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Abstract

It is estimated that 10-30% of road fatalities are related

to drowsy driving or driver fatigue. Driver’s drowsiness

detection based on biological and vehicle signals is being

studied in preventive car safety. Autonomous Nervous Sys-

tem (ANS) activity, which can be measured non-invasively

from the Heart Rate Variability (HRV) signal obtained

from surface ECG, presents alterations during stress, ex-

trem fatigue and drowsiness episodes. Our hypothesis is

that these alterations manifest on HRV. In this work we de-

velope an on-line detector of driver’s drowsiness based on

HRV analysis. Two databases have been analyzed: one of

driving simulation in which subjects were sleep deprived,

and the other of real situation with no sleep deprivation.

An external observer annotated each minute of the record-

ings as drowsy or awake, and constitutes our reference.

The proposed detector classified drowsy minutes with a

sensitivity of 0.85 and a predictive positive value of 0.93,

using 25 features.

1. Introduction

The number of road fatalities in Spain in 2009 was 1690

[1], and summed 96,445 in the 33 countries members of

the International Road Traffic and Accident Database (IR-

TAD) worldwide [2]. Previous researches estimate that

10-30% of these crashes are related to drowsy driving or

driver fatigue [2][3]. That is why the detection of driver’s

drowsiness is so challenging for preventing car safety.

Electroencephalogram (EEG) is the most used signal to

analyze the relaxation level of a subject. However the need

of uncomfortable contact electrods on the head of the sub-

ject makes this technique not appropriate as part of a safety

system for driving daily real life scenarios and other bio-

logical or vehicle signals are being studied.

Autonomic Nervous System (ANS) activity presents al-

terations during stress, extreme fatigue and drowsiness

episodes [4]. Wakefulness states are characterized by

an increase of sympathetic activity and/or a decrease of

parasympathetic activity, while extreme relaxation states

are characterized by an increase of parasympathetic activ-

ity and/or a decrease of sympathetic activity [4][5]. The

ANS activity can be measured non-invasively from the

Heart Rate Variability (HRV) signal obtained from surface

ECG. Power on low frequency (LF) band (0.04-0.15Hz)

is considered as a measure of sympathetic activity mainly,

while power on high frequency (HF) band (0.15-0.4 Hz)

is considered of parasympathetic origin in classical HRV

analysis [6]. Balance between sympathetic and parasym-

pathetic systems is measured by the LF/HF ratio.

The dominance of sympathetic system that character-

izes wakefulness states decreases during non-REM sleep,

and it increases again up to near wakefulness levels dur-

ing REM sleep [7]. HRV has been also studied in transi-

tions from wakefulness to extreme relaxation states. It has

been observed a decrease in heart rate (HR) and in HRV at

the beginning of sleep. The transition period is character-

ized by a decrease in the oscillation of very low frequency

(VLF) of HR that anticipates a change in LF/HF ratio to a

parasympathetic predominance [8].

The objective of this work is to develope an on-line de-

tector of driver’s drowsiness based on HRV analysis.

2. Materials

Two databases provided by FICO MIRRORS S.A. were

used for the development and validation of the detector:

• Simulated Driving Database (SDDB): It consists of 11

records 120 minutes length in a driving simulation envi-

ronment. The simulator was built in partnership with a

provider specialized in trials, following well defined pro-

tocols that assure control and repeatability. The subjects

that participated in this trials followed a sleep deprivation

protocol between 7 and 26 hours before the test. After

initial calibration, subjects did a driving simulation test of

about 2 hours. During the last 15 minutes the simulator

was switched off and signal acquisition kept on, letting

most of the subjects rest with lights off. A 2-lead ECG

signal was recorded at a sampling frequency of 256 Hz to-
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Figure 1. Components of the system

gether with other signals which are not used in this study.

The drivers state could be assessed from information of

the percentage of eye closure (PERCLOS), derived from

video recordings, driving errors reported by the simulator,

expert annotations based on EEG recording and external

observer annotations. The references used in this study to

validate the detector are the external observer annotations,

which classify each minute of the recording as drowsy (D),

fatigue or awake (A).

• Real Driving Database (RDDB): It consists of 10 records

about 6 hours length from professional drivers in real driv-

ing situation: subjects driving a vehicle in highway or road

during a working day. The subjects are not sleep deprived,

and they have to stop at least every 2 hours. A 2-lead

ECG signal was recorded at a sampling frequency of 256

Hz together with other signals which are not used in this

study. In this case information of PERCLOS and external

observer annotations are available, and, as in the former

database, the latter constitute our references.

3. Methods

3.1. System overview

Our system works analyzing running windows of 5 min-

utes ECG and provides an output every minute, since the

running window slides minute by minute.

The system is composed of the following subsys-

tems/steps as shown in Fig.1:

• Data reading block.

• Filtering removes baseline and power line interference

using algorithms from BioSigBrowser [9].

• Quality block, explained in more detail in section 3.2,

quantifies the quality of each segment, discarding those

with very low quality (which may correspond to signal loss

or signal saturation) from further analysis.

• QRS detection using [10]. ECG signals were resampled

at 500Hz so they fit the delineator requirements.

• Artifact detection identifies ectopic beats and false de-

tections following the algorithm described in [11].

• HRV signal is estimated using the algorithm described

in [12] based on the IPFM model.

• Time-Frequency analysis of the HRV signal is done

using Smoothed Pseudo Wigner-Ville Distribution (SP-

WVD), which allows independent time and frequency fil-

tering, as described in [13].

• Feature extraction, described in section 3.3, computes

HRV parameters based on the SPWVD.

• Classification block uses a linear discriminant analysis

(LDA) to classify each minute as awake (A) or drowsy (D),

see section 3.4.

3.2. Signal quality qualification block

The quality qualification of the signal is made in two

steps. The firs step characterizes the i-th minute of ECG

that enters into the system computing the value defined by

function fi

fi(xi(n)) =















√

1
L

L−1
∑

n=0
|xi(n)− xi|2 if

max(|xi(n)|)

|xi|
≤ Th

0 if
max(|xi(n)|)

|xi|
> Th

(1)

where Th is an experimentally defined threshold, xi(n) is

the one minute i-th ECG segment and xiis the mean of

xi(n). In this work Th = 30.

The second step qualifies the new minute assigning one

of the following values to it: Excellent, Good, Poor or Bad.

We defined two thresholds C1= 40 and C2= 5000 such that

if fi < C1 or |fi| ≥ C2 then new minute is qualified as

Bad, otherwise it is qualified using the qualifying function

defined in (2), where gi = fi −

i−1
∑

k=1

fk

i− 1
, and Ei are ex-

perimentally adjusted thresholds with values E1= 60, E2=

125, E3= 300.

qi(gi) =



















Excellent if gi < E1

Good if E1 ≤ gi < E2

Poor if E2 ≤ gi < E3

Bad if gi ≥ E3

(2)

3.3. Feature extraction

Instantaneous HR obtained prior to the estimation of

HRV signal is low-pass filtered with a cut-off frequency

of 0.03 Hz and constitutes the time-varying mean HR. In-

stantaneous power in the LF and HF bands were com-

puted integrating, for each time instant, the SPWVD of

the HRV signal in the corresponding bands. The instanta-

neous LF/HF ratio is also computed. Each component was

then normalized by dividing it by the sum of the LF and

HF power. Finally, respiratory frequency (RF) is estimated

as the frequency at which it is located the maximum peak

of the SPWVD in the HF band.
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Table 1. # of annotated episodes at each database

Database Awake Dowsy

SDDB 60 1153

RDDB 2102 510

Total 2162 1663

Since driver’s states annotations are only available for

each whole minute, mean, standard deviation (SD), me-

dian, median absolute deviation (MAD), minimum and

maximum values of the previously defined instantaneous

parameters are computed within each minute and consti-

tute the feature set for each minute. The feature mean

value of the first three minutes is considered as baseline

and it is subtracted from the subsequent minutes feature

values. Besides the three minute normalization, the dif-

ference of each feature value with respect to the previous

minute value was also computed.

3.4. Classification

The classifier is based on LDA using a leave-one out

strategy to obtain the coefficients of the discriminant func-

tions and to evaluate its performance. Wilks’ lambda min-

imization criterion has been used for selecting the features

in the discriminant function.

Three different scenarios were used for training: train-

ing with database SDDB, training with database RDDB

and training with both databases merged. Performance

was evaluated over the three databases (SDDB, RDDB and

SDDB
⋃

RDDB) for each scenario. Performance measure-

ments positive predictive value (P+) and sensibility (Se)

were computed after balancing the confusion matrix. Our

purpose was to identify driver’s states non suitable for driv-

ing, so reference drowsy and fatigue states were considered

as the same state (renamed as drowsy state). Table 1 shows

total number of annotated episodes at each database.

4. Results

• Training with database SDDB: subjects of database

SDDB had sleep deprivation, thus more drowsy and fa-

tigue minutes than awake are present in the reference.

Seven features were selected by the classifier. The five

most significant features are: 3 minutes referenced RF

minimum (RF3Min), 3 minutes referenced mHR maxi-

mum (mHR3Max), 3minutes referenced normalized LF

median (LF3nuMed) , normalized LF median (LFnuMed)

and mHR maximum (mHRMax). Table 2 shows perfor-

mance of the classifier.

• Training with database RDDB: subjects of database

RDDB did not follow any sleep deprivation protocol and

reference is labeled with awake state most of the minutes.

This is true except for subject 052, which stopped for sleep

after the first driving hour. The reference in this case is

Table 2. Database SDDB trained classifier performance

Database # features P+ Se

SDDB 7 0.663 0.4987

RDDB 7 0.3867 0.4196

Merged 7 0.4205 0.4746

Table 3. Database RDDB trained classifier performance

Database # features P+ Se

SDDB 12 0.4707 0.7112

RDDB 12 0.8826 0.6941

Merged 12 0.8631 0.7058

labeled as drowsy most of the time. Twelve features were

selected by the classifier. The five most significant features

are: 3 minutes referenced RF mean (RF3Mean), RF3Min,

RF mean (RFMean), RF minimum (RFMin) and normal-

ized LF median(LFnuMed) . Performance is shown in Ta-

ble 3.

• Resulting database from merging the two databases pre-

sented a well balanced drowsy/awake labels in the refer-

ence signal. Twenty five features were selected by the clas-

sifier. The five most significant features are: RF3Mean,

RFMean, 3 minutes referenced RF minimum (RF3Min),

RFMin and LFnuMed . Performance is presented in Table

4.

Figures 2a and 2b show classification detail of two sub-

jects, one from SDDB and another from RDDB. Bad qual-

ity EGC signal segments, plotted in red, are discarded so

nor reference nor prediction are shown in their positions.

Table 5 presents the mean(µ) and standard deviation(σ) of

the most significant features.

Table 4. Merged database trained classifier performance

Database # features P+ Se

SDDB 25 0.4943 0.9775

RDDB 25 0.9406 0.4723

Merged 25 0.9313 0.8534

Table 5. Most significant features

Feature State µ± σ

RF3Min A -0.0778 ± 0.1281 Hz

D -0.0749 ± 0.0696 Hz

RF3Mean A 0.0586 ± 0.0895 Hz

D -0.0232 ± 0.0664 Hz

RFMean A 0.3223 ± 0.1017 Hz

D 0.2982 ± 0.0713 Hz

RFMin A 0.2951 ± 0.0895 Hz

D 0.2792 ± 0.0734 Hz

LFnuMed A 65.1050 ± 15.6273 %

D 64.2910 ± 18.8805 %
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Figure 2. Detail of signal quality and classification of: a)

subject 18 from SDDB and b) subject 56 from RDDB. Ref-

erence annotation (O), prediction (X). Quality: Bad (red),

Low (Blue ), Good (Green) or Excellent (Green).

5. Discussion and conclusions

Before implementing the classifier, features from all

subjects where analyzed searching patterns like those de-

scribed in previous works as [4, 5]. We focused on one

minute characterization instead of timed events. No sig-

nificant patterns were found prior to state changes.

The best performance is achieved using both databases

for training, so including subjects with no sleep deprivation

is important to obtain reliable classifiers.

Most significant features in Table 5 show lower and

more stable RF in D states, which can reflect a predom-

inance of parasympathetic activity, and higher and more

stable LF, which can be associated with wakefulness, dur-

ing A states.

Fig. 2 shows that the classifier overestimates drowsy

states in subjects with sleep deprivation. Fig. 3 presents

drowsy states underestimation by the classifier in subjects

with no sleep deprivation. These results suggest that clas-

sifier identifies the global state of the subject to drive or

not. Although the beginning and end of isolated drowsy

episodes within a non sleep deprived subject, are not iden-

tified precisely, in general the detector is able to identify

some minutes of the isolated (drowsy or awake) episodes.
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