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Block Adaptive Filters With Deterministic Reference
Inputs for Event-Related Signals: BLMS and BRLS
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Abstract—Adaptive estimation of the linear coefficient vector
in truncated expansions is considered for the purpose of mod-
eling noisy, recurrent signals. Two different criteria are studied
for block-wise processing of the signal: the mean square error
(MSE) and the least squares (LS) error. The block LMS (BLMS)
algorithm, being the solution of the steepest descent strategy for
minimizing the MSE, is shown to be steady-state unbiased and
with a lower variance than the LMS algorithm. It is demonstrated
that BLMS is equivalent to an exponential averager in the sub-
space spanned by the truncated set of basis functions. The block
recursive least squares (BRLS) solution is shown to be equivalent
to the BLMS algorithm with a decreasing step size. The BRLS is
unbiased at any occurrence number of the signal and has the same
steady-state variance as the BLMS but with a lower variance at
the transient stage. The estimation methods can be interpreted
in terms of linear, time-variant filtering. The performance of the
methods is studied on an ECG signal, and the results show that
the performance of the block algorithms is superior to that of the
LMS algorithm. In addition, measurements with clinical interest
are found to be more robustly estimated in noisy signals.

Index Terms—Adaptive filters, deterministic input, event-re-
lated signal, orthogonal expansions.

I. INTRODUCTION

T HE problem of noise reduction in recurrent signals is well
studied and has traditionally been solved by ensemble av-

eraging or by one of its many variations. The time reference
of each occurrence is often synchronized to a known, external
stimulus; however, in certain signals, the time reference is dif-
ficult to observe, and therefore, a fiducial point needs to be es-
tablished for each occurrence by some kind of estimation pro-
cedure. A major disadvantage with ensemble averaging is that
efficient noise reduction is typically achieved at the expense of
using a large number of occurrences for averaging. In order to
better track short-term changes in morphology of a recurrent
signal while still achieving a reduction of the noise level, it is
desirable to develop methods that incorporatea priori informa-
tion on possible morphologies. More recently, modeling of each
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occurrence as a signal that is well described by a truncated linear
expansion of orthonormal basis functions has been studied.

The coefficients of the linear expansion can be estimated
using different approaches. In many situations, the mean square
error (MSE) between the observed and the modeled signals
represents a suitable cost function since it is related to signal
energy. The optimal coefficients are commonly referred to
as the Wiener solution and are determined on an individual
occurrence basis, thus constituting memoryless estimation in
the sense that none of the previous occurrences are included
in the current coefficient estimation. By introducing memory
in the estimator, the variance of the coefficient estimates can
be considerably reduced while the capability of tracking signal
changes in a noisy environment is still available.

Several papers have been presented in the area of biomedical
signal processing where an adaptive solution based on the LMS
algorithm is suggested; see, e.g., [1]–[4]. The reference inputs
to the LMS algorithm are deterministic functions and are de-
fined by a periodically extended, truncated set of orthonormal
basis functions. In these papers, the LMS algorithm operates on
an “instantaneous” basis such that the weight vector is updated
every new sample within the occurrence, based on an instanta-
neous gradient estimate. In a recent study, however, a steady-
state convergence analysis for the LMS algorithm with deter-
ministic reference inputs showed that the steady-state weight
vector is biased, and thus, the adaptive estimate does not ap-
proach the Wiener solution [5]. To handle this drawback, we
consider another strategy for estimating the coefficients of the
linear expansion, namely, the block LMS (BLMS) algorithm,
in which the coefficient vector is updated only once every oc-
currence based on a block gradient estimation. The BLMS algo-
rithm has already been proposed in the case of random reference
inputs and has, when the input is stationary, the same steady-
state misadjustment and convergence speed as the LMS algo-
rithm [6]–[11]. A major advantage of the block, or the transform
domain, LMS algorithm is that the input signals are approxi-
mately uncorrelated (or orthogonal in a more general sense). To
the best of our knowledge, block adaptation has not been con-
sidered previously within the context of deterministic reference
input signals.

An alternative solution to the MSE criterion is to use the least
squares (LS) criterion, where no assumptions on the statistics of
the input signals are invoked. This approach gives the best linear
unbiased estimate, assuming that the measurement error process
is white and zero mean [11], [12]. The LS solution can be cal-
culated recursively by means of the RLS algorithm, which has
an initially faster convergence speed than the LMS algorithm.
When the inputs are random, the improvement in performance
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is achieved at the expense of a large increase in computational
complexity. In contrast, when deterministic and orthonormal in-
puts are used, the complexity is about the same as for the LMS
algorithm.

The selection of orthonormal basis functions is, of course, de-
pendent on the application of interest. In the area of biomedical
signal processing, the analysis of evoked potentials in the elec-
troencephalogram has been based on impulse functions [13],
[14], sine and cosine functions [1], [15], complex exponentials
[16], [17] and Walsh functions [18], whereas the QRST com-
plexes of the electrocardiogram (ECG) have been modeled by
Hermite functions [4], [19] or basis functions that result from
the Karhunen–Loève (KL) expansion [20]. The purpose of the
basis function description is not only noise reduction, as men-
tioned above, but may also be applied to data compression [21],
[22], feature extraction [19], and monitoring [20].

The paper is organized as follows. The Wiener solution for
the linear expansion coefficient is briefly reviewed in Section II
as is its memoryless estimation [the inner product (IP)]. The
BLMS algorithm with deterministic reference inputs is then pre-
sented in Section III. Section IV presents the equivalent transfer
function of the BLMS algorithm and its relation to the IP and
LMS estimators. Section V describes the estimation of linear
coefficients using a different cost function—the weighted least
squares (LS) error criterion. The resulting optimal solution de-
fines the block recursive least squares (BRLS) algorithm; its re-
lationship to the optimal MSE solution is established in Sec-
tion V. A comparative performance analysis of the four estima-
tors (IP, LMS, BLMS, and BRLS) is presented in Section VI in
terms of bias, variance, and definitions of signal-to-noise ratio
(SNR). Finally, the performance of the estimation methods is il-
lustrated in Section VII using KL basis functions to characterize
the ST-T segment of the ECG.

II. MSE ESTIMATION OF EXPANSION COEFFICIENTS

An observed event-related signal can be represented as
a vector, where the subindexdenotes the occurrence
number. When a truncated orthogonal expansion is used, the
estimated signal is a linear combination of basis functions

(1)

where is a matrix whose columns are the basis func-
tions, and is the coefficient vector with . One
approach to finding the optimal linear coefficient vector is
to minimize the cost function defined by the mean square error
between and

(2)

Applying differentiation, we obtain

(3)

Since we have that for any subset of orthogonal
basis functions,1 the Wiener solution for the linear coefficient
vector is

(4)

1It should be noted that for truncated expansionsTT 6= I ; equality only
holds for complete expansions.

This solution can be easily understood because the optimal
signal description in the transformed domain is the projection
of the expected value of the observed signal. This solution
corresponds to a minimum because the Hessian matrix is
positive definite.

The observed signal is commonly contaminated by noise.
Assuming an additive-noise model, each signal occurrence
can be decomposed as

(5)

where is a deterministic signal, and is zero-mean random
noise. The Wiener solution (4) for this signal model is

(6)

i.e., the projection of the deterministic signal in the transformed
domain. Hence, the modeled signal is given by

(7)

which can be interpreted as the output of a linear, time-variant
filter defined by the matrix with the clean signal as
input [23]. The cost function at the optimum will be

(8)

which is the sum of the noise energy and the truncated signal
error.

Since the clean signal is unavailable, needs to be es-
timated according to (4) from the observed signal. A very
simple way is to approximate in (4), implying
that the linear coefficient vector is estimated by

(9)

where IP denotes the inner product between each basis function
and the observed signal. This kind of estimation is memoryless
since only information from theth occurrence is used to es-
timate , and as a result, sudden changes in signal shape
can be tracked. On the other hand, will be sensitive to the
presence of noise.

III. BLMS ESTIMATION

One way to reduce the influence of noise is to include adap-
tive algorithms in the coefficient estimation since this type of
estimators has memory of previous occurrences. When the de-
terministic signal is repetitive with slow occurrence-to-occur-
rence shape changes, the amount of noise can be reduced at the
expense of a slower convergence. The tradeoff between conver-
gence speed and SNR improvement is controlled by the memory
used in the estimation.

The structure of the vector-based adaptive filter is shown in
Fig. 1. The primary input consists of succes-
sive concatenated signal occurrences. For the steady-state anal-
ysis of the algorithm, we assume that the deterministic signal

remains unchanged during all occurrences, i.e., . In
practice, will be occurrence variant, and the algorithm will
track signal changes in a finite adaptation time. At each signal
occurrence, the adaptive system estimates the amount of each
reference input (columns of the matrix ) present in the
input signal .

In order to minimize the cost function (2), the optimal weight
vector can be estimated using an iterative algorithm based on
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Fig. 1. Adaptive block-wise estimation of truncated expansions.

the steepest descent strategy. The weight vector is updated once
every signal occurrence according to

(10)

where is the step size, which controls stability and conver-
gence speed of the algorithm. Using the definition of

and decomposing the weight vector
as the sum of the optimum value2 and the weight error vector

(11)

we can write

(12)

where denotes the error signal obtained with
the optimum weight solution. Using the Wiener solution (6), the
minimum error signal can be written as

(13)

and thus, two independent sources can be considered in the error
signal: the error due to truncation and the observed noise.

The cost function (12) can equally be written as

(14)

where the quadratic dependence on the weight error vector is
evident. At the optimal solution, the signal truncation error is
orthogonal to the reference inputs, and

(15)

Hence, the cost function can be written as

(16)

where the first term is called the minimum error, and the sum
of the two following terms is referred to as the excess of MSE

.
The gradient can be calculated as

(17)

When only the th signal occurrence is available, a simple gra-
dient estimation considers

(18)

2The dependence ofw on the occurrence numberk is omitted because for
the steady-state analysis, it is assumed that the deterministic signals is invariant
for all signal occurrences.

Accordingly, the steepest descent algorithm (10) can be written
as

(19)

This algorithm is named block LMS (BLMS) because it is
equivalent to the LMS algorithm but with blockwise gradient
estimation. In a similar way, the update equation for the weight
vector can be easily obtained as

(20)

In other words, the BLMS is equivalent to exponential averaging
in the subspace spanned by. Note that the BLMS is equivalent
to IP when .

We will now consider the bias and variance of the BLMS
algorithm since these quantities are needed for comparison with
other estimation methods. The weight error vector at theth
occurrence can be written as

(21)

The first term is clearly a transient, which, for , will
vanish after a sufficiently large number of signal occurrences.
Therefore, at steady state, only the second term in (21) will be
important. Taking of the expected value, we obtain

(22)

since the noise is assumed to be zero mean. Accordingly, the
steady-state weight vector is an unbiased estimator of the
Wiener solution (6).

In order to analyze the steady-state variance, we need to quan-
tify the excess MSE in the cost function (16). The energy
of the weight error vector can be calculated as

(23)

At steady-state, the first two terms will be null if appropriate
values of the step-sizeare selected, and then

tr

tr

(24)
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If the noise signal is assumed to be stationary with correlation
function shorter than the gap between consecutive occurrences,3

then

(25)

where is the noise covariance matrix. Accordingly,
the steady-state weight error vector energy is

tr

tr (26)

For the particular case of white noise with variance, (26) is
simplified to

(27)

In order to complete the evaluation of the cost function (16), the
cross term needs to be quantified as

(28)

The first term is again a transient, and it will be null at steady
state. The second term is zero because

tr
(29)

which follows from (25). Summing up, the steady-state cost
function is

tr (30)

In the case of complete expansions, we have tr
tr , which is equal to the noise energy. In the case of white
noise and incomplete expansions

(31)

It may be worthwhile to point out certain relationships to the
LMS algorithm. In the case of the LMS algorithm, is com-
posed of three terms [5, Eq. (12) and (13)], whereas for the
BLMS algorithm, only two terms are present in (16) because the
signal truncation error is orthogonal to the input basis functions

. Moreover, the LMS algorithm converges to a biased estimate
in the case of truncated expansions [5], whereas the BLMS es-
timation is steady-state unbiased. When complete expansions

are used, it can be noted that [5]. This
result agrees with the fact that the algorithms become identical
when complete expansions are used (compare (20) with [5, Eq.
(8)]).

IV. EQUIVALENT TRANSFERFUNCTION

Truncated orthogonal expansions can be understood as linear
time-variant filters. The equivalent instantaneous impulse and

3The very-low frequency components of biomedical signals, e.g., baseline
wander in the ECG, are usually removed in a preprocessing stage because they
do not convey any valuable clinical information.

frequency responses were calculated in [23], where the linear
coefficients were estimated using the IP and the LMS algorithm.
This section will extend the analysis for the BLMS algorithm.

In the update equation of the BLMS algorithm (20), the term
represents the IP estimation of using only informa-

tion from the th occurrence. The first term accounts for the es-
timation done at the previous occurrence. As a consequence, the
BLMS algorithm can be understood as a transform-domain ex-
ponential averager. It is well known that exponential averaging
is equivalent to a linear time-invariant filter whose transfer func-
tion is a comb filter. On the other hand, truncated orthogonal ex-
pansions estimated with inner product are equivalent to a linear
time-variant filter [23]. Therefore, the combination of both sys-
tems is a linear time-variant filter.

An alternative demonstration can be done by looking at the
reconstructed signal. A first-order finite difference equation is
obtained by premultiplying both sides of (20) by

(32)

In the case of complete expansions , the coefficients
in (32) are scalar and time invariant. Accordingly, the system can
be described with a single transfer function, which is a comb
filter. The same transfer function was obtained for the LMS al-
gorithm fed with a complete set of impulse functions in [14]
and, more generally, with any complete set of orthogonal func-
tions in [23].

When truncated orthogonal expansions are consid-
ered, a coupled system of finite difference equations is obtained
from (32) because . The equation system can be
written in a scalar way as

(33)

where the coefficients are the elements of the matrix .
Thus, a set of linear th-order finite difference equations with
time-variant coefficients is obtained. If null initial conditions are
used, a linear time-variant system can be defined from (33). The
analysis of this equation system is simpler than the one obtained
in [23, Eq. (14)] for the LMS algorithm.

One way to solve the equivalent time-variant impulse
response is to observe the output response to impulse
functions located at different time instants with

. Then, the equivalent time-variant impulse
response will accomplish

(34)

Let be the occurrence representation
of the impulse input . The BLMS output at the th
occurrence follows the recursion

(35)



1106 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 50, NO. 5, MAY 2002

which is equal to the linear convolution of the FIR impulse re-
sponse of the IP at time instant and the comb filter
with impulse response

(36)

The same impulse response was obtained in [23] for the LMS
algorithm when small values of step-size are used (quadratic
terms of were neglected).

V. LEAST SQUARESCOEFFICIENTVECTOR

An alternative solution to the MSE criterion is to use the least
squares (LS) error criterion, where the cost function to be mini-
mized depends on the observed signal in a deterministic way.
The problem can be defined as finding the coefficient
vector that minimizes the cost function

(37)

The least squares solution is given by [24]

(38)

which is identical to the solution obtained by using the inner
product estimation in (9).

When several signal occurrences are jointly analyzed, several
extensions of the cost function can be defined to take the infor-
mation from previous signal occurrences into account. The clas-
sical approach is to include all the available past signal occur-
rences, possibly weighted by a forgetting factor to add tracking
capability to the algorithm. Then, the cost function at theth
occurrence is the squared error weighted sum from the first oc-
currence to the current time. Therefore, the coefficient vector at
the th occurrence is chosen to minimize

(39)

where the constant is the forgetting factor. Note
that the coefficient vector is held constant during the observation
interval. The coefficient vector obtained by minimizing (39) is
denoted by and provides the LS coefficient vector at the

th occurrence. A necessary condition for the optimum is

(40)

and then

(41)

Every time a new occurrence is available, the cost function (39)
needs to be minimized. Fortunately, the LS coefficient vector

Fig. 2. Relationship between the step size� in BLMS and the forgetting
factor� in BRLS.

can be estimated in a recursive way using a block RLS (BRLS)
approach by rewriting (41) as

(42)

The LS coefficient vector consists of updating the solution of the
previous occurrence with the new data. The difference from
the BLMS is that the update coefficients are time variant, and
therefore, the recursive LS solution (BRLS) can be understood
as the BLMS algorithm in (20) with an occurrence-varying step
size

(43)

The equivalent occurrence-variant step sizeof the BLMS al-
gorithm is illustrated in Fig. 2 for several values of the forget-
ting factor . The convergence is fast at the first signal occur-
rences because the equivalent step-size is large (in particular,

and is therefore equivalent to IP). For later oc-
currences, the step-size decreases, and finally, the steady-state
value is . The strategy of a decreasing step-size
implies that larger step sizes at the beginning provide a faster ap-
proximation to the optimum, and later, smaller values ofare
used to reduce the variance. A decreasing step size has heuristi-
cally been included in some variants of the LMS algorithm [25].

Although the least squares cost function (39) is deterministic,
the presence of noise in the observed signal yields some devia-
tion with respect to the ideal noise-free solution. Then, bias and
variance could be used to quantify these deviations.

The weight error vector can be written as

(44)

Using the zero-mean noise assumption, the BRLS yields an un-
biased estimate

(45)
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TABLE I
WEIGHT ERRORVECTORv FOR DIFFERENTESTIMATION METHODS

for any occurrence index. The steady-state variance can be
calculated as

tr

tr

tr (46)

where the noise assumption (25) is also used. In the white noise
case, , and the variance can be written as

(47)

If the forgetting factor is selected according to , then
BRLS and BLMS have the same steady-state variance

tr (48)

Finally, we note that the BRLS can be described as a linear
time-variant filter, similar to the BLMS algorithm. The first-
order finite difference equation that characterizes the BRLS al-
gorithm is obtained by premultiplying (42) with

(49)

This finite difference equation has occurrence-variant coeffi-
cients and, therefore, defines a linear time-variant filter.

VI. ESTIMATOR PERFORMANCECOMPARISON

A performance comparison of estimation algorithms is usu-
ally done in terms of bias and variance, but additional factors
could also be considered, such as convergence speed, computa-
tional complexity, and delay. In this section, we will compare
bias and variance when the deterministic signalis assumed
to be occurrence invariant, and we will present definitions of the
SNR.

The output signal for any linear coefficient estimation
method can be written as

(50)

where depends on the selected estimation method. For the
LMS algorithm, there is no compact expression ofbecause
the weight vector is updated at every sample, and the
output signal at the th occurrence in (50) needs to be written
in a scalar way

(51)

where denotes theth row of . The expression of the weight
error vector for each of the estimation methods is given in
Table I. The expression for the LMS algorithm is taken from
[5], denotes the transition matrix between theth and the
th time instants [5]

(52)

and is the instantaneous signal truncation error within the
signal subspace

(53)

The estimation based on the inner product is sensitive to noise
because the noise is directly projected on the subspace spanned
by . In contrast, the weight error vector for LMS and BLMS
is composed of two terms: a transient (which depends on initial
conditions and which will be null at steady-state) and a filtered
version of the previous noise occurrences .
In the case of the BLMS algorithm, is an exponential av-
erage of previous noise occurrences. For the LMS algorithm,
the expression is more cumbersome but conceptually similar.
One main difference is that for the LMS, two terms are aver-
aged: the instantaneous noise signal and the signal trun-
cation error . Another difference is that the update aver-
aging in BLMS is uncoupled because the coefficients
are scalars, whereas in LMS, the update is coupled because the
transition matrices are not diagonal. When small values of
the step-size are used, can be approximated by
[23, (25) and (26)], and then, both algorithms are approximately
equivalent. However, the weight error vector for the BRLS al-
gorithm is composed of only an exponential average of previous
noise occurrences without the transient term.

The bias and the variance can be analyzed
at any occurrence using the expressions given in Table I. If
the deterministic signal is assumed to be constant for all
signal occurrences, the comparison can be made at steady state.
For example, the expressions of steady-state bias and variance
for the cases of zero-mean white noise with varianceand
zero-mean colored noise are given in Tables II and III, respec-
tively. In the case of the LMS algorithm, both bias and variance
are time-variant, i.e., different values are obtained at every time
instant of the th signal occurrence.

When the deterministic signal is constant only within a
shorter interval, the bias and variance analysis should be done
after a finite number of signal occurrences. Similar expressions
of bias and variance could be obtained for this case using Table I,
including the transient terms for LMS and BLMS.

The main objective of using adaptive algorithms in the linear
expansion coefficient estimation is to reduce the noise in the
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TABLE II
STEADY-STATE BIAS AND VARIANCE FOR WHITE NOISE

TABLE III
STEADY-STATE BIAS AND VARIANCE FOR COLORED NOISE

observed signal . A natural performance index
will be the improvement of the SNR between input and output
signals obtained by any of the estimation methods (IP, LMS,
BLMS, and BRLS) at theth occurrence. Let SNRbe the SNR
of the input signal at theth occurrence

SNR (54)

The SNR of the output signal can be written using (50) as

SNR (55)

and thus, the improvement in SNR will be

SNR
SNR

SNR
(56)

where is a constant for a given signal subspaceand a
noisy observed signal . Accordingly, the improvement of the
SNR is inversely proportional to the weight error variance. The
steady-state SNR for each estimation method can be easily ob-
tained using (56) and Tables II or III. For example, the steady-
state improvement of SNR of BLMS versus IP is, for both cases
of white and colored noise

SNR (57)

When the BLMS algorithm is used with , the steady-
state output signal is cleaner than . On the other
hand, the convergence speed of the BLMS algorithm will be
low for small values of .

In the case of the LMS algorithm, the weight vector is up-
dated on a sample-by-sample basis, and the output signal at time
instant is . Accordingly, the instan-
taneous SNR of the output signal is evaluated as

SNR (58)

Fig. 3. ST-T complex selected for the simulation from a normal heartbeat.

where is the projection of the deterministic signal
onto the subspace spanned by . Then,
SNR is time variant, even at steady-state, because both
numerator and denominator have different values at different
time instants of the signal occurrence. However, a comparison
among different estimation methods should be done using the
same temporal basis either for occurrences or samples. When
the scenario is evaluated on an occurrence-by-occurrence
basis, then (58) could be averaged over all instants of the-th
occurrence, and then

SNR (59)

VII. RESULTS

The performance of the four estimation methods (IP, LMS,
BLMS, and BRLS) is illustrated by a simulation example in
which the characteristics of an ECG signal are studied. In par-
ticular, the ECG is analyzed with respect to the ST-T complex
(Fig. 3) since this part of the cardiac cycle frequently reflects
myocardial ischemia. Ischemic heart disease constitutes one of
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Fig. 4. Bias and variance for short memory(� = 0:3;� = 0:4) and large truncation error(p = 1) that corresponds to 29.5% of signal energy.

Fig. 5. Bias and variance for long memory(� = 0:05;� = 0:9) and large truncation error(p = 1) that corresponds to 29.5% of signal energy.

the most common fatal diseases in the western hemisphere. My-
ocardial ischemia is caused by a lack of sufficient blood flow
to the contractile cells and may lead to myocardial infarction
with its severe sequellae of heart failure, arrythmias, and death.
Changes that occur in the ST-T complex due to ischemia are
traditionally quantified by the amplitude measurement “ST60”
obtained 60 ms after the depolarization phase has ended [26].

Basis functions derived by using the KL expansion [24] have
been found useful for monitoring of ischemia [20]. The KL
basis functions used in the present study were estimated from
a training set of signals including several databases in order to
adapt the basis functions to a large variety of ECG morpholo-
gies. The four most significant basis functions are also plotted
in Fig. 3. It should be emphasized that although the KL basis
functions have been selected here, other orthogonal expansion
can be used as well.

The signal analyzed below was synthesized as a sequence of
identical ST-T complexes, in the same way as was done in [5],
to which white Gaussian noise was added with an SNR20
dB. The four estimation methods (IP, BLMS, LMS, and BRLS)
were then applied to the simulated signals. Average results from
a set of 5000 trials are shown in Figs. 4–6, with several values

of the number of basis functionsand the step-size. The re-
sults below present the performance during “steady-state” heart
conditions; however, it is naturally of interest to also study the
performance during changes in the ST-T segment; such a study
is outside the scope of the present paper.

The first component weight error vector trajectory is illus-
trated in Fig. 4(a) when only one basis function is used in the
expansion model with a large step-size . The
large steady-state bias of the LMS algorithm is due to the signal
truncation error and the large value of the step-size, whereas
the BLMS yields a steady-state unbiased estimate. On the other
hand, IP and BRLS are unbiased at any occurrence. The variance
evolution shown in Fig. 4(b) pinpoints the steady-state equiva-
lence between BLMS and BRLS and their advantage versus IP
and LMS. The variance of the LMS algorithm is shown at every
time instant with a very large steady-state value due to the com-
bination of large truncation error and large step-size.

If a larger amount of memory is used by the adaptive algo-
rithms (lower value of or higher value of ), the steady-state
variance will be lower, but the convergence speed will decrease;
see Fig. 5. It can be checked that the LMS and BLMS perfor-
mance are very similar when very small value of the step-size
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Fig. 6. Bias and variance for short memory(� = 0:3;� = 0:4) and small truncation error(p = 4) that corresponds to 3.2% of signal energy.

Fig. 7. ST60 trends for several values of the number of basis functions and step-size and SNR= 20 dB. The ST60 amplitude of the clean signal was�47 �V.

are used, but there are still some differences due to the trunca-
tion error: The LMS is biased and with a slightly higher variance
at steady state.

When a larger number of basis functions is used in the ex-
pansion, most of the signal energy is contained in the signal
subspace spanned by, and the effect of the truncation error
on the LMS is much less important (see Fig. 6), even for large
values of (note that when complete expansions are used, LMS
and BLMS are equivalent for any step size). It is also illustrated
in Figs. 4 and 6 that the number of basis functions used in the

expansion has a critical impact on the bias and variance per-
formance of the LMS algorithm but not in IP, BLMS, or BRLS,
where only the variance is affected in a linear way by the number
of basis functions .

Fig. 7 shows ST60 trends measured from the signals esti-
mated by IP, LMS, BLMS, and BRLS for different conditions
of the number of basis functions and the step size. It can be
seen that the LMS yields a biased estimate, which is especially
pronounced for large signal truncation error (low) and large
step size. It is also illustrated that the performance of LMS and
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Fig. 8. ST60 trends with SNR= 10 dB and low-memory estimation. The ST60 amplitude of the clean signal was�47 �V.

BLMS is similar for low values of the step size . The
variances of the four estimation methods are proportional to the
number of basis functions.

In many situations, the SNR is much lower than 20 dB,
whereas the signal properties may be changing. Fig. 8 exampli-
fies this case by presenting the performance for two different
step sizes. The number of basis functions is set to 4 in order to
provide a sufficiently good signal characterization.

VIII. C ONCLUSION

In this paper, the problem of adaptive estimation of linear
transform coefficients for event-related signals was analyzed for
a block structure with deterministic inputs. The BLMS algo-
rithm was derived using the steepest descent strategy with block
gradient estimation to minimize the mean square error. Its per-
formance was found to be better than the LMS algorithm, pro-
viding a steady-state unbiased estimation of the Wiener solution
and a lower steady-state variance that is unaffected by the signal
truncation error.

Using instead a block-wise least-squares approach, the re-
sulting BRLS algorithm yields an unbiased estimate for any oc-
currence and with lower variance than BLMS at the transient
stage but with identical steady-state variance. The BRLS was
shown to be equivalent to the BLMS with a decreasing step-size
(larger values at the transient state to get a fast approximation
to the optimum and lower values at steady-state to reduce the
variance). It was shown that BRLS and BLMS have the same
steady-state variance when .
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