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Abstract

The objective of this work is to develop a model for

ECG classification based on multilead features. The MIT-

BIH Arrhythmia database was used following AAMI rec-

ommendations and class labeling. We used for classifica-

tion classical features as well as features extracted from

different scales of the wavelet decomposition of both leads

integrated in an RMS manner. Step-wise and a random-

ized method were considered for feature subset selection,

and linear discriminant analysis (LDA) was also used for

additional dimensional reduction. Three classifiers: lin-

ear, quadratic and Mahalanobis distance were evaluated,

using a k-fold like cross validation scheme. Results in

the training set showed that the best performance was ob-

tained with a 28-feature subset, using LDA and a Maha-

lanobis distance classifier. This model was evaluated in

the test dataset with the following performance measure-

ments global accuracy: 86%; for supraventricular beats,

Sensitivity: 86%, Positive pred.: 20%; for ventricular

beats Sensitivity: 71%, Positive pred.: 61%. This results

show the feasibility of classification based on the multilead

wavelet features, although further development is needed

in subset selection and classification algorithms.

1. Introduction

The analysis of the electrocardiographic signal (ECG)

provides a noninvasive technique to analyze the heart func-

tion for different cardiac conditions. Particularly, auto-

matic classification algorithms focus on ECG rhythm and

morphology analysis and their disturbances. Disturbances

in the rate, regularity, site of origin or conduction of the

electrical impulses are known as arrhythmias [1]. While

some types of arrhythmias represent a life threat in the

short term (e.g. ventricular fibrillation), there are other

types that appear less frequently and represent a long-term

threat without proper treatment. It is in those later cases,

which require carefully inspection of long ECG recording,

where the use of automatic algorithms represents a signif-

icant help for diagnostic.

Many algorithms for ECG classification were developed

in the last decade [2, 3, 4, 5], achieving very good per-

formance training a global classifier on the well-known

MIT-BIH arrhythmia database [6]. Some of these algo-

rithms improved their performance when information from

a small excerpt of the recording under classification was

used for local adaptation [2, 7, 5]. However, the features

extracted from the ECG signal (the model) are quite sim-

ilar in most of the proposed approaches found up to the

moment. Some authors found improvements in the classi-

fication performance when features from other leads were

accounted in the model [7], or including new features that

integrates information present in both leads, like the vecto-

cardiogram (VCG) maximum value (V CGmax) and VCG

angle (V CGangle) [5]. Our group is currently working in

the multilead (ML) approach for ECG delineation based

in the wavelet transform [8, 9], and the improvement re-

spect to the single-lead (SL) approach was confirmed by

other groups [10]. Since the methodology for feature ex-

traction generally requires previous ECG delineation, we

propose an ECG classifier that uses a set of robust features

already used in the delineation stage. This is attractive for

an efficient real-time implementation, like an implantable

or portable device. The objective of this work is to develop

and evaluate a model for ECG classification based on ML

features, under the hypothesis that these features should

provide a better classification performance.

2. Methods

2.1. ECG database

In this work we used the MIT-BIH Arrhythmia database

[6] for training and evaluating the classifier. The database

consists of 48 two-lead recordings of approximately 30

minutes and sampled at 360 Hz. The first 23 record-

ings were extracted from routine ambulatory recordings

while the remaining 25 were selected because of the pres-

ence of less common complex ventricular, junctional and

supraventricular arrhythmias. The two recorded leads are
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not the same in all recordings, depending on the arrhyth-

mia and physical limitation of the subject’s body. The an-

notations provided with the database were used for training

and testing purposes, following the recommendations and

class-labeling of AAMI. We adopted the training (DS1)

and test (DS2) division scheme used in [4] for compara-

tive purposes. AAMI Class Q beats were discarded since

they are poorly represented in the database. The division

scheme is summarized in Table 1.

Table 1. Scheme of the division of the MIT-BIH database

into training (DS1) and testing (DS2) sets. Recordings

with paced beats were excluded.

 N S V F #Rec. 

Full DB 89737 2757 6959 801 44 

DS1 45675 926 3767 413 22 

DS2 44062 1831 3192 388 22 

2.2. Signal processing

Most of the considered features are based on the wavelet

transform (WT) analysis of the ECG signal. The WT is

defined for a signal x(t) as:

Wax(b) =
1√
a

∫ +∞

−∞

x(t)ψ

(

t− b

a

)

dt, a > 0 (1)

The WT can be discretized using a dyadic scheme where

the scale factor is a = 2k for k ∈ Z+, with the same sam-

pling rate at each scale (Algorithme à trous) and is easily

implemented as a filter bank. We used a quadratic spline

as the prototype wavelet ψ(t), being the derivative of a

smoothing function. As a result of this transformation, the

original ECG signal can be analyzed as a smoothed deriva-

tive at different scales (frequency bands) and translations

(times). This type of analysis has been successfully used

for ECG delineation based in the analysis of the peaks and

zero-crossings of the WT at the most appropriate scales

(see [11] for a detailed description of the ECG delineator).

To integrate the information of the available channels,

we use a similar concept to those proposed in [8, 10], creat-

ing a multilead signal for each scale a = 2k by computing

the RMS of the wavelet transform in the M = 2 leads

Wrmsa
=

√

√

√

√

1

M

M
∑

i=1

(Waxi[n])2. (2)

This results in one positive signal for each scale. Figure 1

shows an example of a W rms signal.

Figure 1. Excerpt of record 201 of MIT-BIH database.

Normal (N) and ventricular (V) AAMI class heart beats.

In the top figures both ECG leads are shown with their cor-

responding wavelet decomposition (scales 2-5). The lower

panel depicts the RMS composition of both leads wavelet

transform (Wrms). Some features measured in the Wrms

signal are also shown.

2.3. Classification features

Following the conclusions of previous works [2, 4, 5],

we included in our model both interval and morphological

features. As interval features we used the typical features

from the RR sequence RR[i − 1], RR[i] and RR[i + 1],
differences between adjacent RR intervals dRR[i − 1],
dRR[i] and dRR[i+1], where dRR[i] = RR[i]−RR[i−
1], and the median of the last 10 RR intervals.

As morphological features we considered an estimate of

the QRS width (QRSW ) measured in the Wrmsa
x[n] sig-

nal for scales a = 2, 3, 4 as the difference between the two

maxima around the fiducial point (FP) (see Figure 1), the

maximum modulus of the QRS loop (V CGmax) and the

angle of the loop at this position (V CGangle) as proposed

in [5]. Analogously, we proposed the same concept eval-

uated in the QRS loop formed by Waxi[n] in scales 2 to

5 (WTmax,aand WTangle,a). We also defined a window
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of length 400 ms ending at the QRS onset (QRSon). This

window was divided in 4 sections of 100 ms, and the en-

ergy of the Wrmsa
x[n] signal was computed in each sec-

tion in scales 3 to 5 (preQRSi). This amounts 12 fea-

tures per beat (4 sections × 3 scales). The objective of this

group of features is to include robust information about

the P wave region. The same concept was used to study

the QRS complex morphology with a window starting at

FP − 100ms, and ending at FP + 120ms for scales 2 to 5

(QRSEi), as can be seen in Figure 1 (16 features per beat).

Finally the ratios between QRSEi at consecutive scales

lead to 12 new features (QRSRi = QRSE i+1/QRSE i).

All the aforementioned feature values (60 per beat) form

together a feature vector (FV ) for each heart beat in the

database.

To deal with the wild variations that may happen be-

tween different recordings, we used the first 5 minutes of

the recording to estimate a reference FV (FVN ). This

FVN is calculated as the median of all FV of the beats

belonging to the normal class within the first 5 minutes.

Then, a relative feature vector FVrel is calculated as

FVrel =
FV − FVN

FVN

. (3)

2.4. Model selection and dimensional re-

duction

Several models with lengths ranging from 5 to 28 fea-

tures were selected using SPSS step-wise method and a

randomized method implemented in Matlab. Those mod-

els derived from the SPSS were populated according to

two parameters, one for the variables to enter (Fenter) the

model and the other to leave it (Fleave). Other models were

chosen after evaluating the performance of 2000 random

models for a fixed length. Besides, the effect of dimen-

sionality reduction by Fisher’s linear discriminant analysis

(LDA) was also studied for every tested model. Model per-

formance analysis is described in the next sections.

2.5. ECG classification

We used both linear and quadratic discriminants for

classification purposes. The general quadratic discrimi-

nant functions for i classes can be written as

gi(x) = −1

2
x

TΣ−1

i
x + µT

i Σ−1

i
x (4)

−1

2
µT

i Σ−1

i µi −
1

2
log(|Σi|) + log(P (ωi))

where µi, Σi are the mean vector and covariance matrix

of the feature vector for beats belonging to the i-th class,

and P (ωi) is the a priori probability of each of the classes.

The values of µi and Σi were computed from DS1, and

Table 2. Performance for each model on DS1 separating

all classes. The results are expressed in percentages.

  Sensitivities (%) Positive Pred. (%)

 

Model 

Size FS Cl Acc N S V F N S V F 

 

28 L M 81 83 76 74 25 99 11 77 4 

 20 L M 81 82 74 79 27 99 10 74 5 

 28 G L 75 77 55 63 5 98 8 76 0.4 

           

28 L L 95 99 22 61 59 97 25 90 45 

28 L Q 86 88 50 73 64 99 12 65 13
FS: feature set. Local adapted (L) or global (G). 

Cl: classifier. Linear (L), quadratic (Q) or mahalanobis (M). 
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equal a priori probabilities were considered. The classifi-

cation rule assigns a FV x to the class i which results in

the maximum gi(x).

A related classifier is that based on the minimum Maha-

lanobis distance, which assigns the class which minimizes

(x − µi)
T

Σ−1

i (x − µi).

When covariance matrices Σi are assumed equal for all

classes, the discriminant functions become linear. In this

case, a pooled covariance matrix Σ is calculated as in [4].

2.6. Performance evaluation

All models were evaluated in DS1 using a k-fold cross-

validation scheme, where each fold is one of the 22 record-

ings present in DS1. Then performance was measured in

terms of the global accuracy, specificity, and class sensi-

tivity as defined in [4]. These performance measures re-

sulted from three classifiers: linear, quadratic and mini-

mum Mahalanobis distance; with the assumption of equal

prior probability. Those models which maximized the cri-

teria j = SSe + S+p + VSe + V+p were considered for a

final comparison, where XSe and X+p stand for sensitiv-

ity and positive predictivity of class X ∈ {S, V } respec-

tively, with S: supraventricular premature contractions and

V : ventricular premature contractions.

The methodology used for the final test is the same pro-

posed in [4] following AAMI recommendations. Thus

DS1 was used to train the best performing model and DS2

exclusively for testing purposes.

3. Results

Results of the model selection procedure are shown in

Table 2. This table shows the ability of best models sep-

arating all classes on DS1. The model with best overall

figures was chosen (highlighted model in table 2). This

model was used for the final performance measure on DS2

after training on DS1. Results and confusion matrix in the

test set are shown on table 3 and 4 respectively.
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Table 3. Final evaluation of the best performing model, on

DS2 separating S and V from other classes. Results from

previous works are shown for comparison. All results are

expressed in percentages.

  S   V 
 Acc Se +P FPR  Acc Se +P FPR

de Chazal 95 76 39 5 97 78 82 1 

this work 86 86 20 13.6 95 71 61 3 
Acc: Accuracy; Se: Sensibility; +P: Positive predictability 

FPR: False positive rate 

Table 4. Confusion matrix for the final evaluation of the

best model on DS2.

Algorithm  

N S V F 

N 35309 6147 1340 1266 

S 133 1578 105 15 

V 5 317 2253 617 

 

F 52 15 4 317 A
n

n
o

ta
ti

o
n

 

4. Discussion and conclusions

In this work we proposed and studied a set of features

derived from a multilead wavelet transform of the ECG.

According to our results, the best performing model con-

sisted in 28 features locally adapted (FVrel), followed by

LDA for dimensionality reduction and a minimum Maha-

lanobis distance classifier. For this model the first LDA

dimension mostly separates classes N and V, and the fea-

tures most correlated to this projection are those related

to QRS morphology (QRSW , QRSEiand QRSRi). The

second and third LDA projections jointly separate classes

N and S. The features more correlated with them are the

preQRSi. However, as it can be seen in Tables 3 and 4 the

discrimination ability is still poor.

It was observed in the final test an unexpected improve-

ment in S sensitivity and positive predictivity with respect

to the training set performance, previously seen in [4]. This

improvement could be caused by the different amount of

class S examples present in DS1 and DS2. Most previ-

ous works present the classification performance as in ta-

ble 2 or 3, following AAMI recommendations. However,

in databases like MIT-BIH where one class is one or two

order of magnitude greater than the others, some indica-

tors like accuracy or false positive rate may become opti-

mistically biased (see table VII in [4]), and sensitivity or

positive predictivity should be used. Also the confusion

matrix provides greater insight into the classification per-

formance.

This preliminary work showed the feasibility of using

the multilead wavelet analysis features for ECG classifi-

cation, though more development is needed to achieve the

performances obtained in previous works.

Acknowledgments

This work was supported by projects TEC-2004-05263-

C02 from CICYT and GTC T-30 from DGA (Spain).

References

[1] Taylor GJ. 150 Practice ECGs: Interpretation and Review.

Blackwell Science, 2002. ISBN 0-632-04623-6.

[2] Hu YH, Palreddy S, Tompkins W. A patient-adaptable ecg

beat classifier using mixture of experts approach. IEEE

Transactions on Biomedical Engineering 1997;44:891–899.

[3] Lagerholm M, Peterson C, Braccini G, Edenbrandt L,

Sörnmo L. Clustering ecg complexes using hermite func-

tions and self-organizing maps. IEEE Transactions on

Biomedical Engineering 2000;47:838–848.

[4] de Chazal P, O´Dwyer M, Reilly RB. Automatic classi-

fication of heartbeats using ecg morphology and heartbeat

interval features. IEEE Transactions on Biomedical Engi-

neering 2004;51:1196–1206.

[5] Christov I, Jekova I, Bortolan G. Premature ventricular con-

traction classification by the kth nearest-neighbours rule.

Physiological Measurement 2005;26:123–130.

[6] Mark R, Moody G. Mit-bih arrhythmia database 1997.

http://ecg.mit.edu/dbinfo.html, 1997.

[7] de Chazal P, Reilly RB. A patient-adapting heartbeat clas-

sifier using ecg morphology and heartbeat interval fea-

tures. IEEE Transactions on Biomedical Engineering 2006;

53:2535–2543.

[8] Llamedo Soria M, Martínez J, Laguna P. A multilead

wavelet-based ecg delineator based on the rms signal. In

Computers in Cardiology 2006. IEEE Computer Society

Press, 2006; 153–156.

[9] Almeida R, Martínez JP, Rocha AP, Olmos S, Laguna P.

Automatic multilead vcg based approach for qt interval

measurement. In Computers in Cardiology 2006. IEEE

Computer Society Press, 2006; 369–372.

[10] Lux RL, Gettes LS, Mason JW. Understanding proarrhyth-

mic potential in therapeutic drug development: alternate

strategies for measuring and tracking repolarization. Else-

vier Journal of Electrocardiology 2006;39:S161–S164.

[11] Martínez J, Almeida R, Olmos S, Rocha A, Laguna P.

A wavelet-based ecg delineator: Evaluation on standard

databases. IEEE Transactions on Biomedical Engineering

2004;51:570–581.

Address for correspondence:

Mariano Llamedo Soria

Universidad Tecnológica Nacional – Dpto. de Electrónica

Medrano 951 - C1179AAQ – Capital Federal, Argentina

llamedom@electron.frba.utn.edu.ar

108


