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Abstract

In this study, alterations in the cardiovascular system

caused by ventricular premature beats (VPBs) are investi-

gated by analyzing the photoplethysmographic (PPG) sig-

nal. A simple algorithm for PPG-based detection of VPBs

is devised and evaluated, and then employed for the anal-

ysis of heart rate turbulence (HRT), here labelled “pulse

rate turbulence” (PRT). The pulse transit time is also stud-

ied as it constitutes the main difference between HRT and

PRT. The data sets included a total of 3872 VPBs and

13169 normal beats. The results showed that VPBs can be

detected from the PPG signal with a sensitivity of 92.8%,

a specificity of 99.8% and an accuracy of 99.3%, using six

features and a simple linear classifier. The shape of PRT

was found to resemble that of HRT, the latter type of turbu-

lence resulting from ECG-based analysis, suggesting that

PRT analysis can be used as a replacement for HRT anal-

ysis when the ECG is not available.

1. Introduction

Intradialytic hypotension continues to be a major com-

plication in end-stage renal disease patients undergoing

hemodialysis, despite considerable effort to shed light on

its underlying cause. Several factors contribute to dialysis-

induced hypotension, of which hypovolemia (reflected by

factors such as relative blood volume) and failing com-

pensatory mechanisms (e.g., cardiac output, peripheral re-

sistance, and heart rate variability) are often considered.

Intradialytic hypotension not only causes discomfort to the

patient, but may also increase mortality. Dialysis-induced

hypotension also requires considerable attention from the

nursing staff, leading to increased medical service and fi-

nancial load. Thus, better knowledge of intradialytic hy-

potension is of great importance and may lead to early de-

tection, and even prevention, of such events.

Heart rate turbulence (HRT) [1] reflects the heart’s com-

pensatory mechanisms. Its quantification has been estab-

lished as a powerful risk predictor of mortality after acute

myocardial infarction. HRT may be viewed as a measure-

ment of a subject’s ability to recover from a local blood

pressure decrease induced by a ventricular premature beat

(VPB). When there is an important change in physiological

conditions, the body reacts in order to recover baseline lev-

els and keep all variables in a suitable balance, e.g., barore-

flex mechanisms. Some recent studies have suggested that

the occurrence of VPBs in hemodialysis patients may con-

vey information on proneness to intradialytic hypotension.

The number of VPBs has been found to increase signifi-

cantly before intradialytic hypotension [2]. Heart rate tur-

bulence has been found a useful marker for classifying pa-

tients as being either hypotension-resistant or hypotension-

prone [3].

In this study, alterations in the cardiovascular system

caused by VPBs are investigated by analyzing the pho-

toplethysmographic (PPG) signal. The study consists of

two parts of which the first, PPG-based detection of VPBs,

serves as the basis for the other. If such detection can

be performed with accurately, PPG-derived information on

VPBs can be substituted for the information derived from

the ECG. The second part concerns PPG-based analysis

of HRT, here labelled as “pulse rate turbulence” (PRT)

since changes in pulse rate that follow a VPB are quanti-

fied. The main difference between HRT and PRT analysis

is the pulse transit time (PTT) which will influence PRT.

The PTT is defined as the time it takes for the pulse wave

to travel from the heart to the PPG sensor, which usually is

attached to a finger.

2. Data

Two databases were analyzed, namely one recorded

during hemodialysis treatment and another known as the

Multi-parameter Intelligent Monitoring for Intensive Care

(MIMIC). The former database consists of 11 patients (7

females) with end-stage renal failure who underwent reg-

ular hemodialysis treatment. All patients were classified

as hypotension-prone by a nephrologist. The data were

acquired during the entire treatment session at the De-

partment of Nephrology at Rigshospitalet in Copenhagen,

Denmark, lasting from 3 to 5 hours. The study was ap-
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proved by the local ethics committee. A total of 28 treat-

ments were acquired from the 11 patients. Data were ac-

quired in parallel with the routine hemodialysis equipment.

The standard ECG leads V1, V5, and II were recorded at a

sampling rate of 1000 Hz using the Biopac MP150 data ac-

quisition system (BIOPAC Systems Inc., USA). The PPG

signal and oxygen saturation were continuously acquired

with a pulse oximeter (LifeSense R, Medair AB, Sweden),

also sampled at a rate of 1000 Hz using the Biopac MP150.

The MIMIC database consists of multimodal data

recorded in the intensive care unit from more than 90 pa-

tients, of which the ECG and PPG signals were analyzed

here. Patients with more than 200 VPBs or with good qual-

ity signals were included for further analysis, resulting in

a total of 6 patients. In order to comply with recommen-

dations on sampling rate when analyzing heart rate vari-

ability [4] and HRT [3], the ECG was interpolated to a rate

of 500 Hz. The PPG signal, originally recorded at 125 Hz,

was interpolated so that a time resolution equivalent to that

of the ECG signal was obtained, thereby reducing the error

in the pulse rate analysis.

2.1. Reference annotations for VPBs

Ventricular premature beats were selected based on in-

formation in the ECG. Following QRS detection using a

wavelet-based algorithm [5], VPBs were determined by

exploring information on rhythm and beat morphology [6].

VPBs were excluded from further analysis when artifacts

were present either in the ECG or the PPG signal, or when

other VPBs occurred within the 5 previous or 20 subse-

quent beats. The total number of VPBs were 1013 and

2859 in the hemodialysis and MIMIC database, respec-

tively.

The ECG signal served as the “gold standard” for evalu-

ating the performance of detecting normal beats and VPBs,

and for evaluating the accuracy of PRT in relation to HRT.

3. Methodology

3.1. VPB detection from PPG

Pulse detection. The PPG signal was lowpass filtered using

an FIR filter with a cut-off frequency of 35 Hz in order

to reduce the influence of noise. The onset nOi
and the

apex location nAi
of the i-th pulse were determined from

the derivatives of the filtered signal denoted x(n).
Different types of pulse patterns can be discerned from

the PPG signal when a VPB is occurring. Depending on

the degree of blood pumping efficiency, the VPB may or

may not be associated with a PPG pulse, labelled either

VPB1 and VPB2.

Four pulse types were considered for PPG-based detec-

tion of VPBs:

• A normal pulse associated with a normal beat (NP).

Figure 1. ECG and PPG signals including a VPB associ-

ated (a) with a PPG pulse (VPB1) or (b) not (VPB2). The

four PPG pulse types, i.e., NP, VPP, NPVPB1
, and NPVPB2

,

and significant points, i.e., nRi
, nOi

, nPi
, and nAi

, are illus-

trated.

• A pulse caused by a VPB, i.e., ventricular premature

pulse (VPP).

• The first normal pulse after a VPB causing a PPG pulse

(NPVPB1
).

• The first normal pulse after a VPB not causing a PPG

pulse (NPVPB2
).

Note that VPP and NPVPB1
are related because a PPG pulse

of type NPVPB1
always follows a pulse of type VPP. Fig-

ure 1 illustrates the four different types of PPG pulses.

Pulse classification. Three simple features characterizing

pulse amplitude and timing were defined:

• Pulse upslope amplitude, a+(i) = x(nAi
)− x(nOi

).
• Pulse downslope amplitude, a−(i) = x(nAi

)− x(nOi+1
).

• Apex-to-apex interval, dAA(i) = nAi
−nAi−1

.

Due to a large inter-subject variability and the fact that

the PPG signal does not provide an absolute blood volume

measurement, all these features were normalized for each

pulse with respect to their mean value computed from the

five previous normal pulses.

Due to the close relationship between PPG pulses of
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type VPP and type NPVPB1
, the total feature set charac-

terizing a pulse was defined by a+(i), a−(i− 1), dAA(i) as

well as a+(i−1), a−(i−2), dAA(i−1).
Linear discriminant analysis was used for VPB detec-

tion. Every pulse was assigned to type k ∈ {NP, VPP,

NPVPB1
, NPVPB2

} of the four possible types, using a linear

classifier based on the six features just described. The dis-

criminant function was evaluated for each type, and the

pulse is assigned to the type with the largest value of the

discriminant function.

Performance assessment. The VPBs of the hemodialysis

database were used for evaluating the pulse classifier. PPG

pulses at the VPB and subsequent pulses were manually

labeled as VPP, NPVPB1
, or NPVPB2

according to the PPG

pattern. The normal pulse type was made up of the three

previous and the ten following normal PPG pulses to VPB.

The total number of pulses were 13169 NP, 201 VPP, 201

NPVPB1
, and 812 NPVPB2

.

Cross-validation was used for evaluating performance.

A confusion matrix was obtained for every subject by com-

paring the reference with the classifier outcome when it

was trained using all PPG pulses in the database, except

those belonging to the subject under analysis. Finally, the

classifier confusion matrix was computed by accumulating

the confusion matrix of every subject. The different types

were balanced in the training process in order to assign the

same weight to all of them, regardless of their prior proba-

bility.

The performance was evaluated not only for the above-

mentioned case with four types of PPG pulses, but also for

the case with two types when all VPB-related pulse types

were merged into one type consisting of VPP, NPVPB1
, and

NPVPB2
, collectively denoted VPP1+2.

3.2. Pulse rate response to VPB

Analysis similar to that of HRT was carried out for the

PR response to a VPB, the main difference being that the

beat temporal reference was derived from PPG instead of

from ECG. A definition of the fiducial point for a PPG

pulse is needed. Given that the pulse wave is less sharp

than the QRS, and that an error in the localization of the

PPG pulse peak is more likely than in the ECG, the time

instant at half the PPG pulse amplitude was considered as

the pulse fiducial point in PPG due to its lower variability.

The fiducial point nPi
of the PPG pulse is defined as

nPi
=arg min

n∈[nOi
,nAi

]

{

x(n)−

(

x(nOi
)+

x(nAi
)−x(nOi

)

2

)}

, (1)

see Fig. 1. The pulse-to-pulse (PP) interval dPP(i) was

computed for PPG pulses after every VPB as dPP(i) =
nPi

−nPi−1
.

Table 1. Performance measurement

Performance accuracy (4 types) Performance accuracy (2 types)

NP VPP NPVPB1
NPVPB2

NP VPP1+2

Se 96.6% 93.0% 92.5% 97.0% Se 99.8% 92.8%

Sp 97.6% 98.4% 98.3% 99.9% Sp 92.8% 99.8%

Acc 96.6% 98.4% 98.2% 99.7% Acc 99.3% 99.3%

Total Acc 96.5% Total Acc 99.3%

Confusion matrix (4 types) Confusion matrix (2 types)

NP VPP NPVPB1
NPVPB2

NP VPP1+2

NP 12916 14 12 3 NP 13140 73

VPP 222 187 0 0 VPP1+2 29 940

NPVPB1
220 0 186 21

NPVPB2
11 0 3 788

The PTT was computed in order to obtain a better under-

standing of differences between HRT and PRT. It was mea-

sured as the distance between the R-wave in the ECG, de-

noted nRi
, and the fiducial point of the corresponding pulse

in the finger pad measured by PPG, i.e., dPTT(i) = nPi
−nRi

,

see Fig. 1. The relationship between RR and PP intervals

is described by

dPP(i) = nPi
−nPi−1

= dRR(i)+∆dPTT(i), (2)

where ∆dPTT(i)= dPTT(i)−dPTT(i−1) represents the increase

in PTT.

4. Results

Classification performance (expressed in terms of sensi-

tivity Se, specificity Sp, and accuracy Acc) and the related

confusion matrix are presented in Table 1 when consider-

ing either four or two PPG pulse types. The total accuracy

was 96.5% for the four types VPP, NPVPB1
, and NPVPB2

,

whereas it increased to 99.3% when assuming two pulse

types (VPP1+2).

Figure 2 illustrates HRT, PRT, and PTT for two repre-

sentative subjects, one with turbulence and another with-

out. The largest difference between HRT and PRT oc-

curs in the first PP interval after the VPB (dPP(8) compared

with dRR(8)). According to (2), this difference is due to

∆dPTT(8) = dPTT(8)− dPTT(7). Figures 2(e) and (f) show a

decrease in PTT(7) and an increase in PTT(8) which pro-

duce the increase in dPP(8).
Figure 3 displays the well-known indices for character-

izing HRT labelled turbulence onset (TO) and turbulence

slope (TS) [1]. Parameter values are displayed for all pa-

tients with more than 50 VPBs, 10 patients in total. It

should be noted that only one patient has a clear turbulence

pattern as is evident from both HRT and PRT analysis, see

Figs. 2 (a) and (c).

5. Discussion

To the best of our knowledge, this study is the first to

attempt PPG-based analysis of alterations in the cardiovas-

cular system caused by VPBs. The results presented in Ta-

ble 1 indicate that very good VPB detection performance
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Figure 2. a, b) Mean RR interval (solid line), 25th and

75th percentiles (dashed line); c, d) mean PP interval (solid

line), 25-th and 75-th percentiles (dashed line) and e, f)

PTT. One subject with turbulence (panels a, c and e) and

another without (panels b, d and f).
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Figure 3. TO and TS derived from HRT or PRT analysis

for one subject with turbulence (’o’) and nine subject with

no-turbulence (’x’).

can be achieved from PPG signals (96.5% when classify-

ing four types and 99.3% for two types); this accuracy was

achieved for a simple linear classifier and six features char-

acterizing amplitude and duration. The results suggest that

VPBs can be reliably detected from the PPG signal, and

thus the ECG is not needed for PRT analysis.

During the compensatory pause the heart is filled with

more blood than otherwise, so that the first beat after the

VPB (i = 7) is associated with a higher pressure which

causes the pulse wave to travel faster and, consequently,

a decrease in PTT. The opposite effect applies to the sub-

sequent pulse (i = 8). According to (2), this phenomenon

represents the main difference between HR and PR, and

occurs in the first PP interval after the VPB, see Fig. 2.

The main limitation with the present study is that there

is only one subject with HRT. Although an extended study

including more subjects with HRT is highly desirable, our

results suggest that the PPG signal is suitable for turbu-

lence detection.
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