scale a.
Thus the zero-crossings of the WT correspond to the lo-
cal maxima or minima of the smoothed signal at different
scales, and maximum values of the WT are associated with
maximum slopes in the smoothed signal. In our applica-
tion, we are interested in detecting atrial activations which
are composed of local maxima at different scales occurring
at different times because of AF activation wavefronts.

To implement the WT, time and scale were discretize
following the dyadic discrete wavelet transform (DWT)
using the algorithme à trous [11] which allows to keep the
time resolution of the signal representation by removing
the decimation stages and interpolating the filter impulse
response of the previous scale in Mallat’s algorithm [12].

We used the derivative of a quadratic spline, used and
validated for ECG delineation in [13, 14], as prototype
wavelet, ψ(t), which Fourier transform has the form

Ψ(Ω) = jΩ

(
sin(Ω

4 )
Ω
4

)4

, (3)

thus, the wavelet can be interpreted as the derivative of the
convolution of four rectangular pulses, i.e., the derivative
of a low-pass function. According to Mallat’s algorithm
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Figure 3. WT at the first four scales of a real pre-processed
EGM signal x(t).

and using the algorithme à trous, the transfer functions of
the first four scales interpolated at 1000 Hz sampling fre-
quency are presented in Figure 2 showing that this filter
behaves as low-pass filter differentiators.

3.4. Detection algorithm

The pre-processed EGM signal has most of its energy
component within 0 to 20 Hz. According to the wavelet
transfer functions detailed in Figure 2, atrial activation fre-
quency components lie at scales 23 and 24.

Figure 3 shows the WT of a preprocessed EGM signal
where the more energetic activations are at scales 23 and
24. Based on the properties of the WT, activations were
detected using the multi-scale approach proposed by Li et
al. [13], this algorithm searches across scales for “max-
imum modulus lines” which exceed a threshold at every
considered scale. The threshold is defined for this appli-
cation by means of the root mean square (RMS) value of
the considered scale. Thus, after removing all isolated and
redundant maximum lines, the zero-crossings at scale 21

between two successive lines exceeding the threshold at
scale 24 are marked as atrial activations.

Other protections were taken, as a blanking period of 95
ms where any new activation detection before this blanking
period were deleted and considered with no physiological
meaning [15]. In addition a back search with five threshold
reduction steps at scale 23, which is as energetic as scale
24 but noisier due to its wider bandwidth, was included.

4. Results

Due to the lack of standard databases with activation an-
notated by expert physicians, detectors performance was

estimated in two scenarios:
Simulation: Four selected two-minute length real EGM

based on their high signal-to-noise ratio (SNR) were used
as “clean signals”, then were contaminated with 200 real-
izations of additive Gaussian white noise (AWGN) at dif-
ferent SNR levels from 15 dB to −5 dB in increments of
5 dB. To assess the detector performance, we computed
sensitivity, Se = TP/(TP + FN), and positive predic-
tive value, P + = TP/(TP + FP ), where TP stands for
the number of true detections, FN stands for the num-
ber of miss detections and FP stands for the number of
false detections. Those indices were measured referred to
a manually annotated activations set in the clean signals.

In order to compare performance of both detectors, F1-
score was also computed as

F1-score =
2TP

2TP + FP + FN
, (4)

which can be interpreted as the harmonic mean between
Se and P +. Table 1 shows mean ± standard deviation
(SD) of Se, P + and F1-score for all considered recordings
and SNR level where can be seen that the wavelet-based
approach outperforms the threshold-based approach at all
SNR levels.

Clinical indices: From the 20 records (10 EGM each),
those signals with low quality and/or RI < 0.2 were re-
jected resulting in 169 total signals to study. Spectral DF
of every signal was compared with the median of the in-
verse ACL from both detectors. The error of deriving
DF as the inverse of the ACL is −0.2 ± 0.4 Hz with the
wavelet-based approach, in contrast with 0.6 ± 1.2 Hz for
the threshold-based approach.

5. Discussion and conclusions

Location of time-based activations measured on intra-
atrial signals during AF is a challenging task due to the
noise and morphology variability of EGM signals.

A wavelet-based atrial activation detector is proposed
due to the lack of robustness of classical detectors against
noise and unorganized EGM signals which culminates in
a poor performance of derived time-based indices for AF
characterization.

In the first scenario we compared and evaluate both
approaches using four high SNR selected EGM record-
ings which were contaminated with AWGN at different
SNR levels. In this scenario, high Se and P + values
were reached with both detectors. Table 1 shows that
the threshold-based approach yields in higher Se values
than the wavelet-based approach, but its P + values de-
crease faster with low SNRs. F1-score takes into account
of both Se and P + behavior and shows that for every
SNR level, the wavelet-based approach outperforms the
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Table 1. Detectors performance.
Wavelet-based approach Threshold-based approach

SNR (dB) Se (%) P + (%) F1-score (%) Se (%) P + (%) F1-score (%)
15 96.1 ± 4.8 99.3 ± 0.8 97.7 ± 2.9 93.1 ± 7.8 99.6 ± 0.5 96.1 ± 4.3
10 94.3 ± 6.7 98.0 ± 2.3 96.0 ± 4.8 94.3 ± 7.4 93.4 ± 7.7 93.9 ± 7.5
5 91.0 ± 9.0 95.0 ± 4.9 92.9 ± 7.0 93.7 ± 7.5 78.8 ± 12.8 85.4 ± 10.8
0 87.3 ± 9.8 88.3 ± 9.9 87.7 ± 10.0 91.7 ± 7.1 68.4 ± 13.7 78.0 ± 11.7
−5 78.5 ± 10.2 76.7 ± 13.4 77.3 ± 11.9 86.7 ± 7.6 50.9 ± 10.3 63.9 ± 10.2

threshold-based approach and its decreasing performance
with high noise levels is less steep.

In the second scenario, classic DF was compared with
the inverse of the median ACL obtained from both de-
tectors showing that the wavelet-based approach result in
smaller error in DF estimation than the threshold-based ap-
proach.

This work shows that the proposed wavelet-based ap-
proach is more accurate in comparison with the threshold-
based approach. The results of second scenario shows that
the detections made with the proposed method could be
a good alternative for measuring time-based indices of AF
characterization like the inverse of the median ACL, which
can be a good surrogate of classical DF computation. Fur-
thermore, the lack of standard databases with audited an-
notations makes performance comparison difficult. Test-
ing databases with more signals and computation of differ-
ent time-based AF characterization indices should be in-
troduced in future works.
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