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Abstract
A methodological framework for simulating real-like
HRV during stress test with controlled spectral proprieties
has been developed with the purpose to assess SPWVD and
time-variant AR analysis. For each method results have
been evaluated computing the estimation error for LF and
HF components during all the test (mean error of the or-
der of 10% in all case) and a direct comparison based on
the correlation between estimate and original ACF yields
very high values (ρWV=0, 99 and ρAR=0, 94). In real data
analysis bothmethods highlight an inversion of the relative
spectral balance around the apex of exercise which passes
from LF to HF prevalence.

1. Introduction
Analysis of Heart Rate Variability (HRV) is a non in-

vasive technique that provides an evaluation of the auto-
nomicmodulation of cardiovascular activity [1]. The spec-
trum of HRV signal is characterized by two main spectral
components: the low frequency component (LF), range
[0,04-0,15 Hz], is considered an index of the sympathetic
modulation, and the high frequency (HF), range [0,15-0,4
Hz], is linked to the parasympathetic activity. Recently
the analysis of HRV during stress test conditions has at-
tracted much attention and it has been studied as poten-
cial marker of ischemia [2]. To assess HRV during non-
stationary conditions and to monitor autonomic control in
extreme conditions time-frequency methods must be em-
ployed. Among others, time-variant (TV) parametric spec-
tral analysis and Smoothed Pseudo Wigner Ville Distribu-
tion (SPWVD) have been widely used. Even if quantitative
comparisons of these methods have been already proposed
[3], no data is available during stress test. The purpose
of this study is to provide a comparison of TV paramet-
ric spectral analysis and SPWVD in the analysis of HRV
signal during stress stest. At this regard, a methodologi-
cal framework for simulatingHRV signals with known and

controlled spectral proprieties has been developed. Using
the framework, real-like HRV signals mimicking the char-
acteristics observed during stress test [4] have been gener-
ated and used to evaluate the performance of the methods
in tracking dynamic changes in LF and HF components. In
the time-variant approach, the HRV signal, x(n), is seen as
the output of an autoregressive (AR) model:

x(n) = −

q∑

l=1

al(n)x(n− l) + b0(n)ξ(n) (1)

where al(n) and b0(n) are the model coefficients, q is the
model order and ξ(n) is a white noise. In (1) n is the time
index. The TV spectrum becomes

SAR(f, n)= |Hn(e
j2πf )|2σ2ξ =

(
b0(n)σξ∏q

k=1 |e
j2πf− pk(n)|

)2

(2)
where the pk(n) are the time variant model poles and
Hn(z) is the AR model transfer function. Time variant
analysis is achieved identifying the coefficient al(n) and
the gain b0(n) by means of the Recursive Least Squares
(RLS) method. Using the RLS algorithm results may be
affected by changing the order of the model and the for-
getting factor, which sets the memory horizon of the algo-
rithm [3]. Temporal evolution of the spectral components
(i.e. the dominant frequencies fLF(n) and fHF(n) and pow-
ers PLF(n) and PHF(n)) and ACF sAR(n, k) are computed by
a decomposition based on pole residuals [5].

1.1.   Smoothed pseudo Wigner Ville analysis

The Smoothed Pseudo Wigner-Ville Distribution (SP-
WVD) is defined as [6]:

SWV(n,m)=2

N−1∑

k=−N+1

sWV(n, k)e
−j 2πk

N
m (3)

where sWV(n, k) is the windowed filtered instantaneous
autocorrelation function (ACF) of the analytic signal
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ax(n), computed as:

sWV(n, k) = |h(k)|
2
M−1∑

p=−M+1

[g(p)rwv(n+ p, k)] (4)

and rwv(n, k) = ax(n − k)a∗x(n + k). In this equation
g(p) and h(k) are the time and frequency smoothing ker-
nels used to reduce interferences, and n and m are dis-
crete time and frequency indexes. The time window length
2M+1 is adapted to the local spectral properties, increas-
ing or decreasing according to the instantaneous frequency
rate of variation [7]. When time and frequency smoothing
kernels are, respectively, a rectangular and an exponential
smoothing window, swv(n, k) may be described, for every
n, as a sum of complex damped sinusoids [6]. Their ampli-
tude and frequency can be estimate using the Kumaresan
Tufts (KT) decomposition [6]. This decomposition pro-
vides a way to track the temporal evolution of main signal
components, namely the dominant frequencies fLF(n) and
fHF(n) and the amplitudes ALF(n), AHF(n) of LF and HF
components.

1.2.     Simulation

In this work, the simulated signal x(n) is obtained using
(1). To derive a signal with known and controlled charac-
teristics we proceed as explained in Fig. 1. An ideal time-
frequency spectrum SAR(f, n) is defined by fixing, for each
n, the dominant frequencies fLF(n) and fHF(n), and the am-
plitudes SAR(fLF(n), n) and SAR(fHF(n), n) of the LF and
HF components. The evolution of frequencies and ampli-
tudes are derived on the base of some physiological knowl-
edge of ANS response during stress [2],[4]. In particu-
lar, frequencies and amplitudes are assumed to vary as in
Fig. 2. The fHF(n) increases linearly during exercise. The
HF amplitude initially decreases due to vagal withdrawal
with exercise, while some time before the apex of effort
it increases as consequence of the augmented ventilation
which causes a mechanical stretch of the sinus node syn-
chronous with respiration. The system comes back to the
original conditions after a short recovery period.
It is evident form (2), that a desired spectral pattern may

be obtained by positioning the model poles in the com-
plex plane (Fig. 3). The spectral amplitude is inversely
proportional to the squared distance |ej2πf− pk(n)|2 be-
tween the k-pole and the unite circle points. A 6th order
AR model is used. A pair of complex conjugate poles for
the LF component and two pairs for the HF are set. The
HF pole pairs have the same phase but different modules.
To locate pk(n) we solve the following equation system:

� [p1(n)]=−� [p2(n)]=fLF(n) (5)
� [p3(n)]=� [p5(n)]=−� [(p4)]=−� [p6(n)]=fHF(n)

Figure 1. Simulation, analysis and evaluation process

200 400 600 800
0  

0.5

1  

1.5

2  

2.5

n [s]

S AR
(f,

n)

200 400 600 800
0  

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

n [s]

FR
EQ

 [H
z]

f
LF

(n)

f
HF

(n)

S
AR

(f
LF

,n)

S
AR

(f
HF

,n)

EXERCISE RECOVERY EXERCISE RECOVERY

Figure 2. Time evolution of the ideal spectral component
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Figure 3. SAR(n, k) for 2 different n and its polar configuration

|p1(n)|= |p2(n)| = |p1(0)|[∏6
k=1

b0(n)
|ej2πfD(n)−pk(n)|

]2
=SAR(fD(n), n)

where D ∈ [LF,HF]. From the model poles, coefficients a(n)
and gain b0(n) are obtained, (1) is used to filter a zero-
mean unit-variance white noise ξ(n) to obtain the simu-
lated signal x(n).
1.3.      Evaluation and comparison

A random process can be described only probabilisti-
cally. This implies that, to evaluate the methods, mean
results should be used analyzing a group of trials xi(n),
where i= [1, ..., L]. The parametric method can be directly
evaluated using as reference the powers (PD(n)) and the
frequencies (fD(n)) associated with the pole configurations
of the model and computed through the residual method.
The estimates P̂D(n) and f̂D(n) are obtained identifying the
mean coefficients âl(n) and b̂0(n) across the L trials xi(n).
The error is then computed as eD(n) = P̂D(n)−PD(n)

PD(n) .
To evaluate the SPWVD performance the ideal ACF
r(n, k) is computed from the poles of the model [5] and
filtered with the same g(p) and h(k) used in (4), obtain-
ing s(k, n). Its KT decomposition provides the dominant
frequencies fD(n) and the amplitudes AD(n) used as ref-
erences. Amplitudes A2D(n) are evaluated to make them
comparable with PD(n). The error is then computed as:
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eD(n) =
Â2D(n)−A

2
D(n)

A2D(n)
where ÂD(n) is the mean amplitude

that characterizes a group of L trials. It is computed de-
composing ŝWV(n, k) = 1

L

∑L
i=1 sWV,i(n, k).Since the parametric method yields power estimates while

the non parametric yields amplitude estimates the com-
parison of their performance is not straightforward. To
overtake this problem the ACF s(n, k) is proposed as ref-
erence for the comparison of both methods. The mean
poles identified during parametric analysis are used to
compute ŝAR(n, k). Then we evaluate the correlation be-
tween ŝWV(n, k) and ŝAR(n, k) and the reference s(n, k) as:

ρA(n)=

∑M
k=1 [ŝA(n, k)s(n, k)]√∑M

k=1 ŝ
2
A(n, k)

√∑M
k=1 s

2(n, k)
(6)

where A ∈ [AR, SPWV ].

2. Results
2.1.      Simulation results

We have analyzed a group set of L = 100 signals and
evaluated and compared the results of both methods as ex-
plained in section (1.3).
The xi(n) studied with the AR method have been sampled
at 2 Hz. A 4th order model and a forgetting factor imply-
ing a memory of 10 s have been used. The estimates f̂D(n)
and P̂D(n) are reported in Fig. 4(a). In the recovery period
it yields a slightly poorer estimation due to the increased
HF rate of variation, which is roughly 3 times higher than
during exercise. For both components the estimation er-
ror eD, obtained by averaging eD(n), has been computed
during exercise and recovery as reported in Table 1.

Table 1. Estimation error for the AR analysis [%]
STRESS RECOVERY TOTAL

eLF −0, 72± 11,45 −20, 18± 12,8 −5, 57± 14,5

eHF −6, 92± 15,77 −33 ± 11,55 −13,42± 18,65

Figure 4(b) shows SPWVD results. The estimates f̂D(n)
and ÂD(n) have been obtained from the decomposition of
ŝWV(n, k). In this case, xi(n) have been sampled at 4 Hz
and a time window 2M+1 of 10 s has been chosen and
adapted as proposed in [7]. This method is able to follow
the evolution of the signal even when its components are
changing quickly.
The error eD, evaluated during exercise and recovery for
both components, is shown in Table 2.
In order to compare the methods, the correlation ρA(n),

defined in (6), is computed between the results obtained
with both methods and the model. In Fig. 5 we can see, as
a proof of the method pertinence, that, for both methods,
the correlation is always very close to one.

Table 2. Estimation error for the SPWVD analysis [%]
STRESS RECOVERY TOTAL

eLF 5, 49± 6,92 3,89± 7,12 5, 09± 7, 01

eHF −14,13± 12,76 3,05± 11,29 −9, 85± 14,23
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Figure 4. (a) AR and (b) SPWV analysis
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Figure 5. Correlation ρA(n) computed for A=[AR,WV]

2.2.    Real data analysis

We have applied SPWVD and AR algorithms to real
data registered in the Hospital Lozano Blesa of Zaragoza
during stress test. Instantaneous heart rate has been ob-
tained using a method based on the integral pulse fre-
quency modulation [8] and its very low frequencies have
been filtered out in order to obtain the HRV.
In Fig. 6(a) results of AR analysis are shown for a subject.
As done often in literature [1], the powers of the spectral
components have been reported in normalized units (n.u.),
which represent the relative value of each power compo-
nent with respect to the total power. This reduces the vari-
ability of the estimation allowing a straightforward inter-
pretation of the graphic. A 8th order model has been used
and those components whose power was very small have
been eliminated, considering them as a spurious contribu-
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Figure 6. Real HRV AR (a) and SPWVD (b) analysis
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tion without physiological relevance.
In Fig. 6(b) results obtained with the SPWVD are dis-
played. Amplitudes are first squared (see section 1.3) and
then normalized.

3. Discussion
Simulation results evidence that poorest estimation per-

formances are observed for AR analysis during recovery
period, since the frequency rate increases. This variation
can be considered as the main cause of error in estimation.
It would be possible to make the RLS algorithm more re-
active reducing or making adaptive the forgetting factor,
but this would be achieved at the expense of a grater vari-
ability. SPWVD results, on the other hand, seems not to be
greatly affected neither by the rate of variation of the fre-
quencies nor by its abrupt change. In the simulation pre-
sented in this paper the SPWVD globally yields slightly
better results: its mean value of correlation is 0,99 while it
is 0,94 for the AR method. Considering the temporal aver-
age of the estimation error, SPWVD yields much better re-
sults during recovery (3, 9% for LF and 3% for HF against,
respectively,−20% and−33% for the AR), but not during
exercise (5, 5% for LF and −14, 1% for HF against, re-
spectively,−0, 7% and −6, 9% for the AR). In all case the
standard deviation of the error is lower for SPWVD.
On real data analysis the methods give very similar infor-
mation: LF maintains constant frequency of about 0,1 Hz,
while HF varies in a way that can be considered coher-
ent with the respiratory frequency. A LF predominance
is observed except around the apex of exercise, where the
HF power increases and becomes the predominant one.

The same behavior have been noticed in other registra-
tions recorded during stress test but never at rest, so that
it should be directly connected with the dynamic condition
of the test. This confirm the occurrence of the non neuronal
mechanism which has already been considered in our sim-
ulation model and remarked in literature [4].

4. Conclusion
A stochastic model has been developed to simulate a

real-like HRV signals with a great variety of spectral prop-
erties, like those observed during stress test, and, more
generally, any kind of two-component random process.
The performances of parametric and non parametric TV
analysis methods have been evaluated and compared using
the ACF. The independence on the rate of variation of the
frequencies and a minor dependence on parameters can be
highlighted as an advantage of the SPWVD with respect to
the AR analysis, which seems to be affected by a greater
inertia. In real data analysis both methods yields similar
results.
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