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Abstract

A method for respiratory signal estimation from the

pulse photoplethysmographic (PPG) signal is presented.

The method is based on combination of three parameters

present in this signal: pulse rate variability, pulse ampli-

tude variability and pulse width variability.

Evaluation is performed over a database containing

electrocardiographic (ECG), PPG and respiratory signals

simultaneously recorded in 17 subjects during a tilt ta-

ble test, obtaining a respiratory rate estimation error of

-0.26±7.30% (-2.11±14.49 mHz). These results are com-

parable or outperform those obtained from other methods

which involve the ECG, so it is possible to have reliable

respiration estimates from just the PPG.

1. Introduction

Acquiring accurate respiratory signal and frequency

rates from a pulse oximeter takes special importance in

cases it is necessary to know if a low oxygen saturation

reading is due to low respiratory rates or is the result of a

low degree of gass exchange in the lungs, which can rep-

resent a dangerous physiological condition. Additionally,

to have access to the respiratory signal itself is useful, es-

pecially for ambulatory analysis or sleep apnea scrutiny.

During expiration, our parasympathetic nervous system

makes the blood vessels more flexible than during inspi-

ration. Blood vessels flexibility affects to the propaga-

tion velocity of the pulse wave, which at the same time

affects the pulse waves width in pulse photoplethysmo-

graphic (PPG) signal. In that way, pulse wave width is one

parameter present in PPG signal that depends on respira-

tion, so our hypothesis is that respiratory information can

be extracted from pulse width variability (PWV). We also

complemented respiratory information from pulse ampli-

tude variability (PAV) since respiration also modulates the

amplitude of the PPG signal. Another respiration related

parameter present in PPG signal is pulse rate variability

(PRV). Although pulse rate variability is not an exact sur-

rogate for heart rate variability [1, 2], it is also affected

by parasympathetic system and so related to respiration.

For comparison purposes, we also generated other derived

respiration (DR) signals which involve electrocardiogram

(ECG): pulse transit time (PTT) [3] and rotation angle se-

ries of the vectorcardiogram (VCG) loop [4].

Respiratory rate was estimated using an spectrum-based

algorithm based on [4]. It was estimated from PWV, PAV,

PRV and PTT separately, and combining the three PPG-

based signals and also the three rotation angles series.

2. Methods

2.1. Data and signal preprocessing

The database signals were recorded during a tilt table

test from 17 volunteers (11 men and 6 women) whose age

is 28.5±2.5 according to the following protocol: 4 min in

early supine position, 5 min tilted head-up to an angle of

70o and 4 min back to later supine position. Table takes 18

s to tilt during transitions.

The PPG signal was recorded from index finger with a

sampling rate of 250 Hz, whereas the standard ECG leads

I, III and the six precordials were recorded with a sampling

rate of 1000 Hz, and the respiratory signal was recorded

with a sampling rate of 125 Hz. Standard ECG lead II

was obtained by the sum of I and III leads, and vectorca-

diogram (VCG) was synthesized using the inverse Dower

matrix.

The preprocessing applied to the PPG signal consists of

a low-pass filtering with a cutoff frequency of 35 Hz. In the

ECG, the baseline was removed with a high-pass filter with

a cutoff frequency of 0.3 Hz, and the 50 Hz interference

was considerably attenuated with the non-linear technique

described in [5]. Then, beats from ECG and pulses from

PPG were detected to generate derived respiratory (DR)

signals. The location of each R-wave in the ECG (nRi
) and

each pulse apex (nAi
) and bassal (nBi

) points in PPG were

automatically determined using the algorithm described in

[2]. Artifactual PPG pulses were suppressed by using the

artefact detector described in [6].

For the onset and end of pulse waves detection in PPG,

we adapted the algorithm presented in [7] which was orig-

inally designed for detecting the wave boundaries in ECG
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signals. The algorithm uses a low-pass derivative

x′
PPG
(n) = xPPGLP

(n)− xPPGLP
(n− 1) (1)

where xPPGLP
(n) is the low-pass filtered signal with cutt-off

5 Hz using a zero-phase forward/backwards digital filter-

ing technique over PPG signal (xPPG(n)).
For the ith pulse wave, the algorithm uses the maximum

upslope point (nUi
)

nUi
= argmax

n
x′

PPG
(n), n ∈ [nAi

− 0.3fs, nAi
] (2)

Then, the pulse wave onset nOi
is estimated as: If

x′
PPG
(n) falls down by a threshold (η = 0.15) dependent

value of the maximum upslope x′
PPG
(nUi

) anywhere in ΩOi
,

ΩOi
= [nAi

− 0.3fs, nUi
] (3)

then

nOi
= argmin

n∈ΩOi

{|x′
PPG
(n)− ηx′

PPG
(nUi

)|} (4)

Else if there exists any local minimum in x′
PPG
(n) within

ΩOi
time interval, then nOi

is set as the last one of those lo-

cal minima. Otherwise, when no local minimum is found,

then nOi
is set as the sample when minimum value of

x′
PPG
(n) occurs within ΩOi

.

Pulse wave ends nEi
were detected in a similar way as

nOi
but using maximum downslope (nDi

) instead of nUi
, in

the interval [nAi
, nAi

+0.3fs] and ΩEi
= [nDi

, nAi
+0.3fs].

Figure 1 in section 2.2 illustrates the significant points of

this algorithm.

2.2. Derived respiration signals

The PWV-based derived respiration (DR) signal is de-

fined as

du
PWV

(n) =
∑

i

(nEi
− nOi

) δ (n− nAi
) (5)

where the superscript “u” denotes that the signal is un-

evenly sampled, see Figure 1.

PAV-based DR signal is defined as

du
PAV
(n) =

∑

i

[xPPG(nAi
)− xPPG(nBi

)] δ (n− nAi
) (6)

and we used the inverse interval function for PRV-based

DR, defined as:

du
PRV
(n) =

∑

i

1

nAi
− nAi−1

δ (n− nAi
) . (7)

For this study, pulse transit time (PTT) signal was de-

fined as the time interval between the R peak (nRi
) on the
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Figure 1. Significant points of this study and definitions

for PWV and PTT. x(n) denotes lead V4 of ECG signal.

lead V4 of ECG signal and the instant when pulse wave on

PPG rises by 50% the value from onet to maximum ampli-

tude, (nMi
), and illustrated in Figure 1.

du
PTT
(n) =

∑

i

(nMi
− nRi

) δ (n− nRi
) (8)

Electrical axis is another parameter influenced by res-

piration. We estimated the electrical rotation angle series

using the algorithm described in [4]. All three rotation an-

gle series were considered as DR signals and denoted as

duφx
(n), duφy

(n) and duφz
(n).

Finally, we obtained a 4 Hz evenly sampled version of

each DR signal by cubic splines interpolation, and filtered

with a band-pass filter (0.075-1) Hz. The resulting sig-

nals, denoted without the superscript “u”, dPWV(n), dPRV(n),
dPAV(n) dPTT(n), dφx

(n), dφy
(n) and dφz

(n) are the 4 Hz

evenly sampled band-pass filtered versions.

2.3. Respiratory rate estimation

The frequency rate estimation algorithm is based on the

one presented in [4]. It allows estimating the frequency

rate from up to N DR signals, combining them in order to

increase robustness.

For power spectrum estimation, we used the Welch pe-

riodogram. Running power spectra of each DR signal used

in combination are normalized in the band [0, 1] Hz and,

as in [4], spectra are averaged in order to reduce the vari-

ance. For the jth DR signal and kth running interval of

Ts-s length, the power spectrum Sj,k(f) results from av-

eraging the power spectra obtained from subintervals of

length Tm s (Tm < Ts) using an overlap of Tm/2 s. A

Ts-s spectrum is estimated every ts s.

For each Sj,k(f), the location of largest peak f I

p(j, k) is

detected. Then, a reference interval ΩR(k) is established
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Figure 2. Examples of time-frequency maps: peak-conditioned average of PTT signal with estimated rate in black line

(a); PRV Welch periodograms (b); PAV Welch periodograms (c); PWV Welch periodograms (d); peak-conditioned average

combining PRV, PAV and PWV with estimated rate in black line (e); peak-conditioned average of reference respiratory

signal with estimated rate in black line (f).

as:

ΩR(k) = [fR(k − 1)− δ, fR(k − 1) + 2δ] (9)

where fR(k − 1) is a respiratory frequency reference ob-

tained from previous (k− 1) steps and defines the location

of ΩR(k). ΩR(k) is asymmetric with respect to fR(k−1) be-

cause the most important contamination present in power

spectra is in LF band due to the sympathetic nervous sys-

tem activity.

All peaks at least larger than 75% of f I

p(j, k) inside

ΩR(k) are detected, and f II

p(j, k) is chosen as the nearest

to fR(k− 1). Note that f II

p(j, k) can be the same f I

p(j, k) if

the largest peak is also the nearest to fR(k − 1).
Then, Ls spectra Sj,k(f) are “peak-conditioned” aver-

aged; only those Sj,k(f) which are sufficiently peaked take

part in the averaging. In this paper, “peaked” is synony-

mous to that exists f II

p(j, k) and a certain percentage (ξ) of

the spectral power must be contained in an interval cen-

tered around it. Peak-conditioned averaging is defined in

(10).

S̄k(f) =

Ls−1
∑

l=0

∑

j

χA

j,k−lχ
B

j,k−lSj,k−l(f) (10)

where χA

j,k−l and χB

j,k−l represent two criteria referred to

decide if power spectrum Sj,k−l(f) is peaked enough or

not, as shows the equations 11 and 12.

χA

j,k =

{

1, Pj,k ≥ ξ
0, otherwise

(11)

χB

j,k =

{

1, Pj,k ≥ λmaxi6=j {Pi,k}
0, otherwise

(12)

where Pj,k is defined by

Pj,k =

∫ f II
p(j,k)+0.6δ

f II
p(j,k)−0.6δ

Sj,k(f)df

∫ fR(k−1)+2δ

fR(k−1)−δ

Sj,k(f)df

(13)

In the averaged spectrum S̄k(f) the algorithm also

searches the largest peak (denoted f Ia
p (k)) and f IIa

p (k) as

the nearest to fR(k − 1) inside the interval ΩR(k) which is

at least larger than 75% of f Ia
p (k). At this time the refer-

ence frequency fR(k) can be updated as:

fR(k) = βfR(k − 1) + (1− β) fp(k) (14)

where β denotes the forgetting factor and fp(k) is defined

by

fp(k) =

{

f IIa
p (k), ∃f IIa

p (k)
f Ia
p (k), otherwise

(15)

Finally, estimated respiration rate f̂(k) is defined as:

f̂(k) = αf̂(k − 1) + (1− α) fp(k) (16)

α =

{

α2, ∃f IIa
p (j, k)

α1, otherwise
(17)

where α2 ≤ α1, providing more memory when f IIa
p (k)

could not be set.

Note that S̄k(f) is the result of an averaging from zero

up to N × Ls power spectra. If no spectrum took part in

the average, the algorithm increases the reference interval

by doubling δ value and repeat the process from the search

of f I

p(j, k) and f II

p(j, k) in individual power spectra. In the

case that no spectrum is peaked enough after this second

iteration, fR(k) and f̂(k) are set as previous fR(k − 1) and

f̂(k − 1), respectively.

At initialization time, in order to reduce the risk of spu-

rious frequency selection δ is set to 0.125 Hz and fR(0)
is set to 0.275 Hz, allowing algorithm to pick peaks in-

side [0.15, 0.525] Hz band. Occasionally, there are some

subjects in our data base whose respiratory rate is bellow

0.15 Hz so algorithm can not be initialized as proposed.

To solve that issue, if fR is not set after 5 averages S̄k(f),
then δ is increased allowing algorithm to pick peaks in full

[0, 1] Hz studied band.

Concatenation of all S̄k(f) results in a time-frequency

map S̄(k, f) where the LF contamination is considerably

reduced, as shown in Figure 2. The following parameters

were used: Ls = 5, Ts = 40s, Tm = 12s, ξ = 0.5
δ = 0.08Hz, λ = 0.95, β = 0.8, α1 = 0.7 and α2 = 0.3.
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PWV PAV PRV PCOMB PTT φCOMB

mean std mean std mean std mean std mean std mean std

f̄RES ≥ 0.15Hz -1.03 6.79 -25.19 19.63 -22.87 16.58 -1.19 5.40 -3.37 9.14 0.71 5.00

f̄RES < 0.15Hz 5.21 14.28 2.33 17.13 4.92 13.07 1.45 10.79 6.71 15.80 3.55 11.89

All 1.17 9.44 -15.45 18.75 -13.07 15.34 -0.26 7.30 0.19 11.49 1.72 7.43

Table 1. Intersubject means of mean (mean) and standard deviation (std) of e(k) signal in percentage. PCOMB refers to the

combination of DR signals dPWV(n), dPRV(n) and dPAV(n). φCOMB refers to the combination of all three rotation angle series.

3. Results

We estimated the respiration rate from dPWV(n), dPRV(n)
and dPAV(n) separately, meaning no average in jth in (10),

and also combining them. We also obtained an estimated

rate from dPTT(n) and from combination of all three rota-

tion angle series (dφx
(n), dφy

(n) and dφz
(n)) and, finally,

applied the algorithm to the reference respiratory signal

r(n) in order to evaluate them. We will denote f̂d(k) the

estimated frequency rate from DR signal d, and f̂RES(k) the

one estimated from r(n). We computed a relative error

signal e(k) defined as:

e(k) =
f̂d(k)− f̂RES(k)

f̂RES(k)
× 100 (18)

Then, we removed samples of e(k) corresponding to the

time intervals between parts of tilt table test (rest-tilt-rest)

and computed mean and standard deviation. Results are

shown in Table 1.

4. Discussion and conclusions

In this paper a method for the estimation of respiratory

rate from the PPG signal has been presented. We have used

three different kinds of information: PAV, PRV, and the in-

novative PWV. Rate estimation method is based on the one

proposed in [4] but includes spectrum normalization and a

redefinition of “peak-conditioned” average, both aimed to

deal with combining DR signals with different origin.

On the evaluation over the database the method ob-

tained a mean respiratory rate error of -0.26±7.30% (-

2.11±14.49 mHz) and, separating registers into f̂RES ≥
0.15Hz and f̂RES < 0.15Hz, the method obtained a

mean rate error of -1.19±5.40% (-3.65±15.13 mHz) and

1.45±10.79% (0.71±13.31 mHz), respectively.

PWV showed better performance than other single DR

signals in respiratory rate error terms, and combination of

PWV, PAV and PRV DR signals improved results even the

ones obtained with PTT or rotation angle series, which in-

volve ECG registration. These results allow to derive res-

piration from PPG (no need of ECG) useful for ambulatory

analysis and for sleep apnea scrutiny due to the simplicity

of PPG recordings.
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