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Abstract—The present paper describes a new
least–squares error criterion for the alignment of
two vectorcardiographic (VCG) loops. The crite-
rion is developed to handle certain conditions re-
lated to changes in body position, large differences
in QRS amplitude or high noise levels. Several
examples are included which illustrate the perfor-
mance of the method in terms of, e.g., parameter
estimate accuracy.
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1 Introduction

In continuous ECG/VCG ischemia monitoring, a change
in body position can sometimes be falsely interpreted as
a myocardial ischemic event. While this problem obvi-
ously reduces the performance of the monitoring system,
few recent systems include software targeted to reduce the
number of false alarms due to such positional changes.

A number of recent studies draws special attention to
this problem by investigating the effect of body position
changes on the surface ECG. The effects in the QRS com-
plex and the ST segment were assessed on the standard
12-lead ECG and the derived 12-lead ECG (using a vec-
torcardiographic lead configuration) [1]. It was concluded
that positional changes influence all ECG measurements
although those which are related to the QRS complex are
more susceptible than those related to the ST segment.
Furthermore, the standard 12-lead ECG system seems to
be more susceptible to such changes than is the derived
12-lead system. Similar results, showing that the QRS
complex is more susceptible to positional changes, were
also reported on in [2] and [3].

One of the few papers dealing with this problem
was presented by Jager and coworkers [4], who ex-
plored the Karhunen-Loève transform (KLT) for detect-
ing ST changes related to ischemia as well as nonischemic
episodes due to e.g. body position changes. They devel-
oped a trajectory recognition algoritm that studied the
trajectories of the feature vectors in the KLT space for
both the QRS complex and the ST segment.

In the present paper, detection of body position changes
is considered by investigating the properties of successive

This work was supported by the Swedish National Board for Tech-
nical Development (NUTEK) under Grant No 89-03381P.

vectorcardiographic loops. An estimation method is pre-
sented for finding the angular time series which reflect how
the loop rotates from beat to beat. The method is based
on a least-squares criterion for finding the rotation angles;
the criterion is especially tailored to handle the large am-
plitude differences which characterize the P-QRS interval.
As mentioned above, this interval is of particular interest
since it is susceptible to positional changes while being
less sensitive to ischemia than is the ST segment.

2 Loop alignment

2.1 Signal model

In this paper it is assumed that a VCG loop of the QRS
complex, Z, is related to another, “reference” loop, Z̃R,
but altered by certain geometrical transformations related
to body position changes as well as other extracardiac
factors, e.g. respiration [5]. Both Z and Z̃R are matrices,
the rows of which correspond to the orthogonal leads X, Y
and Z, respectively, in the VCG. The reference loop, Z̃R,
can be estimated, e.g., by averaging of suitable beats from
the onset of the recording or by recursive updating of the
averaged, aligned beats.

Rotational changes of the loop are modeled by the or-
thonormal, 3-by-3 matrix Q; alternatively, this matrix can
be represented by three different rotation angles. A scalar
amplitude factor α is included to account for loop expan-
sion and contraction (this parameter is not explicitly used
for detection of body position changes but indirectly influ-
ences the estimation of τ and Q). Although Z is initially
assumed to be reasonably well synchronized in time to
Z̃R, a refined synchronization is introduced by the shift
matrix Jτ . Assuming that additive Gaussian noise, V, is
present, the observation model is defined by,

Z = αQZ̃RJτ + V (1)

The matrices Z and V are 3-by-N where N denotes the
number of samples in the QRS interval. Due to time syn-
chronization, however, the reference loop Z̃R must con-
tain additional samples ((N +2∆) samples for each lead).
As a consequence, the observed loop Z can be modeled
from any of the (2∆ + 1) possible synchronization posi-
tions in Z̃R.

2.2 Normalized least–squares estimation

In order to reduce the influence of ischemic events on the
angle estimates, the loop alignment is performed over an



early part of the QRS complex, see Fig. 1. Due to the
time synchronization of the loops by Jτ it is necessary to
consider an error criterion for alignment which accounts
for large differences in amplitude.
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Fig. 1. Example of the interval used for loop alignment. The thick
gray line shows the interval that always is included in the loop
alignment while the thinner gray line shows the alignment inter-
val. In the figure, the interval between the dashed-dotted marks
indicate the initial part of the QRS complex.

The solution presented here is to use a criterion in
which the Frobenius norm for the difference between Z
and αQZ̃RJτ is normalized with the scaled and rotated
reference loop, αQZ̃RJτ , i.e.,

ε̆2min = min
α,Q,τ

∥∥∥Z− αQZ̃RJτ

∥∥∥2

F∥∥∥αQZ̃RJτ

∥∥∥2

F

(2)

The minimization of (2) is done by first rewriting it as

ε̆2 =
tr
(
ZTZ

)
+ α2tr

(
JTτ Z̃TRZ̃RJτ

)
− 2αtr

(
ZTQZ̃RJτ

)
α2tr

(
JTτ Z̃TRZ̃RJτ

)
(3)

and then noting that minimization with respect to Q is
equivalent to maximizing the rightmost term in the nu-
merator. By introducing the matrix

Dτ = ZJTτ Z̃TR (4)

it can be shown [5] that the rotation matrix, for a fixed τ ,
is estimated by

Q̂T
τ = UVT (5)

where the matrices U and V result from singular value
decomposition of Dτ , i.e., Dτ = UΣVT .

The parameter α is estimated by differentiating ε̆2 with
respect to α and setting the resulting expression equal to
zero. The scale factor is estimated by,

α̂τ =
tr
(
ZTZ

)
tr
(
ZT Q̂τ Z̃RJτ

) (6)

Finally, the time synchronization parameter τ is obtained
by a grid search over all possible values of τ ,

τ̂ = arg min
τ

∥∥∥Z− α̂τ Q̂τ Z̃RJτ

∥∥∥2

F∥∥∥α̂τ Q̂τ Z̃RJτ

∥∥∥2

F

(7)

which thus defines the optimal estimates of Q and α.

2.3 Angle estimation

In order to get an angular time series, the rotation matrix
is computed for each loop occurring at time ti. The cor-
responding rotation angles can be estimated from Q̂(ti)
as,

ϕ̂Y (ti) = arcsin
(
q̂(1,3)(ti)

)
(8)

ϕ̂X(ti) = arcsin

(
q̂(1,2)(ti)

cos ϕ̂Y (ti)

)
(9)

ϕ̂Z(ti) = arcsin

(
q̂(2,3)(ti)

cos ϕ̂Y (ti)

)
(10)

where q̂(m,n)(ti) denotes the element in the m:th row, n:th

column in matrix Q̂(ti).

2.4 Unnormalized least–squares estimation

In developing a method for detecting body position
changes, the estimation problem was initially studied in
terms of minimization of an unnormalized least–squares
criterion [5],

ε2min = min
α,Q,τ

∥∥∥Z− αQZ̃RJτ

∥∥∥2

F
(11)

Below, the estimators resulting from minimization of (11)
are presented since these are used for comparison. The
estimate of Qτ is identical to that in (5) (the optimal value
may, of course, be conditioned on a different τ), however,
the amplitude factor is instead given by

α̂τ =
tr
(
ZT Q̂τ Z̃RJτ

)
tr
(
JTτ Z̃TRZ̃RJτ

) (12)

The optimal τ is again found as that value which mini-
mizes the Frobenius norm in (11),

τ̂ = arg min
τ

∥∥∥Z− α̂τQ̂τ Z̃RJτ

∥∥∥2

F
(13)

2.5 Rotation matrix constraint

A detailed study of the alignment procedure revealed that
large estimation errors are related to the computation of τ̂ .
When successive beats with similar morphologies are anal-
ysed, one can expect that changes in the electrical axis
are rather small, alternating around a certain equilibrium,
e.g., the rotation angles change within ±15 degrees. This
characteristic implies that the rotation matrix should be
diagonal dominant.

However, at high noise levels it was found that the opti-
mal estimate Q̂ not always possessed this property. This
observation can be interpreted as that the “major part”
of one lead in Z is derived from the other two leads in
Z̃R. When studying the estimate for other values of τ ,
especially those adjacent to the optimal τ , it was found
that the rotation matrix possessed a diagonal dominant
structure.



One technique which corrects this problem is therefore
to discard those Q̂τ which are not diagonal dominant and
then evaluate the error criterion based on the remaining
matrices. A matrix is here defined to be diagonal domi-
nant if its elements fulfil

q2
τ,(m,m) >

∑
m, n = 1, 2, 3

n 6= m

q2
τ,(m,n) (14)

where −∆ ≤ τ ≤ ∆. The resulting set of diagonal domi-
nant matrices are assumed to be contained in the matrix
set Ωτ . The final estimate τ̃ is obtained by a constrained
grid search,

τ̃ = arg min
τ∈Ωτ

‖Z− α̂τ Q̂τ Z̃RJτ‖2F∥∥∥α̂τ Q̂τ Z̃RJτ

∥∥∥2

F

(15)

In the unlikely case of an empty Ωτ , the beat is excluded
from further analysis.

3 Results

The performance of the present method for rotation angle
estimation is exemplified by a number of cases taken from
an ECG database. The database was recorded from 20
healthy subjects who changed their body position accord-
ing to the following predefined pattern: supine, right side,
supine, left side, supine and so on. Each position was held
during one minute.

Obviously, the performance of the alignment method is
influenced by a variety of parameters, e.g., the time syn-
chronization interval, the length of the alignment interval
as well as its absolute position in the QRS complex. The
selection of these parameter values was, for the example
presented below, done on a heuristic basis in order to ob-
tain satisfactory performance.

3.1 Normalized error

Two examples are presented which illustrate the benefits
of using the normalized error criterion in (2) instead of the
criterion in (11). The first example shows the two error
norms as calculated over the entire interval −∆ ≤ τ ≤ ∆
for the initial part of a single QRS complex, see Fig. 2.
Here, it is evident that a large time synchronization in-
terval together with a short alignment interval from the
initial part of the QRS complex results in an improper
choice of τ̂ with the original alignment method due to the
large differences in amplitude within the alignment inter-
val. Using the normalized loop alignment method, the
proper τ̂ is chosen which thus results in reliable estimates
of the other alignment parameters.

Based on the initial part in several consecutive QRS
complexes, the resulting alignment parameters using the
two error criteria are shown in Figs. 3 and 4, respectively,
It is evident that artifactual variations occur in the am-
plitude estimate within the time synchronization interval;
the normalized loop error criterion in (7) produces more
accurate parameter estimates.
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Fig. 2. The error criterion using optimal values for rotation and
scaling as a function of τ for a single beat. A solid line is used for
the original formulation of the error criterion in (11), ε2
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, in (2).
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Fig. 3. Example of (a) scaling estimates obtained by (11). Note the
small values (approximately zero) of the scaling estimates around
10 minutes, 11–12 minutes and 17–18 minutes respectively. In
(b) the same example as in (a) is shown using the normalized
error in (2). At the same instants the scaling estimates are ap-
proximately unity implying correct estimation.
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Fig. 4. Example of (a) rotation angle estimates obtained by (11).
Note the large variation in rotation angle estimates around 10
minutes and 17–18 minutes as well as the erroneous estimates
around 11–12 minutes respectively. In (b) the same example as
in (a) is shown using the normalized error in (2). The large
variation of the estimates are now eliminated at the previously
mentioned time instants.

3.2 Diagonal dominance

In order to illustrate the effect of the constraint on di-
agonal dominance, another example is presented. The
combination of a high noise level and leads with similar
shapes sometimes results in the interchange of two leads,
see Fig. 5. Using the alignment method with a constraint
obviously does not produce the minimum error, however,
the result is more accurate in terms of parameter esti-
mates.
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Fig. 5. Example of diagonal dominance. In (a), the original VCG is
shown , in (b) the nondiagonal dominant aligned beat and in (c)
the constrained aligned beat obtained with the algoritm in (14)
and (15). Note the interchange of signal in leads X and Y in (b),
while in (c), this change is not present.

4 Discussion

The normalized loop alignment formulation was intro-
duced due to problems identified when using only a subin-
terval of the QRS complex as alignment interval. Its prop-
erties suit the case of alignment using a subinterval of the
QRS complex for which results in better estimates of the
alignment parameters. However, it should be pointed out
that the normalized alignment only extends the effective
range regarding the length of the alignment interval and
the time synchronization interval up to a certain degree.
Extending the alignment outside of this interval reducing
the part of the QRS complex utilized in the alignment fur-
ther, erroneous estimates will result. Also, the size of the
alignment interval and the amplitude of the signal in that
interval will affect the reliability of the alignment param-
eter estimates from a statistical point of view. In the case
where the whole QRS complex is used as alignment inter-
val, the difference compared to the original formulation is
negligible.

The constrained estimation of the rotation matrix is
primarily dependent on the shape of the QRS complex.
In the case of a beat with either a low amplitude in one
lead or two or three leads with similar shapes, the likeli-
hood of the rotation matrix to be nondiagonal dominant
increases. The constrained estimation results in more ac-
curate parameter estimates but also a larger mean square
error.

The present method is intended for use in a detector
which finds changes in body position based on tracking of
loop–related rotation angles. However, this method only
describes that part of the detector which extracts the de-
cision signal; work is in progress to develop the over–all
detector structure.
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the Karhunen-Loève transform”, in Computers in Cardiology.
IEEE Comp Soc, 1992, pp. 691–694.

[5] Sörnmo L, “Vectorcardiographic loop alignment and morpho-
logic beat-to-beat variability”, IEEE Trans Biomed Eng, vol.
45, no. 12, pp. 1401–1413, December 1998.

Address of the authors:
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