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Abstract

In this paper, a methodology to indirectly estimate the

respiratory rate from the photoplethysmography (PPG)

signal is presented. The possibility to reliably estimate

respiratory rate from the PPG signal is particularly ap-

pealing since PPG is simple, comfortable and cheap. The

underlying hypothesis of this methodology is that respi-

ration provokes simultaneous changes in the pulse inter-

val, amplitude and width of the PPG signal. These res-

piratory related changes are combined together by cross

time-frequency analysis, performed by smoothed pseudo

Wigner-Ville distribution, in order to obtain indirect es-

timates of respiratory rate. The algorithm is designed

to yield estimates only when the estimation is robust. In

17 spontaneous breathing subjects, among which 7 were

characterized by a respiratory rate lower than 0.15 Hz,

this methodology provided accurate estimates, being the

median error 0.00± 1.95 mHz (0.00± 0.75%) and the in-

terquartile range error 7.81 ± 6.10 mHz (3.00 ± 4.03%).

1. Introduction

Respiratory activity is reflected in many cardiovascu-

lar signals, such as the heart rate and the arterial pres-

sure, mainly due to intrathoracic pressure changes and au-

tonomic nervous modulation. The presence in cardiovas-

cular variability of oscillations synchronous with respira-

tion, makes it possible to indirectly estimate respiratory

rate from cardiovascular signals. The use of indirect esti-

mates of the respiratory rate from cardiovascular signals is

relevant since in many situations the respiratory rate can-

not be directly measured. Different methodologies for the

extraction of the respiratory rate from the ECG have been

proposed in the literature [1].

Photoplethysmography (PPG) signal has been applied in

many different clinical settings [2], including the monitor-

ing of blood oxygen saturation, heart rate [3], blood pres-

sure, cardiac output and respiration [4]. Given its simplic-

ity, low-cost and that it is widely used in the clinical rou-

tine, it is desirable to maximize the PPG potential by ex-

ploring additional measurements that can be derived from

it. It is worth noting that oximetry systems can provide

multiple information using only one sensor, making its use

simpler, more comfortable and cheaper than multiple sen-

sor devices.

In this paper, we presented a methodology to indirectly

estimate the respiratory rate from the PPG signal. The

underlying hypothesis of this methodology is that respira-

tion provokes simultaneous changes in the pulse interval,

amplitude and width of the PPG pulses. These respira-

tory related changes are combined together by cross time-

frequency (TF) analysis, performed by smoothed pseudo

Wigner-Ville distribution (SPWVD).

The methodology has been specially designed to provide

robust estimates. To this end, coherence analysis is used

with a twofold objective: to perform a sort of control of the

accuracy of the estimates and to localize signal-dependent

TF regions in which respiratory rate is extracted.

The proposed methodology is assessed in 17 sponta-

neously breathing subjects undergoing a tilt table test.

2. Methods

As shown in the block diagram of Fig. 1, the method-

ology applies to the variability of given features of the

PPG signals, xi(t), which are affected by respiration. In

this study, xi(t) are the pulse interval variability (PIV),

pulse amplitude variability (PAV) and pulse width variabil-

ity (PWV). Once that xi(t) have been estimated, the algo-

rithm is composed of the following main parts:

(i) Estimation of the auto and cross TF spectra, S ij

k
(t, f),

and coherence, γ ij

k
(t, f), between signals {xi(t), xj(t)}k,

with (i, j) ∈ {1, . . . , N} and k ∈ {1, . . . , (N − 1)N/2},

where N is the total number of signals, and k is the index

numbering the cross TF spectra and coherence.
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Figure 1. Block diagram of the algorithm. xi(t)
and xj(t) represent signals derived from the PPG signal

which are affected by respiration. Here {xi(t), xj(t)} ∈
{PIV, PAV, PWV }.

(ii) Estimation of the instantaneous frequency, f ij

k
(t), with

i 6= j, of the respiration-related component of S ij

k
(t, f).

(iii) Combination of f ij

k
(t) to obtain estimates of the respi-

ratory frequency f̂R(t).

2.1. Cross time-frequency analysis

The smoothed pseudo Wigner-Ville distribution (SP-

WVD) was used to estimate TF spectra and coher-

ence functions. The TF spectra between {xi(t), xj(t)}k,

S ij

k
(t, f), were obtained by taking the Fourier transform of

the product between the ambiguity function Aij

k
(τ, ν) and

an elliptical exponential kernel Φ(τ, ν):

S ij

k
(t, f) =

+∞
∫∫

−∞

Φ(τ, ν)Aij

k
(τ, ν)ej2π(tν−τf)dνdτ (1)

Aij

k
(τ, ν) =

∫
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2
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(
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)

e−j2πνtdt (2)

Φ(τ, ν) = exp
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−π
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ν
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+

(

τ

τ0

)2]2λ
}

(3)

The iso-contours of Φ(τ, ν) are ellipses whose eccentricity

depends on parameters ν0 and τ0 [3]. Parameters ν0 and τ0

are used to change the length of the ellipse axes aligned

along ν (i.e. the degree of time filtering) and τ (i.e. the

degree of frequency filtering), respectively. The parameter

λ sets the roll off of the filter.

Time-frequency coherence, which measures the degree of

local coupling between two signals, is also estimated by

SPWVD. To estimate the TF coherence, the filtering pro-

vided by Φ(τ, ν) should completely suppress the interfer-

ence terms, since they may cause coherence estimates to

take values outside the range [0, 1], thus losing their phys-

ical interpretation. As long as the degree of TF filtering is

strong enough, TF coherence by SPWVD is obtained as:

γ ij

k
(t, f) =

|S ij

k
(t, f)|

√

S ii
k
(t, f)S jj

k (t, f)
(4)

The TF regions where the local coupling is significant

are localized by a hypothesis test. The test is based

on the comparison of γ ij

k
(t, f) with a threshold function

γTH(t, f ;α), obtained as the (1− α)th percentile of the sta-

tistical distribution Γ(t, f) = {γww

1
(t, f), ..., γww

k
(t, f), ...},

where γww

k
(t, f) is the TF coherence between the kth re-

alization of two white Gaussian noises. The significance

level α represents the probability of wrongly detecting lo-

cal coupling between two signals. Thus, the lower α, the

higher γTH(t, f ;α).

2.2. Estimation of respiratory frequency

Respiratory frequency is estimated in two steps: first,

the instantaneous frequencies of the respiration-related

spectral component are estimated from the cross TF spec-

tra; second, these estimates are combined together.

For every couple of signals {xi(t), xj(t)}k, the instanta-

neous frequency of the respiration-related components is

estimated in a signal-dependent region Ωα

ij,k
of the cross TF

spectra, whose infimum, fM, is estimated as follows:

(i) Estimate γ(f) =
∏

k
γ ij

k (f), where γ ij

k (f) is the tempo-

ral mean of γ ij

k
(t, f).

(ii) If γ(f) is characterized by two spectral peaks, fM is

estimated as the frequency which corresponds to the mini-

mum in between the 2 spectral peaks.

(iii) If γ(f) has only one spectral peak, fM = 0.05 Hz.

The region Ωα

ij,k
is defined as that portion of the TF domain

in which f ∈ [fM, 0.5] Hz and the coherence is significant:

Ωα

ij,k
=

{

(t, f) ∈ (R+, [fM, 0.5Hz])
∣

∣ γ ij

k
(t, f) > γTH(t, f ;α)

}

(5)

For every couple of signals {xi(t), xj(t)}k, the instanta-

neous frequency f ij

k
(t), with k ∈ {1, . . . , (N − 1)N/2},

is estimated as:

(i) Estimate the global maxima of S ij

k
(t, f), with (t, f) ∈

Ωα

ij,k
. These maxima, m(t), are used as preliminary respi-

ratory estimates.

(ii) Localize intervals Tm, during which an abrupt change,
d
dtm(t) > ±∆f , followed in less than ∆t by another

abrupt change of opposite sign, d
dtm(t) > ∓∆f , occur.

Here ∆f = 0.04 Hz and ∆t = 10 s.

(iii) ∀t ∈ Tm, consider all the local maxima, or inflection

points, of S ij

k
(t, f) inside Ωα

ij,k
, whose frequencies are called

fs. The fs which minimizes |fs−fm| is called fs,m, where fm

is the median value of m(t), estimated in a 2 min temporal

window centered in t.
(iv) The instantaneous frequency of the respiration-related

component from the k cross TF spectrum is estimated as:

f ij

k
(t) =











fs,m if |fs,m − fm| < ∆f

m(t) if |fs,m − fm| ∈ [∆f, 2∆f ]

∅ if |fs,m − fm| > 2∆f

(6)

where ∅ stands for empty set.
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The estimated respiratory frequency is the median of f ij

k
(t):

f̂R(t) = median
k∈[1,(N−1)N/2]

f ij

k
(t) (7)

3. Materials

Seventeen healthy subjects (age 28.5±2.8 years, 11

males) underwent a tilt table test with the following pro-

tocol: 4 min in early supine position, 5 min head-up tilted

to an angle of 70o and 4 min back to later supine posi-

tion [3]. The automatic bed took about 18 s to move from

0o to 70o. No subject had cardiorespiratory pathologies.

Among the spontaneous breathing subjects, 7 breathed at a

frequency rate fR(t) < 0.15 Hz for at least one min, while

5 during the entire test.

The PPG signal was recorded from index finger using

the Biopac’s PPG100C amplifier with the TSD200 trans-

ducer with a sampling frequency of 250 Hz, whereas stan-

dard lead V4 ECG signal was recorded using the Biopac’s

ECG100C amplifier with a sampling frequency of 1 KHz.

The respiratory signal was recorded through a strain gauge

transducer with a sampling frequency of 125 Hz.

The pulses in the PPG signal were detected by following

the procedure described in [3]. Briefly, the PPG signal was

resampled at 1 KHz, and the nth pulse was localized as the

maximum in an interval going from 150 ms after the nth

QRS to the (n+ 1)th QRS in the ECG signal. A PPG arti-

fact detector was also applied to suppress pulses from PPG

corresponding to artefacts [3]. From the temporal location

of the nth pulse wave, tPn
, the pulse interval signal was ob-

tained by interpolating at 4 Hz with 5th order splines the

series (tPn
− tPn−1

). The effect of abnormal beats in the

pulse interval was corrected by applying a methodology

based on the integral pulse frequency modulation model,

and the pulse interval variability (PIV) signal was obtained

by high pass filtering with a cut-off frequency of 0.03 Hz.

The pulse amplitude variability (PAV) signal was obtained

by first interpolating at 4 Hz the series xPPG(tPn
), where

xPPG(t) represents the resampled PPG signal, and by sub-

sequently high pass filtering with a cut-off frequency of

0.03 Hz. The pulse width variability (PWV) was obtained

from xPPG(t) by following the procedure describe in [5].

To estimate the respiratory frequency, fR(t), the respira-

tory signal was downsampled at 4 Hz, its TF spectrum was

estimated by SPWVD and the algorithm described in Sec.

2.2 was applied in the entire TF domain, i.e. Ωα
R
= R

2.

4. Results

The SPWVD was estimated with a kernel which gave a

TF resolution of about (12s, 41mHz). These values corre-

spond to the widening of spectral components which are

ideally perfectly concentrated along a line in time or fre-

quency direction. The TF domain was discretized in steps

0.1

0.2

0.3
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0.2
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Figure 2. Cross TF spectra between: (a) PIV–PAV signals,

(b) PIV–PWV signals, (c) PAV–PWV signals. Instanta-

neous frequencies f ij

k
(t) are reported in black lines. Black

contours encircle the TF regions of the respiration-related

component Ωα

ij,k
. Horizontal lines represent fM.

of 0.25 s and 1 mHz.

An illustrative example of the proposed algorithm is shown

in Fig. 2–3. Figure 2 depicts the magnitude of the cross

TF spectra, |S ij

k
(t, f)|, where the instantaneous frequency

of the respiration-related component, f ij

k
(t), are reported in

black line. Regions Ωα

ij,k
, with α = 5%, are encircled by

black contours and were bounded by fM = 0.13 Hz . In the

TF regions in which the local coupling was not statistically

significant, f ij

k
(t) was not estimated.

Figure 3 shows that, although in the considered intervals

the respiratory rate was highly non-stationary, f̂R(t) fol-

lowed fR(t) with extremely low estimation error, whose

median ± interquartile range was 0.00±4.88 mHz.

For a given subject s, the estimation error was estimated in

mHz, as Es(t) = (f̂R(t; s) − fR(t; s)) · 1000, and in rela-

tive unites, as Es(t) = (f̂R(t; s)−fR(t; s))/fR(t; s). Global

results are given in the table 1 as:

EMED = median
s

(median
t

(Es(t)))± iqr
s
(median

t
(Es(t))) (8)

EIQR = median
s

(iqr
t
(Es(t)))± iqr

s
(iqr
t
(Es(t))) (9)

where “median” and “iqr” stand for median and interquar-

tile range, and are first estimated across time and then

across subjects. In table 1, the amount of time during

which the respiratory rate was not estimated (NE), i.e.

f̂R(t) = ∅, is also reported. As expected, by decreasing

α, the estimation error decreased and NE increased.
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(a) respiration-related component, fij(t)

(b) Respiratory frequency estimates
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Figure 3. (a) Instantaneous frequencies f ij

k
(t) estimated in

Fig. 2. (b) Respiratory rate, fR(t), and estimated respira-

tory rate f̂R(t).

Table 1. Estimation error, as in (8)–(9). NE: intervals

where f̂R(t) was not estimated.

α = 10% α = 5% α = 1%
med±iqr med±iqr med±iqr

Emed [mHz] 0.00±1.95 0.00±1.95 0.00±1.22

Eiqr [mHz] 8.79±7.20 7.81±6.10 6.84±4.52

Emed [%] 0.00±0.76 0.00±0.75 0.00±0.39

Eiqr [%] 3.63±4.29 3.00±4.03 2.69±3.56

NE [%] 2.39±6.35 5.70±11.08 14.03±25.00

5. Discussion

In recent years, much effort has been put in the design of

methods to indirectly estimate the respiratory rate from the

PPG signal [4]. The presented methodology was shown

to provide a continuous tracking of non-stationary respi-

ratory rate with very high accuracy. The peculiarities of

this method are (i) the use of different respiration-related

features derived from the PPG signal, instead of the PPG

signal; (ii) the use of TF analysis with high TF resolution;

(iii) the use of coherence analysis to localize specific time-

varying respiratory spectral bands and to perform a sort

of validation of the estimates. It is worth noting that al-

though in this paper we used as respiration-related features

the PIV, PAV and PWV signals, the presented framework

is a general one, and it offers the possibility of including

more respiration-related features.

In this framework, the parameter α, ∆t and ∆f control

the trade-off between the accuracy of the estimation and

the amount of time during which the algorithm provides

f̂R(t) 6= ∅. For instance, in those situations in which higher

accuracy is more important than obtaining continuous es-

timates, α = 1% can be used.

Another important characteristic of the algorithm is the

possibility of estimating respiratory rate for fR(t) < 0.15
Hz (7 subjects had fR(t) < 0.15 Hz for at least one

minute). The indirect estimation of respiratory rate for

fR < 0.15 Hz is particularly challenging since in this case

the spectral range of the respiratory signal overlaps with

that of other cardiovascular mechanisms (as Mayer wave).

Although low respiratory breathing is a common physio-

logical condition, many methods for the indirect estima-

tion of the respiratory rate from the PPG were not tested

at these frequencies [4]. In this methodology, accurate es-

timate of fR(t) were obtained also for low respiratory rate

owing to coherence analysis and to the signal-dependent

definition of Ωk

ij
.

In contrast to other studies [4], the respiratory rate was es-

timated in spontaneous breathing subjects during an auto-

nomic test which induces quick changes in the cardiovas-

cular variability. This is one of the most challenging con-

ditions, since both the respiratory rate and the PPG signal

are highly non-stationary.

In conclusion, during non-stationary conditions and in

spontaneous breathing subjects, the described methodol-

ogy gave robust and accurate respiratory rate estimates

from the PPG signal, also for fR(t) < 0.15 Hz.
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