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Abstract—Electrophysiological simulations are computation-
ally expensive tasks. These kinds of simulations are usually
run on super-computers or clusters, which may be expensive
or difficult to access. In this work we present DENIS@Home,
a simulation platform that follows the Volunteer Computing
paradigm. DENIS@Home is based on BOINC, a volunteer
computer environment used worldwide, and on CellML, an open
standard for mathematical modeling. In this paper we describe
the system and show its advantages over more traditional
approaches, and also discuss its potential utility for the scientific
community.

I. INTRODUCTION

Mathematical models of the heart’s electrical activity are a

powerful tool in cardiac research. These electrophysiological

models can be used to analyze what is happening inside the

cardiac cells during a disease, when a drug is given, or in many

other situations. From the earliest mathematical models, the

complexity of recent electrophysiological models has grown

considerably, and, consequently, the computational cost of

simulations has also grown.

The overall trend in recent years is to simulate thousands

of variations of the same electrophysiological model with the

purpose of reflecting the variability exhibited in live-cell exper-

iments, and of predicting better the variable cardiac behavior

in different subjects. For example, in [1] the authors analyzed

an initial population of 10,000 models to find 213 candidate

models that are fully consistent with the experimental data.

In [2], a genetic algorithm was used to get a more accurately

parameterized model. They needed to simulate 100 generations

of 500 individuals (a total of 50,000 simulations).

This kind of problem can be solved by using supercomput-

ers, but access to these infrastructures can be really restrictive

because of their huge acquisition and maintenance costs. In

this work we present an architecture based on Volunteer Com-

puting (VC) that helps to overcome that limitation. The DENIS

project (Distributed Computing, Electrophysiological Models,
Networking Collaboration, In Silico Research, Sharing Knowl-
edge, http://denis.usj.es) can help groups of scientists who do

not have access to a supercomputer to carry out their research.

In this paper we describe how the VC simulator that is

inside the DENIS project, works, and how the project can run a

vast number of simulations based on collaboratively-generated

CellML models. Also, we demonstrate the capabilities of the

project with a use case.

II. BACKGROUND

DENIS is built upon two different projects. The first one is

BOINC, a pioneering resource for volunteer computing that

serves as a basis for different projects. The other one is the

CellML language, which is an open standard based on the

XML markup language to store and exchange computer-based

mathematical models. Both projects are summarized next.

A. Volunteer computing and the BOINC Project

Volunteer computing (VC) is a computational paradigm in

which volunteers provide computing resources to projects.

Projects make use of the volunteer’s resources to perform com-

putational operations requiring a huge quantity of computing

power. In VC systems, the work is divided into smaller work

units, and each work unit is sent to a different volunteer’s com-

puter (a host) to be carried out. In this way, by simultaneously

running a number of units, the work can be completed much

faster than in a dedicated machine.

The most extended VC platform is the Berkeley Open
Infrastructure for Network Computing (BOINC) [3]. This

platform provides researchers with a set of tools to coordinate

the work, a web page to show the progress of the project, and

forums that enable volunteers to contact the administrators

and other volunteers. A lot of VC projects use BOINC as

scheduler of their work, since it is especially useful to solve

problems that need huge compute capacity. Some BOINC

projects have an enormous list of volunteers like SETI@Home

or EINSTEIN@Home than can handle thousands of hosts with

computing power in the order of PetaFLOPS.

The problems to be solved by BOINC projects are divided

into small parts that are sent to volunteers. This approach

generates a server central architecture that coordinates an

entire and powerful computer network with just a small server.

To execute the software and coordinate work, each host of the

network has to install the BOINC client. The client program

is the same for all BOINC projects and allows volunteers

to choose which projects they want to collaborate with. The

BOINC client acts as an interface between the BOINC servers

and the host. It downloads the correct executable version to
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the host as well as the configuration files generated for each

task. When the task is completed, it uploads the resulting file

to the server and sends information about the task’s status (for

example, whether the simulation was aborted by errors, or if

it could not be run for other reasons).

B. CellML
CellML language [4] is an open standard based on the XML

markup language. It has been created to share computer-based

mathematical models. The parts of a CellML model are: a) the

information about the model structure (how it is organized),

b) the equations describing the system using MathML, and c)

metadata that contains additional information about the model,

which allows researchers to search for model components or

for the model itself in a database or repository.
One of the most useful features of CellML is its reusability.

As pointed out by Gianni et al. [5], scientists can share

variables between different models, which makes it easy to

generate one model as an upgrade of another model. Also,

CellML is based on XML, so it is not language or platform-

dependent. By using its API, models can be exported from

CellML to different programming languages.
A growing community is using CellML to build and share

computer-based physiological models. For example, the Phys-

iome Model Repository(PMR) [6] contains more than 500

different CellML models ordered by category. DENIS uses

CellML as a standard for the input models. The large number

of available models and all the advantages mentioned above

make it an adequate choice for our project.

III. RELATED WORK

The need for computational power to run electrophysiolog-

ical simulations has been addressed with different approaches,

some of which are summarized next. The initial versions of

these simulation tools were run on regular desktop comput-

ers, although nowadays most of them try to parallelize the

simulations by using clusters and GPUs.
OpenCOR [7] is an open source and cross-platform tool for

single cell simulations based on COR [8]. It’s a desktop ap-

plication that allows users to create, edit and simulate CellML

Models. It has a big community behind it that modifies the

software and uses it intensively. It’s also based on OpenCell,

which is an older modeling environment of cell simulations.

Its strongest point is the ease of use. However, it runs on

stand-alone computers, which makes it useful only for small

simulations.
EMOS [9] is a simulation software written in FORTRAN

that uses MPI to simulate electrophysiological models using

different computers. This software simulates from isolated

cells to the complete heart. It is a finite element code for the

resolution of the monodomain equation based on the Operator

Splitting algorithm. It has 11 different models encoded. The

post-processing software generates output compatible with

Ensight and Paraview visualization software.
CHASTE project [10], [11] also uses the CellML repository

and translate models to C++ code in order to execute simu-

lations in different scales (from single cells to the complete

heart). It offers numerous numerical methods to solve the

ordinary differential equations in the models. As previous

platforms, it is oriented to run on a single computer or in

a cluster.

Myokit [12] was developed in Python, and uses thread

control to enable the parallelization of the simulation inside

the same computer, and OpenGL to parallelize in graphic cards

(GPGPU). It is able to simulate from single cell to 2D tissues

using an great variety of models from PMR.

Mena et al. [13] uses GPUs to parallelize the simulation.

Their solutions can improve 180x the time to solve the

simulation, making it possible to simulate an entire heart.

The Cardiac Electrophysiology Web Lab [14] is an online

tool for the characterization and comparison of electrophysio-

logical cell models in a wide range of experimental scenarios.

All the models used are coded in CellML and the system

currently contains a sample of 36 models and 23 protocols,

including current-voltage curve generation, action potential

properties under steady pacing at different rates, restitution

properties, block of particular channels, and hypo/hyper-

kalemia.

DENIS, our approach, also uses CellML to define the

models, as do most of these projects. However, the main

difference between their work and ours is that DENIS can

use an entire network of personal computers or clusters to

perform the computations, by distributing the simulations

between all the nodes in the network. This makes it possible

to tackle complex simulation problems that are not feasible

for standalone computers.

IV. SYSTEM OVERVIEW

The architecture of the solution can be divided into two

parts. The first one, named DENIS Simulator, is the appli-

cation that runs on the hosts, and the second one, named

DENIS@Home, is a collection of BOINC services that co-

ordinates the distribution of the DENIS Simulator and sends

the work and configuration files to the hosts.

A. DENIS Simulator

DENIS Simulator is the application that runs in the volun-

teer’s computers (Fig. 1). This application simulates electro-

physiological models described in CellML files under specific

conditions. It is generated by using the CellML API and the

BOINC API. DENIS Simulator needs to be compiled to dif-

ferent platforms in order to be executed in the heterogeneous

computing network of volunteers.

1) CellML Exporter: In DENIS, CellML models are ob-

tained from the PMR. Other models can be added to the

DENIS Simulator, but they have to be tested before their ad-

dition. To include CellML models into the DENIS Simulator,

a CellML exporter was developed to translate from CellML to

C++. This tool generates a C++ library with all the models.

This library is later called from the mathematical solver of

DENIS Simulator.
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Fig. 1. Architecture of DENIS Simulator

2) Mathematical Solver of DENIS Simulator: DENIS Sim-

ulator uses the Forward-Euler numerical method to solve the

electrophysiological model’s ordinary differential equations.

The solver collects the model’s equations from the library

generated with the CellML exporter.

3) BOINC API: The BOINC API provides different tools

to abstract the application development from the host that

performs the simulation. DENIS simulator uses the BOINC

API to: a) store checkpoints, b) get input files and generate

output files that the services of BOINC can recognize, and c)

provides simulation progress to the volunteer.

Checkpoints are a critical part of DENIS Simulator, es-

pecially for long simulations. Volunteers may not share any

resources with DENIS@Home at a given time, or may share

them between different BOINC-based projects. The software

stores the simulated data in a temporal file to avoid losing

information if the task is stopped at the volunteer host.

4) Multi-Architecture Compilation: DENIS Simulator is

compiled for different platforms, so that it can run in as many

volunteer hosts as possible.

When a new version of the application is suitable to be

released, it is compiled by using Virtual Machines running old

versions of the most common Operating System to maximize

the compatibility for volunteer hosts. At the moment, DENIS

Simulator is compiled for 6 alternatives: 32 and 64 bit versions

of GNU Linux, Microsoft Windows and MAC OS.

After compilation, each executable is software-signed. That

prevents attackers distributing malicious software as an official

version of DENIS Simulator. To avoid an external attack,

the signature process is made in a live USB GNU Linux

encrypted device, and the entire process is done without

internet connection.

B. Simulations workflow

The sequence of steps necessary to complete a simulation

is shown in Fig. 2. Simulations start with a configuration file.

This file is filled by the scientist that wants the simulation

undertaken. It contains different parameters that are necessary

to run the simulation: the model to be simulated, duration of

the simulation, time step for the integration of the model, the

output frequency, new value for constants of the model, and

the output variables that will be stored in the output file.

Each job of DENIS@Home consists of a configuration file

and the DENIS Simulator (Fig. 2.(1)). When a job is launched

it generates a workunit (Fig. 2.(2)) that creates two tasks

with the same configuration file (Fig. 2.(3)). These identical

tasks are sent to two different volunteers. This redundancy

is included to protect the results against hacking attempts or

simulation problems. When the volunteers end their tasks, the

BOINC client sends back the results. In step (4), the results

of both volunteers are compared, and if they are not equal a

third identical task is generated and sent to another volunteer.

This process is repeated until at least two tasks produce the

same results, with a limit of 10 retries. The third task will also

be generated if one of the first tasks reaches the task deadline

without finishing. The task deadline is the maximum allowed

time between the reception of the task by the host and the

sending of results.

C. Architecture of DENIS@Home

All BOINC-based projects [3] consist of three main blocks:

web server, task server and data server. In this section we

Fig. 2. Steps necessary to complete one simulation.
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Fig. 3. DENIS@Home Architecture diagram

describe how the general structure has been adapted for

DENIS@Home.

1) Web server: allows the users to interact between them

and the staff. It is useful for reporting bugs on the application

or improvements to the DENIS Simulator or work distribution.

The web server is also used by the BOINC client to request

new tasks and send results of the finished tasks to the host.

2) Task server: consists of different services that organize

and dispatch the work to the users. It greps the configuration

files and the application and prepares them to be sent to the

volunteers. This block is composed of the following elements:

a) Feeder: responsible for creating a workunit for each

configuration file on the input folder. Each workunit is stored

in the Workunit System which is responsible for generating the

necessary tasks in order to obtain a valid result.

b) Validator: compares the result files received from

different volunteers for the same workunit. The validation

process is done by comparing 10 lines of the result files

selected randomly. To check the entire document could cost

so much time and this could overload the server. If they match

as equal, the workunit is closed and marked as validated. If

the results are different, one new task is created to test against

them. Once a workunit is validated, the result files are sent to

the Assimilator.

c) Assimilator: selects one of the matching result files

and saves it into the Results folder in the Data Server. The

result file is stored as a readable CSV file that can be easily

imported into spreadsheet software. This file contains the time

and the results of the variable that were marked as output in

the configuration file.

3) Data server: consists of the different databases to store

information about the state of the simulations and the storage

systems for the configuration, result files, and the electrophys-

iological markers.

a) Google Drive synchronization: Due to the vast

amount of data that can be generated in DENIS, results

storage is a critical point. If all data is stored in the server,

it could collapse, and it is expensive to create and maintain

a big storage system. To avoid that problem and to facilitate

scientists communicating their result files, we have connected

DENIS with Google Drive.

Each scientist has a folder structure inside Google Drive

with three folders: DENIS-Config, DENIS-ToSend, and

DENIS-Results. They can generate the configuration files and

store them in DENIS-ToSend. Periodically, the Google Drive
Synchronization module collects the files from this folder and

save them in the Input folder. The configuration files are also

copied to the DENIS-Config folder in Google Drive to indicate

that the simulations have been sent.

Once the result files are copied to the Output folder by the

Assimilator, the Google Drive Synchronization module moves

them to the DENIS-Results folder in Google Drive.

b) Workunit system: This module manages the workunits

created by the Feeder. For each workunit, two tasks are created

and sent to different volunteers in the network. In order to

mark one workunit as finished, two tasks have to be completed

with the same result. As described above, if the validator

detects that the results are different, a new task is sent. This

module also controls the tasks deadline (or delay bound as

referred to in BOINC projects).
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c) Database of electrophysiological markers: There are

several electrophysiological markers that are always computed

in cardiac simulations. In order to facilitate scientists to reuse

and share them, the results are stored in a No-SQL database.

This information can be also used to calibrate model popula-

tions for problems as the ones showed in the introduction of

this paper.

V. DENIS@HOME TEST CASE

Volunteer computing is commonly used to solve multi-

dimensional problems, and to carry out highly parallelizable

tasks. The study of different sized tasks is useful to see how

the network works with varying tasks size and which ones are

suitable to electrophysiological simulation.

In order to answer this question, we performed an ex-

periment that consisted of sending blocks of simulations of

different lengths. We then analyzed the time costs for the

completion of the tasks in each block. Although the number

keeps increasing steadily, DENIS@Home had 20,915 regis-

tered hosts when the experiment was performed.

A. Test Design

Groups of 10,000 tasks were simulated. Each group of tasks

had a different simulation length: 200, 400, 600 and 1000

seconds of cell activity. The model selected for the experiment

was the one proposed by Carro et al. [15] using a time step

of 0.002 ms to solve the differential equations. Only the last

second of each simulation were stored in the result file with

and time step of 0.1 ms.

Each group of tasks got a different delay bound to accom-

plish the entire work: 4, 5, 6 and 10.5 days respectively. This

time was selected based on the computational cost of each

task for a normal user.

Two values were extracted from the DENIS@Home

database to analyze the behavior of the different groups of

tasks: the time to process each task and the time-difference

between the creation of the workunit and the validation of the

result.

B. Results

The collection data period was 1 month. During this month,

36 groups of 200 seconds, 31 groups of 400 seconds, 31

groups of 600 seconds and 20 groups of 1000 seconds were

completely simulated. We discarded groups of tasks that had

not been completed at the end of the month, and measured the

average time to completion for the different groups of tasks.

As expected, the average time spent in the host (since tasks

were received from the server until the simulations of the

electrophysiological model finished) increased with the length

of the simulation in most cases (see Fig. 4.(a)). The 50% of

the 200-second-length tasks were completed in 1.58 hours, the

400-second-length tasks in 2.59 hours, the 600-second-length

tasks in 4.27 hours, and the 100-second-length tasks in 8.30

hours. For a 75% completion, the differences between groups

were smaller: the 200-second-length tasks were completed in

5.26 hours, of the 400-second-length tasks in 5.32 hours, of
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Fig. 4. Time to completion for different groups of tasks. (a) Percentage of
completed tasks vs. average time spent in the host. (b) Percentage of completed
tasks vs. average time from the creation of the workunit until the task finishes.

the 600-second-length tasks in 6.35 hours, and of the 100-

second-length tasks in 13.73 hours.

The total average time spent in the system (since workunits

were created until simulations of the electrophysiological

model finished) increased with the length of the simulation,

but for short simulation lengths differences were small (see

Fig. 4.(b)).

VI. DISCUSSION AND CONCLUSIONS

In this work we presented DENIS, a simulation platform

based on BOINC and CellML. To demonstrate its capabilities

we performed a test in which we measured the time needed to

complete electrophysiological simulations of different lengths.

In Fig.4.(a), the first tasks to finish were the shortest ones.

However, all tasks experienced delays and stops, so the time

spent in the host was a sum of the computation time and

idle time. In some cases the computation time for the shortest

tasks was negligible in comparison with the idle time, which

made the completion curve of the shortest tasks slow down

for percentages over 70%.

Both in Figs.4.(a) and (b) there was a gap between short

simulations (200, 400 and 600 seconds) and long ones (1000
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seconds). In Fig.4.(a) this gap was due to differences in the

length of the tasks, as was in the middle part of the curve of

Fig.4.(b). The gap in the final part in Fig.4.(b) (percentages

over 95%), however, seemed to be a consequence of the

differences in the delay bound. When a volunteer did not finish

a task within the allotted time, the task was sent to a different

volunteer with a new deadline, which greatly increased the

total completion time for that group of tasks.

As shown in Fig.4, simulation size had a relatively small

effect on the time to completion of a group of tasks. This poses

a great advantage over stand-alone computers, in which com-

pletion time increases proportionally with simulation length.

Furthermore, the completion rate vs. total time increased

steeply up to around 85%. This fact suggests that our system

is especially suitable for exploratory studies in which pre-

liminary results are needed in order to improve the model,

such as model adjustment [1] or preliminary studies using

approximated values of the markers in the database generated

by DENIS.

DENIS@Home started as a novel BOINC project and has

grown steadily since it started. At the beginning just a few

beta testers collaborated with the project but in February 2016

there are 3492 volunteers collaborating with 29876 hosts.

The computing capacity of DENIS@Home reached a peak of

97563.79 GigaFLOPS on October 2015. Such capacity makes

it possible to tackle new simulation projects that were not

viable in the past.
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