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Abstract

In this work, we present a semiautomatic algorithm for

ECG heartbeat classification, based on a previously de-

veloped automatic classifier and a clustering algorithm.

Both classifier and clustering algorithms include features

from the RR interval series and morphology descriptors

calculated from the wavelet transform. Integrating the de-

cisions of both algorithms, the presented algorithm can

work automatically or with several degrees of assistance,

depending the user expertise. The algorithm was evalu-

ated in the MIT-BIH Arrhythmia database for comparison

purposes. In the automatic mode, the algorithm obtained

performance figures slightly higher than the original auto-

matic algorithm; but with 5 manually annotated heartbeats

in 22 recordings, an improvement of 5% in accuracy (A),

global sensitivity (S) and global positive predictive value

(P+) is achieved. For the full-assisted modes the algo-

rithm achieved comparable performance with 55 times less

annotation effort, and improved the performance with 42

times less effort. These results represent an improvement

in the field of ECG heartbeats classification, concluding

that the reference performance can be improved with an

efficient use of the assistance provided to the algorithm.

1. Introduction

Cardiovascular diseases are currently the biggest single

cause of death in developed countries according to their

public health agencies. The analysis of the electrocardio-

graphic signal (ECG) provides a noninvasive and inexpen-

sive technique to analyze the heart function for different

cardiac conditions. One important analysis performed in

the ECG is the classification of heartbeats, which is impor-

tant for the study of arrhythmias. The automation of this

task is very important for long-term recordings and the de-

tection of subtle arrhythmias.

Many algorithms for ECG heartbeats classification were

developed and evaluated in the last decades (see references

in [1, 2]) using the available two-lead databases. Some

methodological key-points in the development of these

classifiers allowed results comparison [1–3]. Probably the

most relevant aspects were the use of public databases,

the fulfillment of AAMI recommendations [4], the patient-

oriented data division [1] and the generalization capability

of the classifier [2]. Despite compliance of the enumer-

ated recommendations, the automatic algorithms reviewed

continue having issues with performance, generalization

or both. Many works addressed this problem and proposed

different strategies to improve the performance, as in [5,6].

In the works reviewed, the methodology always involve an

expert which provides knowledge to adapt an automatic

heartbeat classifier to the ECG under evaluation. The re-

sult is an increase in performance at the expense of the

automaticity of the classifier.

The objective of this work is to develop and evaluate

a semiautomatic algorithm based on previously developed

automatic classifier [2], in order to increase its perfor-

mance with minimum expert assistance. The developed

classifier should be useful in both full-automatic or expert-

assisted scenarios. The performance will be compared

with state of the art algorithms [1, 2, 5].

2. Methods

2.1. ECG database

In this work we used the MIT-BIH Arrhythmia database

[7] for training and evaluating the classifier. The database

consists of 48 two-lead recordings of approximately 30

minutes and sampled at 360 Hz. The annotations pro-

vided with the database were used for training and test-

ing purposes, following the recommendations and class-

labeling of AAMI. We adopted the same data division used

in [1, 5] for comparative purposes. Also AAMI unclassi-

fied class (Q) was discarded since it is poorly represented

in the database. Finally, a class-labeling modification to

the AAMI standard was evaluated, considering fusion (of

normal and ventricular beats) and ventricular classes, as

the same extended ventricular class (V’). We will refer to

this modification as AAMI2 labeling. The division scheme

is the same used in other works, and is summarized in Ta-

ble 1.
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Table 1. Scheme of the division of the MIT-BIH database

into training (DS1) and testing (DS2) sets.

N S V F #Rec

DS1 45673 929 3755 412 22

DS2 44053 1833 3202 388 22

Full MIT-BIH 88175 1635 7121 822 44
Heart beats classes are N: normal, S: supraventricular, V: ventricular and F: fusion.

DS1 comprises recordings 101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122,

124, 201, 203, 205, 207, 208, 209, 215, 220, 223, 230.

DS2 comprises recordings 100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210,

212, 213, 214, 219, 221, 222, 228, 231, 232, 233, 234.

2.2. Heartbeats classification

The semiautomatic algorithm includes a linear discrim-

inant classifier (LDC) and a clustering algorithm based on

expectation-maximization (EMC), both perform a prelimi-

nary classification. The LDC was developed and trained as

described in [2]. Both the heartbeat and cluster labels pro-

vided by the LDC and EMC respectively, are integrated

into a final heartbeat label. This label integration can be

performed in three ways, depending on the degree of ex-

pert assistance required in the application scenario. The

modes of operation are 1) full-automatic, 2) slightly semi-

automatic assisted and 3) assisted semiautomatic. For all

the modes, the algorithm performs the following proce-

dures: a) Cluster discovery and centroid identification (by

computing EMC), b) LDC automatic classification and c)

expert assistance.

For mode 1, procedures a) and b) are executed. The re-

sult of a) is the classification of the heartbeats into K clus-

ters. Then for each cluster the LDC classifies the heart-

beats included, and if the most represented class exceed

half of the cluster population the same label is asigned to

all this cluster. In case not exceeding the threshold, the

LDC labels remain the same. Mode 2 is similar to 1, with

the exception that in case not exceeding the population

threshold, expert assistance is required to label the cluster

centroid and propagate it to the cluster. The procedure of

expert assistance is simulated by inspecting the true labels

provided with the database. In mode 3, only procedures

a) and c) are executed. As a result, the expert task is to

label each centroid example provided by a), the algorithm

assigns this label to the rest of examples in each cluster.

The LDC classifier used is used under the assumption of

independent and normally distributed data, the maximum a

posteriori criterion (MAP) leads to the quadratic classifier

defined by the discriminant functions
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Table 2. Features used in the LDC model obtained in [2].
Feature Description

ln(RR[i]) Current RR interval

ln(RR[i+ 1]) Next RR interval

ln(RR1) Average RR interval in the last minute

ln(RR20) Average RR interval in the last 20 minutes

ln(k1Z) Zero-cross position of the WT autocorrelation sequence in lead 1

ln(k2Z) Zero-cross position of the WT autocorrelation sequence in lead 2

k1M Maximum position of the WT autocorrelation sequence in lead 1

k2M Maximum position of the WT autocorrelation sequence in lead 2

for the i-th class, where x represents the feature vector

describing each heartbeat, and µ
i
, Σi and P (ωi) are the

mean vector, covariance matrix and prior probability of the

i-th class. The values of µi and Σi were computed from

the training data with the sample mean and covariance ma-

trix expressions while the values for the prior probabili-

ties P (ωi) were considered the same for all classes. The

classification rule assigns x to the class i which results

in the maximum posterior probability gi(x). In the case

that the covariance matrix Σ is assumed to be the same for

all classes (Σi = Σj , ∀i 6= j), the quadratic discriminant

classifier (QDC) becomes linear in x leading to the linear

discriminant classifier (LDC) where Σ can be estimated as

the weighted sample covariance

Σ =

∑C

i=1
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∑Mi

m=1
(xm − µ

i
).(xm − µ

i
)T

∑C

i=1
wi.Mi

.

The class-weighting possibility is of much interest due to

the heavy class-size unbalance inherent to this application,

where the normal class is in general one order of magni-

tude more represented that other classes. In this work, all

classification tasks were performed using and adapting the

PRtools toolbox [8] for Matlab (The Mathworks Inc., Mas-

sachusetts).

In [2] we developed a classification model with good

generalization capabilities including rhythm and morpho-

logical features. In this work we use the same classification

model, which includes the features described in Table 2.

The EMC algorithm used in this work is based in the

mixture of Gaussians model [9]. It consists in estimating

the parameters of a density function modeled by

p(x|Ψ) =

K∑

k=1

πkN (x|µ
k
,Σk),

where K Gaussians are mixed with the coefficient πk to

retain a more realistic structure of the data. Considering

the parameter set Ψ = {πk, µk, Σk|k = 1, . . . ,K}, one

method to calculate Ψ is by the maximum likelihood esti-

mation to optimize the log likelihood

L(X|Ψ) = ln
N∏

n=1

p(x|Ψ),
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Table 3. Features used with the EMC algorithm.
Feature # features Description

ln(RR[i− 1]) 1 Previous RR interval

ln(PRR) 2 Prematurity of the heartbeat

ln(dRRL) 1 Local RR interval variation

ln(RR1,5) 2 Mean RR interval within the last 1 and 5

minutes

ln(σRR10
) 1 RR interval standard deviation within the

last 10 minutes

ln(QRSW ) 1 QRS width measured with [10]

ln(S1,2
QRS) 2 QRS mean wavelet scale at leads 1 and 2

ln(t12) 1 Position of the second maximum of 4th scale

WT of the QRS complex at lead 1

W4x(t
1,2
1 ) 2 Value of the first maximum of the 4th scale

WT of the QRS complex at lead 1 and 2

rT (k
1
M ) 1 Value of the first maximum in the T wave

autocorr. sequence at lead 1

rQRST (k
1
M ) 1 Value of the first maximum in the QRST

complex autocorr. sequence at lead 1

for the N heartbeats in each recording named X =
{x1, . . . , xN}. Since there is not a closed form solution

for Ψ by optimizing L(X|Ψ), the well-known expectation-

maximization algorithm (EM) is used to obtain the esti-

mation equations of the parameters Ψ [9]. The interested

reader is referred to [8, 9] for details, equations and the

implementation used in this work.

Regarding to the feature space used with the EMC, we

followed the same feature selection procedure described

in [2], by means of a sequential floating feature selection

algorithm (SFFS). For the case of clustering instead of

looking for features with generalization capability or inter-

patient separability, we looked for those with intrapatient

separability. As a result a model of 15 features was ob-

tained, this model also includes a description of the rhythm

and morphology of heartbeats as can be seen in Table 3.

Among the rhythm features used in the model, we have

two measures of the prematurity of a heartbeat

P 1
RR[i] =

RR[i]
∑i+1

k=i−1
RR[k]

and

P 2
RR[i] =

RR[i]

RR[i] +RR30s +max10s(RR)
.

The first measures the prematurity against the previous

and next RR interval, while the second does relative to

the maximum RR interval in 10 seconds and to the mean

in 30 seconds. The local RR interval variation is de-

fined as dRRL[i] =
∑i+1

k=i−1
|dRR[k]|, where dRR[i] =

RR[i] − RR[i − 1]. One of the morphology related fea-

ture is the wavelet scale where the QRS complex is mostly

projected, since fast evolving signals (like a normal beat)

tend to be projected in lower wavelet scales (higher fre-

quency content). This feature is calculated as a weighted

sum, where the

Ai =
1

M

2∑

m=1

|Wix(tm)|

are the mean absolute peak amplitude for scales i =
1, 2, . . . 6, being 2 the number of peaks detected at each

scale at times tm. Then is calculated the QRS projected

scale for each lead (Slead
QRS

) as

SQRS =

∑6

i=1
Ai.i∑6

i=1
Ai

.

Other morphologic features are the position of the k-th

maximum of the 4th scale of the wavelet transform (WT)

at lead l (tlk), or the value at this position (W4x(t
l
k)). The

last of the morphologic features are the maximum of the

autocorrelation sequence calculated at scale 4 of the WT

(rC(k
l
M )), similarly to r(klM ) calculated in [2]. In this

work C is the complex of waves (T, QRS, QRST) and l the

lead where the feature is measured.

For the performance evaluation of the algorithm we fol-

low the methodology presented in [2]. As the initializa-

tion of the EMC is random, the results of the clustering

algorithm are not deterministic. Then each experiment is

repeated 30 times to evaluate the center and dispersion of

the performance estimates, median and median absolute

deviation (MAD) respectively. We are also interested in

evaluating the amount of expert assistance required in the

semiautomatic modes of operation.

3. Results

In this work we evaluated the semiautomatic algorithm

in DS2 of the MITBIH-AR, for the three possible operating

modes. The results of this experiments are presented in

table 4 and compared with the results obtained in [2, 5].

4. Discussion and conclusions

In this work we presented a versatile ECG heartbeat

classification algorithm useful in a broad range of scenar-

ios, from unattended to fully expert-assisted mode. The

automatic part of the algorithm relies in a previously devel-

oped automatic classifier with proven generalization capa-

bility [2]. The assisted part is based on a cluster algorithm,

responsible of retaining most of the patient specific fea-

tures of the heartbeats. For this reason the features model

that should be used for the cluster algorithm pursues the

maximum intrapatient class separability. This approach is

different to the one used in the development of the ELDC

feature set in [2]. The complete pool of features used in

this work for developing the EMC was the same used in

[2], therefore a careful design and selection of other fea-

tures may improve the performance.
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Table 4. Median performances and MAD dispersions in percentages, evaluated 30 times in the 22 recordings of DS2.

Comparison between the several operating modes separating AAMI2 classes (N, S, V’) with different amount of expert

assistance.
Normal Suprav. Ventricular Total

Operation mode Observation # Clusters # MAHB/R S P+ S P+ S P+ A S P+

Semiautomatic

de Chazal 2006 – 500 94 89 88 93 95 96 92 92 93

FA
12 12±0 99±0 86±2 87±3 99±0 95±1 99±0 94±1 94±1 95±1

9 9±0 99±0 84±4 86±4 99±0 94±1 99±0 93±1 93±1 94±1

SA
12 0.3±0 97±0 80±2 81±4 96±0 88±3 93±5 89±2 89±2 90±1

9 0.3±0 97±1 78±3 82±4 96±1 89±3 99±0 89±2 89±2 91±1

Automatic

12 0 97±0 78±3 77±6 95±1 87±3 92±4 87±2 87±2 89±2

9 0 97±1 73±3 74±6 95±1 84±4 96±1 85±2 85±2 88±1

Llamedo 2011 – 0 95 79 77 88 81 88 84 84 85

MAHB/R: manually annotated heartbeats per recording. FA: fully assisted. SA: slightly assisted.

The algorithm has the possibility of graduating the ex-

pert assistance from zero to a completely assisted mode.

The automatic mode achieved performance figures slightly

higher than the obtained in [2]. This is an interesting result

since the semiautomatic algorithm without any assistance

improves the performance of the LDC alone, from around

84% for A, S and P+ to more than 85%, as can be seen in

Table 4. With a small degree of assistance, 5 manually an-

notated heartbeats (MAHB) in 22 recordings, these figures

increase to more than 89% for the same estimates. This ex-

periment evidences that the algorithm can handle properly

the assistance given by an expert. However, the perfor-

mance achieved might be dependent of the dataset used, as

we have previously shown in [2], therefore the evaluation

of this algorithm should be extended outside the MITBIH-

AR.

In the completely assisted mode, the algorithm needs

9 MAHB per record (MAHB/R) to achieve the same per-

formance than [5], this represents an effort in the manual

annotation task 55 times smaller (500 MAHB/R). Besides,

annotating 12 beats per record the algorithm can improve

the performance reported in [5], but with 42 times less ef-

fort.

These results represent an improvement in the field of

automatic and semiautomatic heartbeats classification re-

spect to the reference approaches [2, 5], concluding that

the performance in [2] can be improved with an efficient

handling of the expert assistance.
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