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Abstract— Quadratic time-frequency (TF) distributions have
an excellent joint TF resolution, but their applicability is limited
by the presence of interferences. Interferences make a measure
of TF coherence (TFC) based on these distributions inconsistent,
unless a specific framework is set up to reduce their influence.
In this communication, a framework for robustly estimating
TFC, based on signal-dependent smoothing of the Wigner Ville
distribution, is shown to provide a reliable continuous quan-
tification of cardiorespiratory and cardiovascular interactions
during non stationary conditions. Performance of the estimator
is evaluated through a simulation example. Linear coupling
between HRV and PTTV is then explored during segments of
polysomnography recordings characterized by DAP episodes
related to OSA. It is observed that when a DAP occurs TFC
increases in LF range and decreases in HF range (p < 0.05).

I. INTRODUCTION

Spectral coherence has been widely applied to quantify
the strength of linear relationship between two signals. This
measure, being defined in the frequency domain, can not
assess the time evolution of the coupling between two signals
and it is not appropriate for studying non stationary signals
or transient phenomena. To assess the time evolution of
linear coupling an extension of spectral coherence in time-
frequency (TF) domain is necessary. In literature, multivari-
ate parametric analysis has been proposed to continuously
measure the mutual interaction between heart rate variability
(HRV) and systolic blood pressure variability during tilting
[1]. An other model based time-varying coherence function,
able to estimate separately feedforward and feedback path
of a close-loop, has been recently proposed and applied to
explore the coupling of renal blood pressure and blood flow
[2]. Parametric models are attractive because, thanks to their
mathematical modeling, they provide a way to disentangle
feedback and feedforward mechanisms, to identify systems
also in close-loop conditions [3] and to evaluate the causal
direction of a coupling [4]. Nevertheless, their performance
in estimating the time varying spectral characteristics of a
signal is related to the capability of fitting the appropriate un-
derlying model and, in extremely non stationary conditions,
they have been observed to perform less accurately than
non parametric methods [5]. In a non parametric context,
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a measure of Time-Scale coherence, based on Continuous
Wavelet Transform, has been recently applied to the study
of cardiorespiratory interaction [6]. Non parametric methods
have the advantage that they do not need any kind of
assumption on the mathematical structure of the observed
phenomenon and that they are relatively easy to estimate.
Quadratic TF distribution represent a very powerful tool for
the study of non stationary signals and transient phenomena
and they have been widely applied to the study of autonomic
nervous modulation [7]. Theoretical properties of TF coher-
ence γ(t, f ) defined using quadratic distributions have been
first described in [8] and [9], but, to our knowledge, it has
never been used in biomedical applications. It is defined as:

γ(t, f ) =
Cxy(t, f )C*

xy(t, f )
Cx(t, f )Cy(t, f )

(1)

where Cxy(t, f ) is the cross TF spectrum and Cx(t, f ) and
Cy(t, f ) are the auto TF spectra, of signals x(t) and y(t),
respectively. In [8] authors claim that choosing the positive
distributions of the Cohen’s class, the TFC in (1) main-
tains the desirable properties of the spectral coherence, in
particular, it results to be bounded almost surely by unity
(0 for totally uncorrelated signals and 1 for perfect linear
correlation). In [9] it has been shown how (1) is properly
bounded for jointly underspread processes, i.e. process x(t)
and y(t) which do not have a widespread TF correlation.
The main problem for the definition of a TFC based on
quadratic distributions and bounded by unity is related to
the presence of interference terms (ITs). Biological signals
are often highly correlated in time and frequency (over-
spread) and a smoothing is needed to suppress ITs, but at
detriment of joint TF resolution. The main purpose of this
communication is to present an estimator for TF coherence
based on signal-dependent quadratic TF representations and
bounded to one in TF regions of interest. Its suitability for the
continuous estimation of the interactions in cardiorespiratory
and cardiovascular systems during non stationary conditions
is discussed through a simulation study.
Real data application aiming at exploring the linear rela-
tionship between HRV and pulse transit time variability
(PTTV) will be also presented. The high frequency com-
ponent (HF, range [0.15-0.4] Hz) of the HRV signal is
known to be strictly related to the parasympathetic system,
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through respiratory sinus arrhythmia (RSA), while the low
frequency component (LF,range [0.04-0.15] Hz) of the PTTV
signal is thought to be directly affected by sympathetic
vasoconstriction. The other two components (LF of HRV and
HF of PTTV) are not that clearly related to an unique phe-
nomenon. The quantification of the linear coupling between
HRV and PTTV spectral components during a decrease in
the amplitude fluctuations of photopletysmography (DAP),
may provide useful information for better understanding how
autonomic modulation is reflected in both signals.

II. METHODOLOGY
A. Quadratic Time-Frequency Distributions

The Wigner Ville distribution (WVD) is known to provide
an excellent joint TF resolution. Unfortunately, the presence
of ITs makes its applicability very limited. In order to reduce
ITs, smoothed versions of the WVD, belonging to the Co-
hen’s Class, have been proposed. Smoothing is performed as
a 2D convolution between the WVD and a 2D kernel (defined
in TF plane), which completely defines the properties of the
distribution. Each distribution in the Cohen’s Class can be
interpreted as the 2D Fourier transform of a weighted version
of the Ambiguity Function (AF) of the signal to be analyzed
[10]. The cross-TF spectrum can be defined as:

Cxy(t, f ;φ) = Wxy(t, f )∗∗φ(t, f ) = F τ→ f
ν→t

{Axy(ν ,τ)Φ(ν ,τ)}

Axy(ν ,τ) = Ft→ν

{

x(t +
τ
2
)y*(t −

τ
2
)
}

(2)

Φ(ν ,τ) = F t→ν
f→τ

{φ(t, f )}

In (2) ∗∗ is the 2D convolution on t and f , F{·} is the
Fourier Transform operator and Axy(ν ,τ) is the cross-AF of
signals x(t) and y(t). The weighting (smoothing) function
Φ(ν ,τ) (φ(t, f )) performs as a 2D low pass filter which
should be tuned in order to find the better trade-off between
ITs suppression and joint TF resolution (in TF domain) or,
dually, between cross-component suppression and auto-terms
concentration (in ambiguity domain). As the geometry of
the kernel completely defines the performance of the TF
distribution some efforts should be done toward the definition
of versatile kernels, capable of automatically adjust to the
TF structure of the signals being analyzed [11],[12]. Here,
an elliptical exponential kernel is used:

Φ(ν ,τ;ν0,τ0,λ ) = exp

{

−π
[(

ν
ν0

)2

+

(

τ
τ0

)2]2λ
}

(3)

The kernel’s iso-contours are ellipsis, ν0 and τ0 affect the
length of the axes (the bandwidth of the 2D low pass filter)
whereas λ sets its roll off.

B. The signal-dependent smoothing

Signals affected by the autonomic modulation may be
modeled as the sum of complex exponentials showing both
amplitude (AM) and frequency (FM) modulation, embedded
in noise. In this study 2 exponentials are considered to model
a AM LF and a AM-FM HF components:

x(t) = ALF(t)eiφLF(t) +AHF(t)eiφHF(t) +ξ (t) (4)

where instantaneous frequency is F(t) = (dφ(t)/dt)/(2π).
Quadratic TF distributions of these kinds of signals are
expected to present both outer and inner ITs [13]. In order to
suppress outer ITs, which mainly oscillate in time direction
with a frequency which locally depends on the frequency
lag νi = FHF − FLF, the kernel should be able to filter out
all ν > νi,min, where νi,min corresponds to the slowest ITs. To
obtain νi,min, the estimation of FLF(t) and FHF(t) is required. A
direct or indirect estimation of respiratory rate can be used
for approximating FHF(t). For the estimation of FLF, which in
the AF results to be concentrated along a line, the Hough
Transform (HT) is applied to |A(ν ,τ)|. Due to the hermitian
symmetry of the AF, HT can be performed just on (ν ,τ) > 0
resulting faster than in TF domain. The parameter ν0 in (3)
is fixed imposing that Φ(νi,min,0;ν0,τ0,λ ) = k << 1

ν0 = νi,min

(

−log(k)
π

)- 1
4λ

(5)

Given that, no information can help to retrieve the geometry
of inner ITs, which mainly oscillate in frequency direction,
in order to find the τ0 providing a good compromise be-
tween inner ITs suppression and TF resolution, an iterative
process is proposed. The parameter τ0 is gradually reduced
(increasing smoothing) until auto TF spectra are positive or,
eventually γ(t, f ) is bounded to unity in the TF region of
interest. Using the former criterion (Cx(t, f ) >0), the inner
ITs are not completely removed, but their oscillations never
take negative values. Figures 1a-1b represent the case of an
insufficient smoothing. Outer ITs are still present at midway
between the two components and, as expected, they are
higher where the two signal spectral components are closer.
In Fig. 1c -1d the TF map computed with the optimized ν0

is shown. It is free from outer ITs but not from inner ones
(see Fig. 1d around 0.3 Hz). Finally, in Fig. 1e-1f the τ0 for
Cx(t, f ) >0 is used.
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Fig. 1. Left: auto TF spectrum Cx(t, f ); x(t) components are shown in Fig
(2) and SNR=10dB; Right: Cx(t0, f ), with t0 marked by a dotted line in the
left panels. (a)-(b): insufficient smoothing. (c)-(d): smoothing performed
with a kernel optimized for outer ITs suppression. (e)-(f): smoothing
performed with a kernel optimized for both outer and inner ITs attenuation.
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C. Time-Frequency region of interest

The restriction of the TF support to a region of interest
Ω(t, f ) is justified by the desire of finding a good com-
promise between high joint TF resolution and boundness of
γ(t, f ) by 1 (full suppression of ITs). The region of interest
is then defined as the TF region Ω(t, f ) where

∀t, C(t, f ) > a ·max
f

[C(t, f )] (6)

with a <1 and Ω(t, f ) = Ωx(t, f )∩Ωy(t, f ). Once γ(t, f ) has
been estimated, it is possible to track the time evolution of
a single component coupling γ̄LF(t) and γ̄HF(t) by averaging
γ(t, f ), defined in Ω(t, f ), in LF and HF bands, respectively.
In addition, a mean spectral coherence γ̄( f ) (generally differ-
ent from traditional spectral coherence) is retrieved averaging
TFC on time. In those rare cases when, despite the positivity
of both auto spectra, for some few points (t0, f0) ∈ Ω(t, f )
γ(t, f ) >1, the iterative process to compute τ0 continues until
the number of (t0, f0) is decreased to a very small, empirically
determined, percentage of Ω(t, f ) and the remaining (t0, f0)
are excluded from Ω(t, f ). In this way TF resolution and the
consistency of the estimator can be both preserved. Those
situations are due to inner interferences, which create small
oscillations in the auto spectra which are not present in the
cross-spectrum.

III. MATERIALS

A. Simulation study

In a simulation study the model described in (4) is
used to obtain 2 deterministic signals, x(t) and y(t), whose
instantaneous frequencies and amplitudes are shown in Fig.
2. In both cases FLF is constant and FHF(t) varies sinusoidally,
which may model a situation of periodic breathing (abnormal
respiration in which periods of shallow and deep breath-
ing alternate). Amplitudes of x(t) components are constant,
whereas Ay,LF(t) and Ay,HF(t) linearly change in time. Note that
x(t) and y(t) are coupled in LF band whereas no coupling is
present in HF band. Moreover, in order to simulate a strong
decorrelating event, during the interval Tξ (see Fig. 2) y(t)
is replaced by a white noise with the same variance as y(t).
This abrupt change also introduces a very high amount of
ITs in Cy(t, f ). One hundred pairs of signals, sampled at 4
Hz, have been created for SNR=20,10,5 dB and their TFC
have been estimated.

B. Real data application

Real data application aims at exploring the linear rela-
tionship between HRV and PTTV (i.e. the time it takes
a pulse wave to travel between two arterial sites) during
DAP episodes related to obstructive sleep apnea (OSA).
As detailed in [14], 175 selected signal segments cen-
tered around a strong DAP were extracted from complete
night polysomnography recordings from 21 children (age
4.47±2.04). Pulse transit time was estimated as the interval
between the peak of the R-wave on the ECG and the 50%
peak value of the corresponding pulse in the finger pad
measured by PPG. For every segment, the time evolution of

the HRV-PTTV coupling in LF and HF band was extracted
from the TFC.
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Fig. 2. Instantaneous frequencies (a) and amplitudes (b) of x(t) and y(t)
used in the simulation study. In Tξ y(t) is replaced by a white noise.
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Fig. 3. (a): TFC, group average on 100 realization, between signals
described in Fig 2 when SNR=10 dB. Color map goes from 0 (white) to 1
(black). (b) γ̄( f ) is extracted from γ(t, f ) averaging TFC on time. (c) γ̄B(t)
is the trend of the coupling in B={LF,HF}. Continuous, dashed and dotted
lines correspond to a SNR = 20, 10, 5 dB respectively. In Tξ y(t) is replaced
by noise.

IV. RESULTS AND DISCUSSION

A. Simulation study

Simulation results are shown in Fig. 3. The parameters
ν0 and τ0 have been estimated as explained above, λ=0.25,
k=0.002 and a=0.08. When positivity of the auto spectra
was not sufficient to bound γ(t, f ), smoothing continues
until reaching a quantities of not bounded points < 0.2%
of Ω(t, f ). Note that γ(t, f ) is high in LF band, except
for the interval where noise replaces y(t). The discontinuity
introduced in Tξ is detected with a good time resolution and,
as expected, correlation decreases with noise. The thinning
of Ω(t, f ) observed in the latest part of the simulation (see
Fig. 3a) is due to the contemporary increasing of Ay,HF(t) and
decreasing of Ay,LF(t). Given that the points (t0, f0) /∈ Ω(t, f )
are not taken into account, the change in Ω(t, f ) does not
affect the estimation of γ̄LF(t). In HF, TFC is always very
low, excepted when Fx,HF(t) and Fy,HF(t) overlap (two gray
spots around 60 and 200 s). The low but non zero values
observed during Tξ in HF band are due to the fact that the
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TF region around (Tξ ,Fx,HF(Tξ)) ∈ Ω(t, f ). Note that the TFC
estimator performs robustly even when SNR=5dB.
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B. Real data application
The TFC map of HRV-PTTV coupling in one representa-

tive signal segment is shown in Fig. 4. The white regions in
the TFC map in Fig. 4a represent the TF regions /∈ Ω(t, f )
where γ(t, f ) is not defined. When a DAP occurs (vertical
lines) γ̄HF(t) decreases while γ̄LF(t) increases. In Fig. 5b the
global γ̄m

LF(t) and γ̄m
HF(t) are represented as the median trends

of all the 175 γ̄LF(t) and γ̄HF(t). The interquartile ranges of
the median values of γ̄(t) estimated, for each signal segment,
before (T1), during (T2) and after (T3) the central DAP are
plotted in Fig. 5a. Using both T-Student’s test and Wilcoxon
Test, the global increase of γ̄LF(t) and the global decrease of
γ̄HF(t) during the central DAP result significant (p < 0.05). As
shown in Fig. 4, the value of γ̄(T1) and γ̄(T3) is affected by the
presence of other smaller DAPs. Analyzing separately the 26
signal segments with just one DAP, median values of γ̄HF(T1)
and γ̄HF(T3) are observed to increase up to 0.9, while median
values of γ̄LF(T1) and γ̄LF(T3) decrease to almost zero. Results
support the idea that, in stable conditions, the respiratory
component is equivalently represented in both HRV and
PTTV, despite the fact that this oscillation has an autonomic
origin in HRV and a mechanical one in PTTV. When a
change in autonomic modulation occurs, its different origin
is probably the main cause of γ̄HF(t) reduction. Concerning
the LF band, it has been noticed that a sympathetic activation
tends to increase the PTTV-HRV coupling. This observation
may support the idea that LF in HRV can be interpreted, at
least in part, as a measure of sympathetic activation.

V. CONCLUSION

In this communication a framework for continuously
quantifying the linear coupling of cardiovascular interactions
using quadratic TF distributions has been presented. It rep-
resents an interesting tool for multivariate studies which aim
at understanding how autonomic modulation is reflected in
biomedical signals. This first application shows that in stable
condition HRV and PTTV signals are correlated in respira-
tory frequency band while, during a DAP, their coherence
decreases in HF band and it increases in LF band.
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