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Preface

This manual offers detailed solutions to the problems contained in our book
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(Elsevier/Academic Press, 2005). We would be grateful to receive any com-
ments, suggestions, or corrections that the reader may have.
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Solutions Manual

Chapter 3

Solution 3.1 Calculating the required values we obtain

x1 = 0

σ2
x1

= A2

γs(x1) = 0;

γk(x1) = −2;

and

x2 = 0

σ2
x2

= A2

γs(x2) = 0;

γk(x2) = −0.3125;

Analyzing these values we realize that:

1. the mean is the same (zero) for both signal evident from PDFs analysis,

2. The variance is also the same in both cases, and this comes form the
fact that the higher contribution of larger peaks in x2 are compensated
by the lower contribution of the smaller peaks and the results is as for
x1 where the peaks are more evenly distributed.

3. The skewness γs is same in both cases and equal to zero meaning that
the peak distribution is symmetric for positive and negative values.

4. The kurtosis γk differs (from -2 to -1.4375), and is the only difference
between both signals. This means that the kurtosis is bigger the bigger
is the dispersion of the peak distribution and then becomes a good
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estimate of how a random process moves from Gaussian distribution
to more Laplacian one (larger tails).

Note that x1 do not either have Gaussian distribution (will imply
γk = 0). It has rather a probability density function, Px1(x1), with
only values at x1 = ±A,

Solution 3.2 In order to derive (??) we should differentiate the error

E
′

h = Eh + ν
M∑

i=1

(hi − hi)
T (hi − hi) (3.1)

with respect to hj by making

∇hj
E

′

h = 0, j = 1, . . . ,M.

The gradient will be composed of the term already solved in (??) resulting
from differentiation of Eh, and a new term resulting from differentiation of
the second part in (3.1). Together, we obtain

E

[

ṽj(n)

(

x(n)−
M∑

i=1

hT
i ṽi(n)

)]

+ ν(hi − hi) = 0, j = 1, . . . ,M.

Solving as for (??) but now also considering the new term, we obtain the
desired equation











Rv1v1 . . . Rv1vM

...
. . .

...
RvMv1 . . . RvMvM




− 2νI











h1
...

hM




 =






rxv1 − 2νh1
...

rxvM − 2νhM




 .

Solution 3.3 Recognizing that r̂x(k) is the only random variable on the
right hand side of (??), it is straightforward to show that

E[Ŝx(eω)] = ∙ ∙ ∙ =
N−1∑

k=−N+1

E[r̂x(k)]e−ωk.

The remaining part of the result in (??) is found by studying the estimated
correlation function (??) and realizing that it is a biased estimator. When
calculating the spectrum, the estimate r̂x(k),−N + 1 ≤ k ≤ N + 1 is used,
where r̂x(−k) = r̂x(k). Thus, since rx(k) = E[x(n + k)x(n)], we have that

E[Ŝx(eω)] =
N−1∑

k=−N+1

N − |k|
N

rx(k)e−ωk,
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where

wB(k) =
N − |k|

N
, −N ≤ n ≤ N

denotes the Bartlett window, i.e., triangular weighting caused by the biased
estimate of the correlation function in (??).

We may instead use the unbiased estimate of the correlation function

r̂x(k) =
1

N − k

N−1−k∑

n=0

x(n + k)x(n), 0 ≤ k < N.

However, the unbiased property comes at expense of a very large variance
for large lags k due to that fewer and fewer product terms are included for
summation.

Solution 3.4 Find that value of b which minimizes the quadratic cost func-
tion

J(b) =
∫ π

−π
(log Sx(eω)− b|ω|)2dω.

Differentiation yields

dJ

db
=

d

db

∫ π

−π
(log Sx(eω)− b|ω|)2dω

=
∫ π

−π

d

db
(log Sx(eω)− b|ω|)2dω

=
∫ π

−π
2(−|ω|)(log Sx(eω)− b|ω|)dω.

Finally, by setting dJ
db = 0 and rearranging the expression, we obtain the

following estimate

b̂ =

∫ π

−π
|ω| log Sx(eω)dω

∫ π

−π
ω2dω

=
3

2π3

∫ π

−π
|ω| log Sx(eω)dω.

Solution 3.5 The spectral moments are defined as

ωn =
∫ π

−π
ωnSx(eω)dω,

and can be related to the “analog” frequency Ω through the sampling period
Ts and the following relations

Ω =
1
Ts

ω = 2πfFs,

dΩ =
1
Ts

dω,
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and

Sx(Ω) =






TsSx(eω)bω=ΩTs |Ω| ≤ 2πFs/2

0, |Ω| > 2πFs/2,

where the band-limited spectrum Sx(eω) for the discrete-time signal is mul-
tiplied by Ts in order to preserve the spectral energy. Using these three
relations, the spectral moments expressed from the continuous-time case
can be expressed as

ωn = Tn
s Ωn =

∫ ∞

−∞
(ΩTs)

nSx(Ω)dΩ. (3.2)

Since Sx(Ω) is an even function of Ω, i.e., Sx(Ω) = Sx(−Ω), only even-
valued spectral moments (n = 0, 2, . . .) are non-zero. Therefore, Ωn, which
is referred to as Ωn rather than ωn to recall that it is calculated from the
continuous-time spectrum, can be expressed as

Ωn =
∫ ∞

−∞
(−1)n/2(Ω)nSx(Ω)dΩ, n = 0, 2, 4, ...

A useful observation when evaluating (3.2) is that the integrand can
by viewed as the power spectrum following one or several differentiators
defined by the transfer function H(Ω) = Ω (recall that multiplication in the
frequency domain corresponds to convolution in the time domain). Hence,
for n = 2, we have that

Sx′(Ω) = |Ω|2Sx(Ω) = Ω2Sx(Ω),

which is identical to the integrand in (3.2) except for the scale factor T 2
s ; the

prime in Sx′(Ω) denotes that the signal has been differentiated once. The
filtering interpretation of this operation is presented in Figure 3.1 for the
case when n = 4.

We recall that the autocorrelation function rx(τ) and the power spectrum
Sx(Ω) are related to each other by the inverse Fourier transform,

rx(τ) =
1
2π

∫ ∞

−∞
Sx(Ω)eΩτdΩ.

The effect of differentiation on the autocorrelation function is described by
the Fourier transform pair

(Ω)nSx(Ω)
F
←→

∂nrx(τ)
∂τn

.
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x(t)

rx(τ)

Sx(Ω)

- Ω
x′(t)

∂2rx(τ)
∂τ2

|Ω|2Sx(Ω)

- Ω
x′′(t)

∂4rx(τ)
∂τ4

|Ω|4Sx(Ω)

-

Figure 3.1: Differentiation of the input signal x(t) and the corresponding effect on
the related autocorrelation function rx(τ) and power spectrum Sx(Ω), respectively.

Based on the above observations, the time domain expressions of the
spectral moments are obtained as

ω0 = T 0
s Ω0 = 2πrx(τ)|τ=0 = 2πE

[
x(t)2

]
,

ω2 = T 2
s Ω2 = −2πT 2

s
∂2rx(τ)

∂τ2

∣
∣
∣
∣
τ=0

= 2πT 2
s E
[
(x′(t))2

]
,

ω4 = T 4
s Ω4 = 2πT 4

s
∂4rx(τ)

∂τ 4

∣
∣
∣
∣
τ=0

= 2πT 4
s E
[
(x′′(t))2

]
.

where it has been used the stationarity property to obtain

∂2rx(τ)

∂τ 2 =
∂2E[x(t)x(t + τ)]

∂τ2

=
∂E[x(t)x′(t + τ)]

∂τ

=
∂E[x(t− τ)x′(t)]

∂τ
= −E[x′(t− τ)x′(t)] (3.3)

and similar for higher even orders. From this result, it is obvious that
the spectral moments can be computed directly from the signal and its
derivatives, without having to first calculate the power spectrum!

Solution 3.6
a) Let us assume that the EEG signal is modeled by the power spectral
density function shown in the figure below (consider Ts = 1 for sake of
simplicity).
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-

−1
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Sx(ω)

1

1
4

1
2 ω

Figure 3.2: Power spectral density Sx(ω) representing a EEG PSD.

We can compute the H1 =
√

ω2
ω0

from the expressions

ω2 =
∫ −1/4

−1/2
ω2dω +

∫ 1/2

1/4
ω2dω =

7
96

= 0.0729

and

ω0 = 2
∫ 1/2

1/4
dω =

1
2
,

which yields

H1 =

√
ω2

ω0
≈ 0.3818.

This value is a very good approximation of the mean ω = 0.375 constituting
the center point of the power spectrum (and easily computed directly from
the diagram!).

b) To compute the complexity Hjorth descriptor we need the forth order
moment

ω4 =
∫ −1/4

−1/2
ω4dω +

∫ 1/2

1/4
ω4dω =

31
2560

= 0.0121

and

H2 =

√
ω4

ω2
−

ω2

ω0
≈ 0.1423.

This value is also a very good approximation of half the bandwidth Δω/2
which is Δω/2 = 0.125 constituting half the width of the power spectrum
(and easily computed directly from the diagram!).
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c) The spectral purity index ΓSPI can be now directly calculated obtain-
ing

ΓSPI =
ω2

2

ω0ω4
= 0.8781

giving the idea that this spectrum has a quite well defined peak as it really
has realising by looking the diagram

Solution 3.7 Since only two spectral components are found, the modulat-
ing signal must be a constant amplitude sinusoid. The amplitude modulated
signal may be expressed as

s(t) = A cos(2πFAM t) cos(2π9t)

=
A

2
[cos(2π(9− FAM )t) + cos(2π(9 + FAM )t)],

from which it can be concluded that the frequency of the modulating signal
is FAM = 1 Hz.

Hence, the Fourier transform is a linear tool which cannot unveil non-
time-invariant processes such as the amplitude modulated signal.

Solution 3.8 The Yule-Walker equations for the model AR(p) are








rx(0) rx(−1) . . . rx(−p)
rx(1) rx(0) . . . rx(−p + 1)

...
...

. . .
...

rx(p) rx(p− 1) . . . rx(0)















1
a1
...

ap








=








σ2
ep

0
...
0








.

For the real-valued case, the Yule-Walker equations correspond to the normal
equations of linear prediction with the prediction model order p′ = p. Now,
assumed p′ > p is used in the linear prediction. Then, the normal equations
would be








rx(0) rx(1) . . . rx(p′)
rx(−1) rx(0) . . . rx(p′ − 1)

...
...

...
rx(−p′) rx(−p′ + 1) . . . rx(0)
















1

a
(p′)
1
...

a
(p′)
p′









=








σ2
ep′

0
...
0








.

The correlation matrix has full rank, and thus the solution to these normal
equations is unique. If the AR(p) model is extended into a virtual AR(p′)
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model by adding the coefficients ap+1 = ap+2 = . . . = ap′ = 0, the Yule-
Walker equations become







rx(0) rx(−1) . . . rx(−p) rx(−p − 1) . . . rx(−p′)
rx(1) rx(0) . . . rx(−p + 1) rx(−p) . . . rx(−p′ + 1)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
rx(p) rx(p − 1) . . . rx(0) rx(−1) . . . rx(−p′ + p)

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.
rx(p′) rx(p′ − 1) . . . rx(p′ − p) rx(p′ − p − 1) . . . rx(0)
















1
a1

.

.

.
ap
0

.

.

.
0









=




σ2

ep
0

.

.

.
0



 .

The correlation matrix for the AR(p′) model corresponds to the one of the
normal equations for the linear prediction order p′. Hence, since the coeffi-
cient vector and the right hand side of the Yule-Walker equations is a valid
solution to the normal equations, it is concluded that

a
(p′)
l =






ap
l , 1 ≤ l ≤ p

0, p + 1 ≤ l ≤ p′,

and
σe2

p′
= σ2

ep
.

Solution 3.9 The backward prediction filter of length p is

x̂(n− p) = −b1x(n− p + 1)− b2x(n− p + 2)− . . .− bpx(n).

Introduce the backward prediction error

e−p (n) = x(n− p)− x̂(n− p) = bT
p x(n)

where the backward filter coefficient vector is bp = [1 b1 b2 . . . bp]T and the
sample vector is x(n) = [x(n− p) x(n− p + 1) . . . x(n)]T , and then use the
orthogonality principle:

E[x(n)e−p (n)] = E[x(n)bT
p x(n)] = E[x(n)xT (n)]bp = Rbp = σ2

e−p
i.

Since R = R̃ for real-valued stationary stochastic processes, and R has full
rank which implies uniqueness of the solution to Rbp = σ2

e−p
i, it is evident

that bp = ap, and thus σ2
ep

= σ2
e−p

.

Solution 3.10 The sampling rate determines the resolution of the auto-
correlation function. The plots below (Fig. 3.3) show a continuous-time
autocorrelation function which is sampled at 5 Hz (T1 = 0.2) and 10 Hz
(T2 = 0.1), respectively.
Comparing the two sampled correlation functions, it is obvious that under
the requirement of maintaining the information contained in a specific time
lag interval of r(t), doubling the sampling frequency calls for doubling of the
discrete-time AR model order.
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Figure 3.3: Sampling of an autocorrelation function at two different rates.

Solution 3.11 The general normal equation

R̃xap = σ2
e i

can be rewritten as








rx(0) rx(1) . . . rx(p)
rx(1) rx(0) . . . rx(p− 1)

...
...

. . .
...

rx(p) rx(p− 1) . . . rx(0)















1
a1
...

ap








=








σ2
e

0
...
0








.

From the first row multiplication we obtain

σ2
e = rx(0) +

p∑

i=1

airx(i).

and for the remaining rows







rx(1)
rx(2)

...
rx(p)








+








rx(0) . . . rx(p− 1)
rx(1) . . . rx(p− 2)

...
. . .

...
rx(p− 1) . . . rx(0)















a1

a2
...

ap








=








0
0
...
0
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which thus yields the desired result








a1

a2
...

ap








=








rx(0) . . . rx(p− 1)
rx(1) . . . rx(p− 2)

...
. . .

...
rx(p− 1) . . . rx(0)








−1 






−rx(1)
−rx(2)

...
−rx(p)








.

Solution 3.12 We know that

ci = (1− diz
−1)H(z)

∣
∣
z=di

, i = 1, . . . , p.

Then
c2i = (1− d2iz

−1)H(z)
∣
∣
z=d2i

and
c2i−1 = (1− d2i−1z

−1)H(z)
∣
∣
z=d2i−1

using that d2i−1 = d∗2i

c2i−1 = (1− d∗2iz
−1)H(z)

∣
∣
z=d∗2i

= c∗2i.

Solution 3.13 The power for each component in the parametric EEG anal-
ysis with the SPA decomposition can be obtained by evaluating

rxi(0) =
1

2π

∮

C
Sxi(z)z−1dz

=
1∑

l=0

Res
[
Sxi(z)z−1, d2i−l

]
.

with the residual value in

Res
[
Sxi(z)z−1, d2i−l

]
= lim

z→d2i−l

(z − d2i−l)Sxi(z)z−1.

By substituting we obtain

Pi = rxi(0) = σ2
v

(
2<(c2i)− 2<(c2id

∗
2i)d

−1
2i

)
(2<(c2i)− 2<(c2id

∗
2i)d2i)(

1− d2i−1d
−1
2i

)
(1− d2i−1d2i) (1− d2id2i)

+ σ2
v

(
2<(c2i)− 2<(c2id

∗
2i)d

−1
2i−1

)
(2<(c2i)− 2<(c2id

∗
2i)d2i−1)

(
1− d2id

−1
2i−1

)
(1− d2i−1d2i−1) (1− d2id2i−1)

and using the fact that d2i−1 = d∗2i we have
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Pi =
8σ2

v

(1− d2id2i−1)

[

<

((
<(c2i)−<(c2id

∗
2i)d

−1
2i

)
(<(c2i)−<(c2id

∗
2i)d2i)(

1− d∗2id
−1
2i )(1− d2

2i

)

)]

Pi =
8σ2

v

1− |d2i|2

[

<

(
<2(c2i) + <2(c2id

∗
2i)−<(c2i)<(c2id

∗
2i)(d2i + d−1

2i )

1 + |d2i|2 − d2
2i − d∗2id

−1
2i

)]

.

Solution 3.14 From the decomposition presented in Section ?? we can
express the power spectrum corresponding to one particular ith peak as

Sxi(e
ω) =

∣
∣
∣
∣

2<(c2i)− 2<(c2irie
−φi)e−ω

(1− rie−φie−ω)(1− rieφie−ω)

∣
∣
∣
∣

2

σ2
v =

N (eω)
D (eω)

.

It is obvious that the term Sxi(e
ω) is defined by a ratio with a numerator,

N (eω), and a denominator, D (eω). To search for the frequency peak ωi

we should differentiate the fraction expression with respect to ω and solve
for zero value, that is,

dSxi (eω)
dω

=
dN(eω)

dω D (eω)−N (eω) dD(eω)
dw

D2 (eω)
= 0. (3.4)

Keeping in mind that the nominator N (eω) has real-valued zeros and that
the poles are located near the unit circle, this implies that around the max-
imum ωi the variation of N (eω) with ω will be small as will D (eω). As
a result, the product of both terms will be very small and to obtain a zero
in (3.4) the second part in the numerator N (eω) dD(eω)

dω needs to be small.

N (eω) is large (distance to the zeros) so the only solution is that dD(eω)
dw is

approximately zero. This is equivalent to find the minimum of the resonator
represented by the denominator.

By evaluating the denominator we get

D (eω) = |(1− rie
−φie−ω)(1− rie

φie−ω)|2

= |(1− 2ri cos φie
−ω + r2

i e
−2ω)|2

= 1 + 4r2
i cos2 φi + r4

i − 4ri(1 + r2
i ) cos φi cos ω + 2r2

i cos(2ω).

Differentiation with respect to ω yields

dD (eω)
dω

= 4ri(1 + r2
i ) cos φi sin ω − 4r2

i sin(2ω),

which when set to zero becomes

(1 + r2
i ) cos φi sin ωi − ri sin(2ωi) = 0.
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After some trigonometric manipulations, we obtain the solution

ωi = arccos

(
1 + r2

i

2ri
cos φi

)

.

which is the maximum frequency of the peak. Note that as ri → 1 then
ωi → φi giving the maximum at the pole angle.

Solution 3.15 a) the residue γj is express as

γj = Res
[
Sx(z)z−1, dj

]

= lim
z→dj

(z − dj)Sx(z)z−1

=
σ2

p∏

i=1
i 6=j

(1− did
−1
j )

p∏

k=1

(1− d∗kdj)

(3.5)

b) The power spectrum can be express as:

Sx(z) =
∞∑

k=−∞

rx(k)z−k

=
∞∑

k=−∞

p∑

j=1

γjd
|k|
j z−k;

=
p∑

j=1

∞∑

k=−∞

γjd
|k|
j z−k;

=
p∑

j=1

Sxj (z)

with

Sxj (z) =
∞∑

k=−∞

γjd
|k|
j z−k

=
γjz

z − dj
− γj +

γjz
−1

z−1 − dj

=
γjdj

z − dj
+

γjdj

z−1 − dj
+ γj (3.6)

However, this is a decomposition that do not need to preserve the positive
characteristic of a real power spectral decomposition, so if poles are close
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together some terms γj can even be negative not meaning there is any pole
with negative contribution. This decomposition, when the poles are well
separated is equivalent to the one presented in the text.

Solution 3.16 The solution is the same Δ2(n) but taking out the square
of the denominator, and introducing the reference window power σ2

e to in-
dependent from original power.

Δ′
2(n) =

1
2π

∫ π

−π

(
Se(e

ω; n)− σ2
e

)2
dω

σ2
e

2π

∫ π

−π
Se(e

ω; n)dω

When Se(eω; n) = ασ2
e it can be shown that Δ2(n) = (α−1)2

α2 , and when
Se(eω; n) = 1

ασ2
e then Δ2(n) = (α− 1)2. However in both cases

Δ′
2(n) =

(α− 1)2

α

making this a better suited error criteria than the one defined by Δ2(n).
Note that the factor σ2

e in the denominator of Δ′
2(n) is introduced in order to

make the error independent of the power. Without this factor, the measure is
still insensitive for power increases or decreases but yes to original reference
window power σ2

e that is not a nice feature.

Solution 3.17 Proceeding in terms analogous to (??) we obtain

Δ′
2(n) =

(
re(0; n)
re(0; 0)

+
re(0; 0)
re(0; n)

− 2

)

+
2

re(0; n)re(0; 0)

∞∑

k=1

r2
e(k; n)

where the first term evidently is symmetric with respect to power changes.
However, the second is only symmetric for power changes that maintain
the white noise properties. In other words, the redefinition of Δ ′

2(n) in the
previous problem alleviates the symmetry problem with respect to power but
does not solve it completely. The effects of variation in shape of the spectrum
can be less pronounced than those because the power change (second term
respect first term). When this is no longer true, in this time domain a new
error measure can be proposed, Δ′′

2(n), that still corrects for this remaining
dependency by

Δ′′
2(n) =

(
re(0; n)
re(0; 0)

+
re(0; 0)
re(0; n)

− 2

)

+
2

r2
e(0; 0)

∞∑

k=1

r2
e(k; n).
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Solution 3.18 We start by recalling the Parseval relation for discrete time
signals and the relationship between discrete and continuous time Fourier
transforms when signal is alias free sampled.

X(eω) =
1
Ts

X(Ω)bΩ=ω/Ts
; |ω| ≤ π (3.7)

with this relation and the Parseval equality we can write

∞∑

n=−∞

x2(n) =
1
2π

∫ π

−π
|X(eω)|2dω

=
1
2π

∫ Ωs/2

−Ωs/2

|X(Ω)|2

T 2
s

dΩTs

=
1
Ts

∫ ∞

−∞
x2(t)dt

By using this relationship, the continuous time, temporal duration Δ t

can be expressed as:

Δ2
t =

∫ ∞

−∞
(t− t0)

2x2(t)dt

∫ ∞

−∞
x2(t)dt

=

Ts

∞∑

n=−∞

((n− n0)Ts)
2 x2(n)

Ts

∞∑

n=−∞

x2(n)

= T 2
s Δ2

n

and the continuous time frequency duration ΔΩ can be expressed as:

Δ2
Ω =

1
2π

∫ ∞

0
(Ω− Ω0)

2|X(Ω)|2dΩ

1
2π

∫ ∞

0
|X(Ω)|2dΩ

=

1
2π

∫ π

0

(ω − ω0)2

T 2
s

T 2
s |X(eω)|2

dω

Ts

1
2π

∫ π

0
T 2

s |X(eω)|2
dω

Ts

=
Δ2

ω

T 2
s

So, the same uncertainty holds for the discrete time defined widths

ΔΩΔt = ΔωΔn ≥
1
2

(3.8)

Solution 3.19 The windowed STFT is expressed as

X(t, Ω) =
∫ ∞

−∞
x(τ)w(τ − t)e−Ωτdτ. (3.9)

To be saw the STFT as a linear filter, it can be expresses as

X(t, Ω) =
∫ ∞

−∞
x(τ)e−Ωτh(t− τ)dτ. (3.10)
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that by identifying terms we obtain

h(t) = w(−t) (3.11)

that is a linear filter applied to the modulated signal x(τ)e−Ωτ .
When we discretize the frequency as multiples of some reference Ω0,

Ω = mΩ0, and sample in time, t = nTs, we have a modulated filter bank.
See that the signal is “demodulated” by Ω and filtered by h(t). If h(t) is a
narrow band low-pass filter, then we have a filter bank interpretation of the
STFT.

Solution 3.20 By making a variable change we can express the Wigner-
Ville distribution as

Wx(t, Ω) = 2
∫ ∞

−∞
x∗ (t− τ) x (t + τ) e−2Ωτdτ (3.12)

that can be express as function of the Fourier transform of a function g(t, τ )

g(t, τ ) = x∗ (t− τ) x (t + τ) (3.13)

with respect to variable τ

G(t, Ω) = FT {g(t, τ )} (3.14)

giving
Wx(t, Ω) = 2G(t, Ω′)cΩ′=2Ω (3.15)

if the original signal spectrum X(Ω) extend a bandwidth of B Hz then the
spectrum G(t, Ω) will extend a bandwidth of 2B since it comes from the
multiplication of x(t) with itself giving a convolution spectrum that extend
twice the original. See figure 3.4a If we sample the signal x(t) at Fs = 2B
it is obvious that when computing the discrete Fourier transform of

g(n, k) = x∗(n− k)x(n + k) (3.16)

it will appear aliasing at G(n, ω) since we are sampling g(t, τ ) at Fs = 2B
that is half their Nyquist rate, 4B. See Figure 3.4b.

Wx(n, ω) = 2G(n, ω′)cω′=2ω (3.17)

And in the Wigner-Ville representation it appear a aliasing folding of the
spectrum at Fs/4 rather than at Fs/2. So to avoid that we need to sample at
least at Fs = 4B meaning twice the Nyquist rate of x(t), and when analyzing
on the G(n, ω) go up to π or when analyzing Wx(n, ω) go only up to π/2.
See Figure 3.4c.
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Other alternative is to estimate the Wigner-Ville from the analytic signal
xA(t) rather than from x(t). The spectrum has only contribution on the
positive frequencies and then the aliasing is avoided even sampling at Fs =
2B, since the folding has not contribution from the negative spectrum, see
Figures 3.4d,e. Note that same analysis can be done for the Ambiguity
function.

Solution 3.21 By recalling the Ω(t) definition we have

Ω(t) =

∫ ∞

−∞
ΩWxc(t, Ω)dΩ

∫ ∞

−∞
Wxc(t, Ω)dΩ

and by introducing the known relation for a signal, y(τ), and its Fourier
transform pair, Y (Ω), and the time marginal condition,

1
2π

∫ ∞

−∞
Y (Ω)dΩ = y(τ)|τ=0

we have

Ω(t) =

[∫ ∞

−∞
(ΩWxc(t, Ω))eΩτdΩ

]

τ=0

2π|xc(t)|2

and introducing the Fourier pair relation ΩY (Ω)←→ 1
j

dy(τ)
dτ

Ω(t) =
2π


d
dτ

[
x∗

c

(
t− τ

2

)
xc

(
t + τ

2

)]
τ=0

2π|xc(t)|2

=
x∗

c(t)x
′
c(t)− xc(t)x′∗

c (t)
2|xc(t)|2

=
= (x∗

c(t)x
′
c(t))

|xc(t)|2
.

Since
xc(t) = s(t)eϕ(t)

it becomes directly that

Ω(t) = ϕ′(t)
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Chapter 4

Solution 4.1 The estimate of the deterministic signal s from the noisy
response xi is obtained by ensemble averaging,

ŝa =
1
M

M∑

i=1

xi = s +
1
M

M∑

i=1

vi.

For only one response (the first), the SNR is defined by

SNRa,1 = 10 log
sT s

E[vT
1 v1]

= −5 dB.

Averaging over M responses yields the following SNR

SNRa,M = 10 log
sT s

E





(
1
M

M∑

i=1

vi

)T


 1
M

M∑

j=1

vj









.

Since the noise vectors vi of different responses are assumed to be uncorre-
lated, that is, E[vT

i vj ] = 0, i 6= j, we can simplify this expression to

SNRa,M = 10 log
sT s

1
M2

M∑

i=1

E[vT
i vi]

= 10 log M
sT s

E[vT
1 v1]

= 10 log M + SNRa,1,

where the next last equality is due to that the noise variance is assumed
to be identical in all responses. In order to obtain an SNR of 10 dB, we
therefore require that

10 log M − 5 ≥ 10

M ≥ 1015/10 = 31.6

and thus M = 32 responses are needed.

Solution 4.2 From the ensemble of M responses, subaverages over even-
and odd-numbered responses, respectively, are calculated by

ŝa0(n) =
2
M

M/2∑

i=1

x2i(n)

ŝa1(n) =
2
M

M/2∑

i=1

x2i−1(n).
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The signal is deterministic, and the noise is zero-mean and uncorrelated
between different responses. Thus

V [ŝa0(n)− ŝa1(n)] = V



 2
M

M/2∑

i=1

(v2i(n)− v2i−1(n))





=

(
2
M

)2

E




M/2∑

i=1

M/2∑

k=1

(v2i(n)− v2i−1(n))(v2k(n)− v2k−1(n))





=

(
2
M

)2 M2σ2
v

2

=
4σ2

v

M
.

Solution 4.3 Taking the expression of the variance estimator for a number
of M recurrences

σ̂2
v,M (n) =

1
M

M∑

i=1

(xi(n)− ŝa,M (n))2 ,

it can be rewritten by grouping the terms related to the σ̂2
v,M−1(n) estimator

as:

σ̂2
v,M (n) =

1
M

M−1∑

i=1

(xi(n)− ŝa,M (n))2 +
1
M

(xM (n)− ŝa,M (n))2 ,

and assuming ŝa,M (n) = ŝa,M−1(n), it can be rewritten to

σ̂2
v,M (n) =

(
1

M − 1
−

1
M(M − 1)

)M−1∑

i=1

(xi(n)− ŝa,M−1(n))2 (4.18)

+
1
M

(xM (n)− ŝa,M (n))2 ,

resulting finally in the recursive expression

σ̂2
v,M (n) = σ̂2

v,M−1(n) +
1
M

[
(xM (n)− ŝa,M (n))2 − σ̂2

v,M−1(n)
]
.

Note: If at the original estimator we would introduce a factor 1
M−1 rather

than 1
M to have an unbiased estimate, the recursive estimate would differ

just by replacing the same factors in recursive expression.
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Solution 4.4 Assume that M concatenated responses xi are available, each
with a length N . Initializing the recursion with ŝe,0 = 0, we get

ŝe,1 = (1− α)ŝe,0 + αx1 = αx1

ŝe,2 = (1− α)ŝe,1 + αx2 = α(1− α)x1 + αx2

ŝe,3 = (1− α)ŝe,2 + αx3 = α(1− α)2x1 + α(1− α)x2 + αx3

...

ŝe,M =
M−1∑

m=0

α(1− α)mxM−m.

Now, by concatenating all available responses into one long piled vector, i.e.,

x =








x1

x2
...

xM








,

we get

y(n) = ŝe,(b n
N c+1)

(
n−

⌊ n

N

⌋
N
)

=
M−1∑

m=0

α(1− α)mx(n−mN).

Performing the same calculations as in (??), i.e.,

x(n) =
∞∑

l=−∞

x(l)δ(n− l),

x(n−mN) =
∞∑

l=−∞

x(l)δ(n−mN − l),

⇒ y(n) =
M−1∑

m=0

α(1− α)m
∞∑

l=−∞

x(l)δ(n−mN − l),

=
∞∑

l=−∞

x(l)
M−1∑

m=0

α(1− α)mδ(n−mN − l),

the impulse response is given by

h(n) =
M−1∑

m=0

α(1− α)mδ(n−mN),

and is plotted in Figure 4.5. From this figure it is evident that older responses
in the ensemble are weighted less and less.
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Figure 4.5: The impulse response of the exponential averager for α = 0.08 and
N = 100.

Solution 4.5 Following Problem 4.4 but with ŝe,0 = x1, it is found that

ŝe,M = (1− α)M−1x1 +
M−2∑

m=0

α(1− α)mxM−m.

Taking the expectation of ŝe,M (n) yields

E[ŝe,M (n)] = (1− α)M−1E[x1(n)] + α
M−2∑

m=0

(1− α)mE[xM−m(n)]

=

(

(1− α)M−1 + α
1− (1− α)M−1

1− (1− α)

)

s(n)

= s(n),

which shows that ŝe,M (n) is an unbiased estimate when initiated by ŝe,0 =
x1; this is in contrast to the asymptotically unbiased which was initiated by
ŝe,0 = 0.

The variance can also be calculated by the following calculations

V [ŝe,M (n)] = E[(ŝe,M (n)− E[ŝe,M (n)])2]

= E





(

(1− α)M−1x1(n) +
M−2∑

m=0

α(1− α)mxM−m(n)− s(n)

)2




= E





(

(1− α)M−1v1(n) +
M−2∑

m=0

α(1− α)mvM−m(n)

)2




= (1− α)2(M−1)E[v2
1(n)] +

M−2∑

m=0

α2(1− α)2mE[v2
M−m(n)] + 0,



24 Solutions Manual

where all the cross-terms are equal to zero. Thus,

V [ŝe,M (n)] = σ2
v(1− α)2(M−1) + σ2

vα
1− (1− α)2(M−1)

2− α
,

and the asymptotic variance is

lim
M→∞

V [ŝe,M (n)] = σ2
v

α

2− α
,

which is identical to the asymptotic variance when the initialization is done
with ŝe,0(n) = 0.

Solution 4.6

a) From (??) and from Problem 4.5 it is evident that initialization with
ŝe,0 = 0 produces a biased estimate. On the other hand, when using
ŝe,0 = x1, the estimator is unbiased but has a larger variance, espe-
cially for small values of M . However, as the number of responses M
approaches infinity, the bias decreases such that both estimators are
asymptotically unbiased and have equal variances.

b) Using any of the two previously considered initializations, i.e., ŝe,0 = 0
or ŝe,0 = x1, we have an asymptotic variance of

lim
M→∞

V [ŝe,M ] = σ2
v

α

2− α
.

By setting

α =
2

M − 1

we obtain a variance that is asymptotically equal to the ensemble
averager.

Solution 4.7 From Problem 4.4, we have that

ŝe,M (n) = α
M−1∑

m=0

(1− α)mxM−m(n),

whose expected value is

E[ŝe,M (n)] = α
M−1∑

m=0

(1− α)ms(n).
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Thus,

V [ŝe,M (n)] = E[(ŝe,M (n)− E[ŝe,M (n)])2]

= α2E





(
M−1∑

m=0

(1− α)m(s(n) + vM−m(n)− s(n))

)2




= α2E





(
M−1∑

m=0

(1− α)mvM−m(n)

)2




= α2
M−1∑

m=0

M−1∑

k=0

(1− α)m+k E[vM−m(n)vM−k(n)]
︸ ︷︷ ︸

σ2
v , k=m; 0, k 6=m

= α2
M−1∑

m=0

(1− α)2mσ2
v

= α2 1− (1− α)2M

1− (1− α)2
σ2

v ,

which is equal to the expression given in (??).

Solution 4.8 Ensemble averager:
To estimate the -3 dB cut-off frequency we should find that ωc for which

|Ha(eωc)| = 1/
√

2. In the text, the ensemble average was shown to have
the transfer function

Ha(e
ω) =

sin(ωNM/2)
M sin(ωN/2)

e−ωN(M−1)/2.

Since the transfer function is a ratio between two sinusoids, this expression is
best studied either numerically or with some kind of approximation. We will
first find the first zero after a lobe maximum. We will perform the calculation
at the DC lobe, i.e., ω = 0. The first zero is reached at frequency ω0 when
the sinusoid in the numerator becomes zero, i.e., ω0NM/2 = π. Then

ω0 =
2π

NM
,

When approximating ωc we realize that ωc < ω0 = 2π
NM then ωcN/2 <

π
M � 1. This implies the sinusoid in the denominator of |Ha(eωc)| can be
approximated by the argument

sin(ωcN/2) ≈ ωcN/2.

However for the sinusoid in the numerator we have that

ωc
NM

2
<

2π

NM

NM

2
= π,
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which is a far too crude approximation since this frequency is not far smaller
than one. Therefore a higher order approximation is used:

sin(ωcNM/2) ≈
ωcNM/2

1!
−

(ωcNM/2)3

3!
.

To estimate ωc we should solve

ωcNM/2− (ωcNM/2)3/3!
ωcMN/2

=
1
√

2
,

which gives

ωc =

(
1− 1/

√
2
)1/2

31/223/2

NM
=

2.6513
NM

.

Exponential averager:
For this estimate the transfer function is

He(e
ω) =

α

1 + (α− 1)e−ωN
,

The frequency ωc at which |He(eωc)| = 1/
√

2 can be calculated from the
maximum (ω = 2πn/N) for any of the lobes. We will again do this calcula-
tion from the DC lobe (ω = 0). Then, ωc � 2π/N and the transfer function
can be approximated by

He(e
ω) =

α

1 + (α− 1) cos(ωN)− (α− 1) sin(ωN)
≈

α

α− (α− 1)ωN
.

So the -3 dB cut-off frequency ωc can be calculated as

ωcN(1− α) = α

and

ωc =
α

N(1− α)
≈

α

N
.

An alternative approach to obtain this result is to study the poles of the
transfer function. The poles can be calculated as

1 + (α− 1)z−N = 0⇒ zN = (1− α)

zk = (1− α)1/N

︸ ︷︷ ︸
pole radius

e 2π
N

k, k = 0, . . . , N − 1.

An approximation of the -3 dB bandwidth is given in (??),

Δω3 dB ≈ 2(1− r),
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where r is the pole radius which is assumed to be close to one. Hence,

ωc ≈
2
(
1− N

√
1− α

)

2
= 1− N

√
1− α

for the exponential averager. Using the Taylor series expansion for α � 1
we obtain the earlier result

ωc ≈
α

N
.

Solution 4.9 The transfer function for the exponential averager is given by
(??),

He(e
ω) =

α

1 + (α− 1)e−ωN
,

where it should be observed that the maximum gain of each peak is unity.

|H(eω)|2 =
α2

(1 + (α− 1)e−ωN )(1 + (α− 1)eωN )

=
α2

1 + (α− 1)2 + 2(α− 1) cos(ωN)

|H(eω)|2 = 10−3/10 ⇒ cos(ωN) =
103/10α2 − 1− (α− 1)2

2(α− 1)

ωN = arccos

(
103/10α2 − 1− (α− 1)2

2(α− 1)

)

+ 2πk, k = 0, 1, . . . N − 1

ωk =
1
N

arccos

(
103/10α2 − 1− (α− 1)2

2(α− 1)

)

+
2π

N
k.

The magnitude function is -3 dB at the frequencies ±ω0, . . . ,±ωN−1 since
the cosine is an even function. It is easily verified that the magnitude is
unity at ω = 0. Thus, due to symmetry, Δω3dB = 2ω0.

Solution 4.10 The transfer function for the exponential averager is given
by (??),

He(e
ω) =

α

1 + (α− 1)e−ωN
,

The magnitude and phase are plotted in Figure 4.6. The phase function is
given by

Φ(eω) = phase(He(e
ω)) = phase(1 + (α− 1)eωN )

= arctan

(
(α− 1) sin(ωN)

1 + (α− 1) cos(ωN)

)

≈ arctan

(
− sin(ωN)

1− cos(ωN)

)

= arctan

(
− sin(ωN)

2 sin2(ωN/2)

)
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Figure 4.6: α = 0.05, N = 10

Since the phase response is nonlinear it seems reasonable to assume that
the response will be distorted in shape. However, the response s(n) is as-
sumed to repeat itself in every response (period of N) such that the frequen-
cies of interest are constituted by the DC level, the fundamental frequency
at ω = 2π/N and its harmonics. At other frequencies, only the noise will be
affected since it is not periodic and will then be distributed at all frequen-
cies. A careful look at the phase response shows that at ω = 2π/N and its
multiples the phase is always equal to zero. Hence, the components of s(n)
are unaffected due to the zero phase and consequently undistorted.

Note the linear behavior in between every period 2π/N of the spectrum
which can be explained by graphically analyzing the transfer function in the
z-plane.

Φ(eω) = phase(He(e
ω)

= phase(1 + (α− 1)eωN )

≈ −
π

2
+

(ω − 2πk
N )N

2
0 ≤ k < N − 1;

2πk

N
< ω <

2π(k + 1)
N

This approximation is perhaps not evident from a mathematical point of
view but is suggested by Figure 4.7 where the z-plane of 1 + (α− 1)eωN is
shown. As far as α� 1, the triangle is approximately equilateral and then
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the above phase approximation becomes evident.
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Figure 4.7: z-plane

Solution 4.11 Assume that the amplitude drops from 0.6 μV to 0.2 μV
after the M th response at the peak in n0, and that k responses with lowered
amplitude are collected. Thus, the ensemble average is based on M + k
responses.

a) Ensemble averaging.

E[ŝa(n0)] = E

[
1

M + k

(
M∑

i=1

xi(n0) +
M+k∑

i=M+1

xi(n0)

)]

=
M ∙ 0.6 + k ∙ 0.2

M + k
< 0.3⇒ k > 3M.

b) The initial condition ŝe,0(n) = 0 is used for exponential averaging.
The first M recursions yield

E[ŝe,M (n0)] = E

[
M−1∑

m=0

α(1− α)mxM−m(n0)

]

=
M−1∑

m=0

α(1− α)m0.6.
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For the following k recursions, E[ŝe,M (n0)] acts as an initial value.
Hence,

E[ŝe,M+k(n0)] = (1− α)k
M−1∑

m=0

α(1− α)m0.6

+ E

[
k−1∑

m=0

α(1− α)mxM+k−m(n0)

]

= (1− α)k
M−1∑

m=0

α(1− α)m0.6 +
k−1∑

m=0

α(1− α)m0.2

= 0.6(1− α)k − 0.6(1− α)M+k + 0.2− 0.2(1− α)k

= 0.4(1− α)k − 0.6(1− α)M+k + 0.2.

We now have to solve

0.4(1− α)k − 0.6(1− α)M+k + 0.2 < 0.3

and
(1− α)k(0.4− 0.6(1− α)M ) < 0.1⇒

k >
log(0.1/(0.4− 0.6(1− α)M ))

log(1− α)

Assuming that M is large, we may approximate it by

0.4(1− α)k < 0.1⇒

k >
log(0.1/0.4)
log(1− α)

=
−0.6020

log(1− α)
≈

0.6020
α

.

(The assumption that M is large corresponds to the assumption that
the average has reached 0.6μV before the change occurs.)

Solution 4.12 The weighted average for the case of varying noise variance
but constant signal amplitudes is given by

ŝw,M (n) =

M∑

i=1

xi(n)
σ2

vi

M∑

i=1

1
σ2

vi

.

It is now desired to express the weighted average ŝw,M (n) as an update of
ŝw,M−1(n):

ŝw,M (n) = ŝw,M−1(n) + αM (xM (n)− ŝw,M−1(n)),
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where αM is the weighting function to determine:

ŝw,M (n) =

M∑

i=1

xi(n)
σ2

vi

M∑

i=1

1
σ2

vi

=

M−1∑

i=1

xi(n)
σ2

vi

+
xM (n)
σ2

vM

M∑

i=1

1
σ2

vi

=

(
M−1∑

i=1

1
σ2

vi

)

ŝw,M−1(n) +
xM (n)
σ2

vM

M∑

i=1

1
σ2

vi

= ŝw,M−1(n)−

1
σ2

vM

ŝw,M−1(n) + 1
σ2

vM

xM (n)

M∑

i=1

1
σ2

vi

= ŝw,M−1(n) +

1
σ2

vM

M∑

i=1

1

σ2
vi

(xM (n)− ŝw,M−1(n)).

Hence,

αM =

1
σ2

vM

M∑

i=1

1
σ2

vi

.

When the noise samples have the same variance σ2
v for all responses, the

weighting factor reduces to αM = 1/M , i.e., the weighted average becomes
similar to the ensemble average.

Solution 4.13 The PDF of the signal x in that interval

x = [x(−N) . . . x(−1)]T (4.19)

is

px(x) =
1

(2πσ2
v)

N
2

exp

[

−
(x− 1mv)T (x− 1mv)

2σ2
v

]

, (4.20)

Then, the log function becomes

ln px(x) = constant −
N

2
ln σ2

v −
1

2σ2
v

(x− 1mv)
T (x− 1mv), (4.21)
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which differentiated respect to σ2
v and equaling to zero gives the equation

for the ML estimate, σ̂2
v :

−
N/2
σ̂2

v

+
1

2σ̂4
v

(x− 1mv)
T (x− 1mv) = 0, (4.22)

that results in

σ̂2
v =

(x− 1mv)T (x− 1mv)
N

. (4.23)

This estimates requires to know mv that usually is also estimates as m̂v =
1T x
N , which lead to an approximate ML estimate of the variance σ̆2

v

σ̆2
v =

(x− 1m̂v)T (x− 1m̂v)
N

. (4.24)

Solution 4.14 The idea is to express V [ŝw,M (n)] in V [ŝw,M−1(n)] such that
an update equation of the form V [ŝw,M (n)] = (1 − gM )V [ŝw,M−1(n)] is ob-
tained. We start this derivation by first determining the variance of sw,M (n)

V [ŝw,M (n)] = V




M∑

m=1

xm(n)
1

σ2
m∑M

i=1
1
σ2

i





= V



s(n)

∑M
m=1

1
σ2

m∑M
i=1

1
σ2

i

+
M∑

m=1

vm(n)
1

σ2
m∑M

i=1
1
σ2

i





= E






M∑

k=1

M∑

m=1

vk(n)vm(n)

1
σ2

k

1
σ2

m
(∑M

i=1
1
σ2

i

)2






=
1

M∑

i=1

1
σ2

i

.



Solutions. Chapter 4 33

The recursion is then obtained by

V [ŝw,M (n)] =
1

M∑

j=1

1
σ2

vj

=
1

M−1∑

j=1

1

σ2
vj

+
1

σ2
vM

=
1

1
V [ŝw,M−1(n)]

+
1

σ2
vM

=
σ2

vM

V [ŝw,M−1(n)] + σ2
vM

V [ŝw,M−1(n)]

=








1−

(
V [ŝw,M−1(n)]

V [ŝw,M−1(n)] + σ2
vM

)

︸ ︷︷ ︸
gM








V [ŝw,M−1(n)].

Solution 4.15 The weighted average is given by, ŝw = Xw, where X =
saT + V is the model of the signals in the ensemble, with s denoting a
deterministic waveform, a a vector with possibly varying amplitudes, and V
column vectors with noise realizations. In this exercise, the case 2 scenario
with varying signal amplitudes and constant noise variance is considered.
Thus the optimal weights are

w =
a

aTa
.

It is assumed that the noise is white, and that the number of signals in the
ensemble is M .

E[ŝw] =








E[ŝw(0)]
E[ŝw(1)]

...
E[ŝw(N − 1)]








= E[Xw]

= sE[aT ]w + E[V]w

= saTa
1

aTa
= s.
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The variance is

V [ŝw(n)] = V

[
M∑

m=1

xm(n)
am

∑M
i=1 a2

i

]

= V

[

s(n)

∑M
m=1 a2

m∑M
i=1 a2

i

+
M∑

m=1

vm(n)
am

∑M
i=1 a2

i

]

= E






M∑

k=1

M∑

m=1

vk(n)vm(n)
akam

(∑M
i=1 a2

i

)2






= σ2
v

∑M
m=1 a2

m(∑M
i=1 a2

i

)2

= σ2
v

1
∑M

i=1 a2
i

.

Provided that the weights are accurate, the weighted average is unbiased.
Furthermore, it is consistent since

lim
M→∞

V [ŝw(n)] = lim
M→∞

σ2
v

1
M∑

i=1

a2
i

= 0.

Solution 4.16
a. We should find those weights wi which minimize the mean square error

E = E





(

s(n)−
M∑

i=1

wixi(n)

)2


 .

This is done by differentiating E with respect to wi and setting the result to
zero, i.e.,

∂E
∂wj

= 0, j = 1, . . . ,M,

which yield the following system of linear equations,

E

[(

s(n)−
M∑

i=1

wixi(n)

)

xj(n)

]

= 0, j = 1, . . . ,M.

With the signal model xi(n) = s(n)+vi(n) and the knowledge that the noise
variance differs from response to response, i.e., E[v2

i (n)] = σ2
vi

, the equation
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system can be rewritten as

s2(n) =
M∑

i=1

wis
2(n) + wjE

[
v2
j (n)

]
, j = 1, . . . ,M.

which can be rewritten as

wjσ
2
vj

=

(

1−
M∑

i=1

wi

)

s2(n), j = 1, . . . ,M.

By subtracting two equations in this system, we obtain that

wi =
σ2

vj

σ2
vi

wj ,

and then

wjσ
2
vj

=

(

1− wjσ
2
vj

M∑

i=1

1
σ2

vi

)

s2(n).

we obtain that

wj =

1
σ2

vj

M∑

i=1

1
σ2

vi

+
1

s2(n)

.

This expression is ”Wiener-like” and is time dependent since the weights
depend on s(n).

b. Now we will introduce the property that the estimate should be unbiased
by requiring that the sum of weights should equal one,

M∑

i=1

wi = 1,

and thus

wM = 1−
M−1∑

i=1

wi.

With this restriction we obtain the error

ε = E





(

s(n)−
M−1∑

i=1

wixi(n)−

(

1−
M−1∑

i=1

wi

)

xM (n)

)2
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and the linear equation system

E

[(

s(n)−
M−1∑

i=1

wixi(n)−

(

1−
M−1∑

i=1

wi

)

xM (n)

)

(−xj(n) + xM (n))

]

= 0

for j = 1, . . . ,M , that with the same signal model as before arrives to

wjσ
2
vj

+ σ2
vM

(
M−1∑

i=1

wi − 1

)

, j = 1, . . . ,M.

Subtracting again the following relationship between weights is obtained

wi =
σ2

vj

σ2
vi

wj ,

and then

wjσ
2
vj

(

1 + σ2
vM

M−1∑

i=1

1
σ2

vi

)

= σ2
vM

which gives

wj =

1
σ2

vj

M∑

i=1

1
σ2

vi

.

This solution is identical to the one obtained when the SNR was maximized
also with the restriction on unbiased estimate.

Solution 4.17 Since both the amplitude and the noise variance vary from
response to response, we have that

a =
[

a1 a2 . . . aM

]T

RV = N








σ2
v1

0 . . . 0
0 σ2

v2
. . . 0

...
...

. . .
...

0 0 . . . σ2
vM








.

Using (??), the maximization of the SNR (or L) leads to the following
generalized eigenvalue problem,

R−1
V aaTw = λw.
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Since R−1
V aaT is of rank one, λmax = aTR−1a, cf. (??). This implies that

the optimal weight vector is given by the eigenvector

w = cwR−1
V a = cw










a1
σ2

v1
a2
σ2

v2
...

aM
σ2

vM










,

which may be verified by insertion of λmax and w = cwR−1
V a into (??),

cwR−1
V aaTR−1

V a
︸ ︷︷ ︸

scalar

= cw aTR−1
V a

︸ ︷︷ ︸
scalar

R−1
V a.

The final step is to determine the factor cw such that unbiasedness, E[ŝw] =
s, is obtained:

E[ŝw] = E[Xw] = cwE[XR−1
V a] = cwE[saTR−1

V a] + cwE[VR−1
V a]

= cws(aTR−1
V a) + cwE[V]R−1

V a = cw(aTR−1
V a)s.

Hence, cw = (aTR−1
V a)−1 leads to unbiasedness. Thus, the optimal

weight vector is

w =
1

aTR−1
V a

R−1
V a.

Solution 4.18 In cases with high SNR, considering as noise power estimate
the total single-trial power is not adequate, rather we need to exclude the
deterministic signal component s from the observation before to estimate.
One way to do that will be to first subtract some estimate of s that do not
require the weighted averaging. One such option is to subtract the ensemble
average before power estimation

σ̂2
vi

=
1
N

(xi − ŝa)
T (xi − ŝa), (4.25)

This estimate can, however, introduce some errors when the noise variability
include outliers, making the estimate, ŝa, unreliable and then propagating
that to every trial estimate of σ̂2

vi
. To avoid that it can be considered the

median rather than the mean and come with the noise variance estimate

σ̂2
vi

=
1
N

(xi − ŝmed)T (xi − ŝmed), (4.26)
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Solution 4.19 In the proposed system based on the adaptive linear com-
biner, we know that, for the stationary signals case, the optimum weights
follow the following relation

wo = R−1
x rŝax (4.27)

with

Rx(n) = E
[
x(n)xT (n)

]
(4.28)

=








rx1x1(n) rx1x2(n) . . . rx1xM
(n)

rx2x1(n) rx2x2(n) . . . rx2xM (n)
...

...
. . .

...
rxMx1(n) rxMx2(n) . . . rxMxM

(n)








(4.29)

= s2(n)11T +








σ2
1 0 . . . 0
0 σ2

2 . . . 0
...

...
. . .

...
0 0 . . . σ2

M








, (4.30)

where it has been assumed that noise is uncorrelated between different re-
alizations and stationary within each realization, and

rŝax(n) = E[ŝa(n)x(n)] = s2(n)1, (4.31)

that has also involve assumption of un-correlation between residual noise in
ŝa and noise at every realization. Using the matrix inversion lemma that
states: if A and B are two positive definite M -by-M matrices related by

A = B−1 + CD−1CT

where D is a positive definite N -by-N matrix, and C is an M -by-N matrix.
Then the inverse of A may be expressed as

A−1 = B−BC(D + CTBC)−1CTB.

Identify the following matrices:

A = Rx(n)

B =









1
σ2
1

0 . . . 0

0 1
σ2
2

. . . 0
...

...
. . .

...
0 0 . . . 1

σ2
M









C = 1

D =
1

s2(n)
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we obtain

wo(n) = s2(n)R−1
x (n)1 =

s2(n)

1 +
∑M

i=1
s2(n)
σ2

i









1
σ2
1
1
σ2
2
...
1

σ2
M









(4.32)

To solve the problem of the bias in the estimate we can introduce the
MSE, Ew, with the constrain, Lagrange multiplier, that the weights are
unbiased, wT1 = 1,

Ew = E
[(

ŝa(n)−wTx(n)
)2]

+ λ(wT1− 1). (4.33)

Taking the gradient respect to w we obtain

∇wEw = ∇w

(
E
[
ŝ2
a(n)

]
+ wTRx(n)w − 2wT rŝax(n) + λ(wT1− 1)

)

= 2Rx(n)w − 2rŝax(n) + λ1. (4.34)

which gives and optimum constrained solution wo
c

wo
c = R−1

x (n)rŝax(n)−
λ

2
R−1

x (n)1 (4.35)

and imposing that 1Two
c = 1, we obtain the value of λ

λ =
2
(
1TR−1

x (n)rŝax(n)− 1
)

1TR−1
x (n)1

= −
2

∑M
i=1

1
σ2

i

(4.36)

and

wo
c =

1
∑M

i=1
1
σ2

i









1
σ2
1
1
σ2
2
...
1

σ2
M









(4.37)

which is the unbiased solution that now does not depend on time n. A
constrained LMS can be derived from the steepest descent method

w(n + 1) = w(n)−
1
2
μ∇wEw(n) (4.38)

= w(n) + μE[e(n)x(n)]−
μ

2
λ1 (4.39)
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and by taking the LMS approximation, E[e(n)x(n)] ≈ e(n)x(n), and forcing
that w(n + 1) is also subject to the constrain 1Tw(n + 1) = 1 we obtain
that

λ =
2(1Tw(n)− 1)

μM
+

2e(n)1Tx(n)
M

(4.40)

and the resulting LMS constrained algorithm is

w(n + 1) = w(n) + μ

(

I−
11T

M

)

e(n)x(n) +
1
M

(
1− 1Tw(n)

)
. (4.41)

If the algorithm is correctly initialize so 1Tw(0) = 1, e.g.

w(0) =

[
1
M

1
M

. . .
1
M

]T

, (4.42)

then it will always be 1Tw(n) = 1 and the algorithm can simply to

w(n + 1) = w(n) + μ

(

I−
11T

M

)

e(n)x(n). (4.43)

To allow the algorithm to converge, and under the assumption of station-
arity, we can take the weight values at the end of the recurrences n = N ,
and use the weights w = w(N), in the averaging. If noise variance even
change within each realization during time, then the weight adaptive esti-
mator output can be used as signal estimate.

Solution 4.20 The model of the signals in the ensemble is

X = saT + V.

Hence,

E[tr(XTX)] = E[tr((saT + V)T (saT + V))]

= tr(a sT s︸︷︷︸
=1

aT ) + tr(E[VTV])

= aTa + N
M∑

m=1

σ2
vm

,

where N is the length of each response, M is the number of responses in the
ensemble, and σ2

vm
is the variance of the noise samples in the mth response.

It is evident that the estimate is severely biased by the noise.
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Solution 4.21 Solving the ML as was done for the stationary case, we will
have now the following likelihood function

pv(x1(n), . . . , xM (n); s(n)) =
M∏

i=1

1
√

2σ2
vi

exp

[

−

√
2

σ2
vi

|xi(n)− s(n)|

]

,

(4.44)

and by maximizing their log function with respect s(n) we will have

∂ ln pv (x1(n), . . . , xM (n); s(n))
∂s(n)

= −
∂

∂s(n)

(
M∑

i=1

√
2

σ2
vi

|xi(n)− s(n)|

)

= 0.

(4.45)
The function to be maximized is now J(s(n))

J(s(n)) =
M∑

i=1

√
(xi(n)− s(n))2

σvi

(4.46)

which, when differentiated, yields

∂J(s(n))
∂s(n)

=
M∑

i=1

sgn(xi(n)− s(n))
σvi

= 0. (4.47)

To make sure that the sum in (4.47) is equal to zero, we must choose
s(n) such that the number of sample values greater than s(n), all summed
with a weighted by 1/σvi , equals the sum of the number of sample values
smaller than s(n), also weighted by 1/σvi ; this procedure can be denoted as
the weighted median.

The procedure for computing this weighted median consists of sorting
the sequence of samples,

{x1(n), x2(n), . . . , xM (n)}
sort
−→ {x(1)(n), x(2)(n), . . . , x(M)(n)}, (4.48)

where the subscript parenthesis indicates that the samples have been ordered
in increasing order, x(1)(n) < x(2)(n) < . . . < x(M)(n), and followed by
computation of the K point such that

K−1∑

(i)=1

1
σv(i)

=
M∑

(i)=K+1

1
σv(i)

(4.49)

Since it will be difficult that the equality holds, we can define the “weighed
median” as

ŝweight med(n) = x(K)(n) (4.50)
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such that

K = arg min
K

∣
∣
∣
∣
∣
∣

K−1∑

(i)=1

1
σv(i)

−
M∑

(i)=K+1

1
σv(i)

∣
∣
∣
∣
∣
∣
. (4.51)

This proceeds to estimate the weighted median will require estimation
the noise variance at each observation. This can be done for any of the
procedures considered for weighted average. Also note that this technique,
in contrast to the non weighted median, will take information no only of
the actual value xi(n) of the sample, but of the total observation noise
information σvi and so can result in a better median estimate when noise is
highly non stationary.

Solution 4.22

ŝM (n) = ŝM−1(n) + αMψ(xM (n)− ŝM−1(n)) (4.52)

ψ(x) = η ∙ sgn(x)

If we initialize the ŝ0(n) = 0, and assume that s(n) > 0 and the noise is
zero-mean (reverse argument for negative), then initially x1(n) − ŝ0(n) =
x1(n) − 0 = v1(n) + s(n) is more likely to be positive than negative since
vi(n) is zero mean. This implies that it is more likely we add in (4.52) a
value η and then the ŝi(n) will overall increase. This will happen until the
probability that (xi(n)− ŝi−1(n)) > 0 was the same as the one for being < 0.
In this moment it will be equal (in mean) number of times xi(n) > ŝi−1(n)
than the reverse and this happen when ŝi−1(n) is the median of xi(n) (same
number of values larger than lower) and then it is demonstrated.

Solution 4.23 The cut-off frequency Ωc can be estimated by solving

Pτ (Ωc) =
sin 1

2ΩcT
1
2ΩcT

=
1
√

2
(4.53)

This transfer function has a DC lobe with the first zero at Ω = 2π
T . This

implies that the -3dB cut-off frequency will be much lower than this.

Ωc <<
2π

T

ΩcT/2 << π

and the sinusoid in (4.53) can be approximated in the area of the cut-off
frequency as

Pτ (Ωc) ≈ 1− (ΩcT/2)2 /6 =
1
√

2
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and then

Fc ≈

√
(1− 1/

√
2)6

πT
=

0, 422
T

Compare with Figure ??(b) to see that this expression of Fc is a good esti-
mate.

Solution 4.24 The “discretized” Gaussian PDF of a time-discrete jitter θ
is

Pθ(θ) =
1

√
2πσ2

θ

e
− θ2

2σ2
θ ,

where σθ determines the dispersion of θ (σθ does not have to be an integer).
This discrete-time PDF can be interpreted as a sampled continuous-time
function Pt(t)

Pt(t) =
Ts√
2πσ2

t

e
− t2

2σ2
t ,

where σt = σθTs. Since Pθ(θ) = Pt(θTs), we can use the well-known relation
between the continuous- and the discrete-time Fourier transforms

Pθ(e
−ω) =

1
Ts

∞∑

n=−∞

Pt(Ω− 2πn/Ts)|Ω=ω/Ts
.

Since
Pt(Ω) = Tse

− 1
2
Ω2σ2

t

then

Pθ(e
−ω) =

∞∑

n=−∞

e−
1
2
(ω−2πn)2σ2

θ . (4.54)

To estimate the -3 dB cut-off frequency ωc we can make the assumption
that the width of the Gaussian in (4.54), i.e., 1/σθ, is small compared with
the 2π repetition spectrum and then estimate the cut-off frequency ωc as it
would have been done from a single Gaussian. Then

e−
1
2
σ2

θω2
c = 1/

√
2⇒ ωc =

√
ln2
σθ

Another alternative is to study the behavior of the estimate of discrete-
time signal but with continuous-time jitter. This situation is the one that
model the real situation since the jitter often originates from an “analog”
signal acquisition process, so the jitter can be viewed as a continuous quan-
tity according to

E [ŝa(n)] =
∫ ∞

−∞
s(n− τ)pτ (τ)dτ = s(t) ∗ pτ (t)|t=nTs
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Thus, this means that it represents a continuous-time filtering followed by
sampling. Then the effect will be studied in continuous-time as present in
(??) and (??) for cut-off frequency in case of Gaussian distributed jitter.

Solution 4.25 One could obtain a latency estimate with better time reso-
lution by either

• interpolate the signal for increasing the sampling rate, or

• by using a frequency domain formulation of the convolution sum to
achieve a finer resolution of τ .

The former approach is straightforward to do and may be implemented by
using interp in Matlab.

The latter approach is based on the Parseval’s formula which states that

∞∑

n=−∞

x(n)y(n) =
1
2π

∫ π

−π
X(eω)Y ∗(eω)dω.

For our model, we have that

n0+M−1∑

n=n0

x(n)s(n− n0) =
∞∑

n=−∞

x(n)s(n− n0)

=
1
2π

∫ π

−π
X(eω)

[
S(eω)e−ωn0

]∗
dω.

Thus, a frequency domain formulation of the latency estimation is

τ̂ = arg max
n0∈[0,N−M ]

1
2π

∫ π

−π
X(eω)S∗(eω)eωn0dω.

Since X(eω) and S(eω) are continuous functions, it is possible to examine
non-integer delays n0.

Solution 4.26 Arranging the N samples of signal and noise into the vectors

s =








s(0)
s(1)

...
s(N − 1)








T

v =








v(0)
v(1)

...
v(N − 1)








T

respectively, and the N filter coefficients into h = [h(0) h(1) . . . h(N − 1)]T ,
at time instant n = N − 1 the filtered signal is

y(N − 1) = hT s̃ + hT ṽ,
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where ∙̃ denotes reversal of the vectors. The energy of y is

E[y(N − 1)2] = hT s̃s̃Th + E[hT ṽṽTh]

= hT s̃s̃Th + hTRvh,

and thus the SNR is

SNR =
hT s̃s̃Th
hTRvh

.

Since the h that maximizes the SNR is not unique (if h maximizes it, so
does ch, c ∈ R), a constraint hTRvh = 1 is imposed. Using the method of
Lagrangian multipliers, the quantity

L = hT s̃s̃Th + λ(1− hTRvh)

is to be minimized. This results in a generalized eigenvalue problem

(s̃s̃T )h = λRvh,

which is similar to the one studied in Problem 3.14. The filter is thus

h = chR
−1
v s̃

where the positive factor ch is to be determined such that the constraint on
hTRvh is satisfied. Then

hTRvh|h=chR−1
v s̃ = (c2

hR
−1
v s̃)TRv(R

−1
v s̃)

= c2
hs̃

TR−1
v s̃ = 1⇒

ch =
1

√
s̃TR−1

v s̃

Hence, the optimal filter is

h =
1

√
s̃TR−1

v s̃
R−1

v s̃.

Solution 4.27 The evoked potential is now model by

xi = sθi
+ vi (4.55)

with

sθi
=




0θi

s
0N−D−θi



 , (4.56)
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where 0i denotes a column vector with i zeros. With this notation the PDF
of xi can be written as

p(xi; θi) =
1

(2π)
N
2 |Rv|

1
2

exp

[

−
1
2
(xi − sθi

)TR−1
v (xi − sθi

)

]

, (4.57)

that after taken the logarithm, and using that R−1
v is symmetric, results in

ln p(xi; θi) = constant −
1
2
sT
θi
R−1

v sθi
+ xT

i R−1
v sθi

(4.58)

The second term does depend of θi but if we consider the data record length,
N , much larger than the correlation time d for v(n) (rv(k) = 0 for k ≥ d),
the so call asymptotic Gaussian PDF assumption, then the matrix Rv can
be decompose as (Kay detection book page 34)

Rv =
N−1∑

i=0

λiϕiϕ
T
i (4.59)

with

ϕi =
1
√

N










1
e2πfi

e4πfi

...
e2π(N−1)fi










(4.60)

and fi = i/N . The inverse matrix

R−1
v =

N−1∑

i=0

1
λi

ϕiϕ
T
i (4.61)

and the second term in 4.58 becomes

−
1
2
sT
θi
R−1

v sθi
= −

1
2

N−1∑

i=0

1
λi
|ϕT

i sθi
|2 (4.62)

with

|ϕT
i sθi
|2 =

1
N

∣
∣
∣
∣
∣

D−1∑

n=0

s(n)e−2πfi(n+θi)

∣
∣
∣
∣
∣

2

(4.63)

that is the periodogram of the, shifted by θi, s(n) which is not affected by
the phase factor θi and then does not depend on θi implying that R−1

v is
Toeplitz under the assumption of short correlation lag compared with the
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observation interval, asymptotic Gaussian PDF. Maximization of the log-
PDF function implies that the ML estimate of θi becomes

θ̂i = arg max
θi

(xT
i R−1

v sθi
). (4.64)

meaning that the matched filter is now

h = R̃−1
v s (4.65)

Solution 4.28 The channel weights βi should be taken such that channels
with more reliable estimates are emphasized. Since the matched filter has
been selected by minimizing an MSE error criteria that is equivalent to
maximize the SNR, we should used those weights βi which are related to
the particular SNR of each channel. If we assume that the SNRi at each
response is very low we can estimate the noise in each response as the total
power and then

β̂i =
1

xi
Txi

.

When this later condition is not satisfied still we can obtain an estimate of
βi after having subtracted the mean value, i.e.,

β̂i =
1

(
xi − h̃i

)T (
xi − h̃i

) .

Solution 4.29 To find R−1
x , the matrix inversion lemma will be used. It

states that:

Let A and B be two positive definite M -by-M matrices related
by

A = B−1 + CD−1CT

where D is a positive definite N -by-N matrix, and C is an M -
by-N matrix. Then the inverse of A may be expressed as

A−1 = B−BC(D + CTBC)−1CTB.

Identify the following matrices:

A = Rx

B−1 = (1− ρ(n))I

C = 1

D−1 = ρ(n)
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Thus,

R−1
x =

1
1− ρ(n)

I−
1

1− ρ(n)
I1

(
1

ρ(n)
+

1
1− ρ(n)

1T1

)−1

1T 1
1− ρ(n)

I

=
1

1− ρ(n)
I−

1
(1− ρ(n))2

∙
ρ(n)(1− ρ(n))

1 + (M − 1)ρ(n)
11T

=
1

(1− ρ(n))(1 + (M − 1)ρ(n))
((1 + (M − 1)ρ(n))I− ρ(n)11T )

= 1

(1 − ρ(n))(1 + (M − 1)ρ(n))









1 + (M − 2)ρ(n) −ρ(n) . . . −ρ(n)
−ρ(n) 1 + (M − 2)ρ(n) . . . −ρ(n)

.

.

.

.

.

.
. . .

.

.

.
−ρ(n) −ρ(n) . . . 1 + (M − 2)ρ(n)








.

Solution 4.30 a. Minimizing (??) with the modeling that s(n) is deter-
ministic will lead us to solve

2E[ŝa(n)(s(n)− w(n)ŝa(n))] = 0 (4.66)

which result in

w(n) =
s2(n)

s2(n) + σ2
v

M

b. To estimate these weights we can used the ML estimate of s(n) that
we already have shown is the ensemble average ŝa(n) and an estimate
of σ2

v that can be computed by (??). Then the new estimate results in

s̆(n) =
ŝ2
a(n)

ŝ2
a(n) + σ̂2

v
M

ŝa(n)

Solution 4.31 Differentiation of the MSE with respect to wi results in

∇wiEw = −2ΦE[xi] + 2ΦTΦwi,

which, when set to zero to find the stationary points, yields the minimum
MSE provided that the MSE is a convex function. Albeit it is well-known
that the MSE is convex, the task here is to show it by exercising some
math. In the scalar case, a minimum point is characterized by that the first
derivative is zero, and the second derivative is positive. When carried over
to the multivariate case, the requirement on the stationary points is that
the Hessian matrix, defined as

[H](k,l) =
∂2f(x)
∂xk∂xl

,
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is positive definite. In this exercise, the Hessian is

[H](k,l) =
∂2

∂wi,k∂wi,l
E[||xi −Φwi||

2]⇒ H = 2ΦTΦ = 2I.

Since H = 2I is positive definite, we can conclude that the solution yields
the minimum MSE.

Solution 4.32 Exploiting the assumption that signal and noise are uncor-
related and taking benefit of un-correlation between different realization we
can propose and estimate that crosses info from distinct realizations as

R̂s =
1

M(M − 1)

M∑

i=1

M∑

j=1
i 6=j

xix
T
j (4.67)

Computing the expected value of the estimate

E[R̂s] =
1

M(M − 1)

M∑

i=1

M∑

j=1
i 6=j

Rs = Rs (4.68)

we see it is a unbiased estimate of the signal correlation matrix. The variance
can be computed element by element,r̂sl,r

, in the matrix R̂s as

E[(r̂sl,r
− E[r̂sl,r

])2]

=E













1
M(M − 1)

M∑

i=1

M∑

j=1
i 6=j

xi(l)xj(r)− s(l)s(r)







2





=

E





(
∑M

i=1

∑M
j=1
i 6=j

(s(l)vj(r) + vi(l)s(r) + vi(l)vj(r))

)2




(M(M − 1))2

=

E





(

(M − 1)
(
s(l)

∑M
j=1 vj(r) + s(r)

∑M
i=1 vi(l)

)
+
∑M

i=1

∑M
j=1
i 6=j

vi(l)vj(r)

)2




(M(M − 1))2

=
(M − 1)2

(
s2(l)Mσ2

v + s2(r)Mσ2
v

)
+ 2M(M − 1)σ4

v + 2M(M − 1)2s(l)s(r)σ2
v

(M(M − 1))2

=
σ2

v (s(l) + s(r))2

M
+

2σ4
v

M(M − 1)

(4.69)
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which appear to be dependent on the signal

Solution 4.33 The minimization of the error

E(wi) = ||xi −Φwi||
2

can be made in a parallel way to what was done to arrive to (??) from
(??) with the only difference in that the expectation are taken out. So the
optimum in this case will be

wo
i = ΦTxi

And off course a very good estimate of this optimum is itself since both
ΦT and si are known.

ŵi = wo
i = ΦTxi

that is the same estimate as presented in (??) when derived from the mean.

Solution 4.34 The steady-state behavior of E[w(n)] is more easily investi-
gated for the case when Φs is composed of all N basis functions and thus no
truncation occurs. Then, since ΦsΦT

s = ΦT
s Φs = I, we can simplify Fm(n)

to

Fm(n) = I− μ
n∑

j=m

ϕs(j)ϕ
T
s (j)

since all cross-terms ϕs(j)ϕ
T
s (j)ϕs(k)ϕT

s (k) in (??) for j 6= k will be equal
to zero. A natural time instant for studying the behavior of w(n) is at the
end of a potential. For the first EP, this means that (??) for n = N becomes

w(N) = (1− μ)w(0) + μ
N−1∑

m=0

x(m)ϕs(m),

where F0(N−1) = (1−μ)I and Fm+1(N−1) = I. By applying this equation
iteratively, we obtain an expression for the weight vector at the end of the
ith potential,

w(iN) = (1− μ)iw(0) + μ
i−1∑

l=0

(1− μ)i
N−1∑

m=0

x(lN + m)ϕs(m).

In order to make the terms (1−μ)i to decay to zero, the adaptation param-
eter μ must be chosen such that 0 < μ < 2. Taking the expected value of
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w(iN) and skipping the first term which vanishes because of the convergence
condition, we obtain

lim
i→∞

E[w(iN)] = lim
i→∞

(

μ
i−1∑

l=0

(1− μ)i
N−1∑

m=0

E[x(lN + m)]ϕs(m)

)

=
N−1∑

m=0

s(m)ϕs(m) = ΦT s = wo

which is identical to the optimal solution given in (??) and thus an unbiased
solution. When the basis functions are not complete but still provide a good
representation of the s(n) the above result remains a good approximation
and implies that the bias is negligible.

Solution 4.35 Each scale operation has now the same form than before
except replacing the decimation part by the interpolated filter (Fig. 4.8).

dj(n) = hu
ψ(−n) ∗ cj+1(n)

cj(n) = hu
ϕ(−n) ∗ cj+1(n)

with

hu
ϕ(n) =

{
hϕ(n) n even
0, n odd,

and hu
ψ(n) analogous. So each detail coefficient series dj(n) has been subject

to one filtering by hψ(n) and J-j-1 filtering stages (j = j0, ..., J−1) by hϕ(n)
filters, so the transfer function becomes (Fig. 4.9)

Dj(e
ω) =

{
H∗

ψ(eω) j = J − 1

H∗
ψ(e2(J−j−1)ω)

∏J
i=j+2 H∗

ϕ(e2(J−i)ω), j = j0, ..., J − 2,

These filters are band-pass filters that cover the high frequency part of the
signal spectrum. The coarse coefficients, cj0(n), has been subject in and
analogous way to J-j0 filtering stages (j = j0, ..., J − 1) by hϕ(n) filter.

Cj0(e
ω) =

J∏

i=j0+1

H∗
ϕ(e2(J−i)ω),

that is a low-pass filters that cover the remaining part of the spectrum.
Since the filter Hϕ(eω), for orthogonal wavelets, is not symmetric the

output has not linear phase that is not good for many biomedical application.
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Figure 4.8: Decomposition filter bank without decimation (algorithme a trous)
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Figure 4.9: Analysis filter bank for six details scales, Dj(eω), and their corre-
sponding coarse scale, CJ−6(eω) for Coiflet-4 wavelet, applied on a signal sampled
a 1 kHz, analyzing the six finest scales plus the coarse approximation

This can be solved by using biorthogonal wavelet that still allows dyadic
sampling with the filter bank implementation (even different length in the
hϕ(n) and hψ(n) filters) and allows to interpret the wavelet coefficients series
as a filter bank over the signal.

Solution 4.36 Starting by the refinement equation applied to ϕ(t) we have

ϕ(t) =
√

2
Nϕ−1∑

n=0

hϕ(n)ϕ(2t− n) (4.70)

and taken the Fourier transform in both sides
∫ ∞

−∞
ϕ(t)e−Ωtdt =

√
2

Nϕ−1∑

n=0

hϕ(n)
∫ ∞

−∞
ϕ(2t− n)e−Ωtdt (4.71)

=
1
√

2

Nϕ−1∑

n=0

hϕ(n)e−Ωn
2

∫ ∞

−∞
ϕ(t)e−Ωt

2 dt (4.72)



Solutions. Chapter 4 53

we obtain

Φ(Ω) =
1
√

2
Hϕ

(
eΩ/2

)
Φ(Ω/2) (4.73)

Where Hϕ

(
eΩ
)

is the discrete Fourier transform of hϕ(n), which is periodic
in frequency. Continuing to carry out this decomposition then

Φ(Ω) = Φ(Ω/2l)
l∏

i=1

1
√

2
Hϕ

(
eΩ/2i

)
(4.74)

and by letting the iteration number l→∞

Φ(Ω) = Φ(0)
∞∏

i=1

1
√

2
Hϕ

(
eΩ/2i

)
(4.75)

which, without loss of generality, can be normalize so

Φ(0) =
∫ ∞

−∞
ϕ(t)dt = 1, (4.76)

and then

Φ(Ω) =
∞∏

i=1

1
√

2
Hϕ

(
eΩ/2i

)
(4.77)

which only depend of the filter coefficients, we can think in a iterative al-
gorithm cascade algorithm that estimates the scaling function at iteration
i + 1 from the scale at iteration i as

ϕ(i+1)(t) =
√

2
Nϕ−1∑

n=0

hϕ(n)ϕ(i)(2t− n) (4.78)

Latter we will see how to initiate the recursion ϕ(0)(t). Taken the Fourier
transform in both sides, proceeding as before and continuing to carry out
this decomposition l times, from i = 1 to l, then

Φl(Ω) = Φ0(Ω/2l)
l∏

i=1

1
√

2
Hϕ

(
eΩ/2i

)
(4.79)

and by letting the iteration number l→∞

Φ∞(Ω) = Φ0(0)
∞∏

i=1

1
√

2
Hϕ

(
eΩ/2i

)
(4.80)

which, again without loss of generality, can be normalize so

Φ0(0) =
∫ ∞

−∞
ϕ0(t)dt = 1, (4.81)
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and then

Φ∞(Ω) =
∞∏

i=1

1
√

2
Hϕ

(
eΩ/2i

)
(4.82)

becomes a good estimation of the scale function Fourier transform. which
again only depend of the filter coefficients, and not on the starting shape of
the ϕ0(t) function. If, rather than taking up to ∞, we cat the development
at l, then we have a computationally accessible l order approximation to the
scaling function

Φ(l)(Ω) = Φ0(Ω/2l)
l∏

i=1

1
√

2
Hϕ

(
eΩ/2i

)
(4.83)

than in some cases converge, even for small number of l [?]. This only make
sense if the liml→∞ Φ(Ω/2l) is well defined as when it is continuous at Ω = 0.
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Chapter 5

Solution 5.1 a) The MSE of the estimate is

mse(σ̂2
v) = E[(σ̂2

v − σ2
v)

2]

= E[σ̂4
v ]− σ4

v (5.84)

Computing E[σ̂4
v ] we have

E[σ̂4
v ] = E

[
1
N

N−1∑

n=0

y2(n)
1
N

N−1∑

m=0

y2(m)

]

=

N−1∑

n=0

N−1∑

m=0

E[y2(n)y2(m)]

N2

=

N−1∑

n=0

N−1∑

m=0

(
σ4

v + 2r2
y(m− n)

)

N2

= σ4
v +

N−1∑

n=0

N−1−n∑

m′=−n

2r2
y(m

′)

N2
. (5.85)

Assuming that the significant correlation lags are much shorter than the
observation interval N , we can approximate

E[σ̂4
v ] =≈ σ4

v +

N−1∑

n=−N+1

2r2
y(n)

N
, (5.86)

and then

mse(σ̂2
v) ≈

2
N−1∑

n=−N+1

r2
y(n)

N
. (5.87)

b) Applying the Parseval theorem

mse(σ̂2
v) ≈

2
1
2π

∫ π

−π
R2

y(e
ω)dω

N

=

2
L−1∑

k=0

R2
y(ωk)

NL
(5.88)
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were Ry(ωk) is the L-point DFT of ry(n). Minimization of this MSE with
the restriction that the power of the process y(n) does not change with the
coloring filter, i.e.,

1
L

L−1∑

k=0

Ry(ωk) = σ2
v , (5.89)

can be done by minimizing the Lagrange function,

L(Ry, σ
2
v) =

L−1∑

k=0

R2
y(ωk) + λ

(
1
L

L−1∑

k=0

Ry(ωk)− σ2
v)

)

(5.90)

were Ry = [Ry(ω0), . . . , Ry(ωL−1)]T . Differentiating and equaling to zero
appears

∂L(Ry, σ
2
v)

∂Ry(ωk)
= 2Ry(ωk) +

λ

L
= 0, (5.91)

giving that

Ry(ωk) = −
λ

2L
(5.92)

This results implies that the spectrum of y(n) should be flat (white noise)
and again the whitening filter appears as the one which result in the lower
variance for the amplitude estimate. Note that forcing the Lagrange condi-
tion to be satisfied

1
L

L−1∑

k=0

Ry(ωk) =
1
L

L−1∑

k=0

−
λ

2L
= σ2

v , (5.93)

results in
λ = −2Lσ2

v , (5.94)

and then
Ry(ωk) = σ2

v (5.95)

Other way to see it is at (5.87 or 5.85) impose the restriction that ry(0) =
σ2

v and minimizing the variance in 5.87 which implies ry(n) = 0 for n 6= 0
and again it is shown that y(n) need to be white to have the lower possible
variance

Solution 5.2 The only difference with the derivation of the ML estimate
for σ will be that the PDF will include the explicit dependence with F as
g(F) so the differentiation will be

∂lnp(x; g(F))
∂F

=
dg(F)
dF

∣
∣
∣
∣
F=F̂

(

−
N

g(F̂)
+

1

g3(F̂)
(H−1x)T (H−1x)

)

= 0

(5.96)
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That, since g(F) is a monotonic function with F , result in

F̂ = g−1

(√
1
N

(H−1x)T (H−1x)

)

(5.97)

Solution 5.3 a) We have a problem of estimating the mean of a random
variable F̂ which is a function of other random variable ξ =

∑N−1
n=0 y2(n)

through the estimate of σ, σ̂.

F =
(σ

k

)1/a
(5.98)

For that we need to know the PDF of ξ which comes from the summation
of N squared random variables y(n) with Gaussian PDF (zero mean and
variance σ) and independent. The PDF of this random variable is

p(ξ, σ(F)) =
1

(2σ2)N/2Γ(N/2)
ξ(N/2−1)e

−ξ

2σ2 (5.99)

and the E[F̂ ] is

E[F̂ ] = E





(
1
k

(
ξ

N

)1/2
)1/a





= E

[(
ξ

Nk2

)1/2a
]

=
∫ ∞

0

(
ξ

Nk2

)1/2a ξ(N/2−1)e−
ξ

2k2F2a

(2k2F2a)N/2Γ(N/2)
dξ

=
Γ(N/2 + 1/(2a))

Γ(N/2)

(
2
N

)1/2a

F (5.100)

b) To compute the SNR we need to compute E[F̂2] that proceeding in
a parallel mode than before we obtain

E[F̂2] =
∫ ∞

0

(
ξ

Nk2

)1/a ξ(N/2−1)e−
ξ

2k2F2a

(2k2F2a)N/2Γ(N/2)
dξ

=
Γ(N/2 + 1/a)

Γ(N/2)

(
2
N

)1/a

F2 (5.101)



58 Solutions Manual

and the SNR is

SNR =
E[F̂ ]2

E[(F̂ − E[F̂ ])2]

=
E[F̂ ]2

E[F̂2]− E[F̂ ]2

=

(
Γ(N/2 + 1/a)Γ(N/2)

Γ2(N/2 + 1/(2a))
− 1

)−1

(5.102)

which result independent of the force F . That means that the bigger the
force F the bigger the standard deviation of their estimate which is propor-
tional to the force.

Making use of the Γ function property that Γ(n + 1) = nΓ(n) and for
the particular case were σ = kF (a = 1, linear relation between force and
amplitude) the expression can be rewrite to

SNR =

(
N

2
Γ2(N/2)

Γ2(N/2 + 1/2)
− 1

)−1

(5.103)

and using the Γ(J) approximation for large J , Γ(J+1/2)/Γ(J) ≈
√

J
(
1− 1

8J

)
,

we obtain

SNR ≈



N

2



 1
√

N
2 (1− 1

4N )





2

− 1





−1

≈ 2N (5.104)

which result in the expected behavior that the bigger the number of obser-
vations N the higher the SNR

Solution 5.4 According to these considerations, and considering that the
noise will affect equally at any projection if considered white from channel
to channel the terms with smaller λi in

σ̂2 =
1

NM

N−1∑

n=0

M∑

m=1

1
λm

z2
m(n) (5.105)

will be more noise affected, lower SNR ratio, and then other estimate can
be done by truncation of the sum

σ̂2 =
1

NM1

N−1∑

n=0

M1∑

m=1

1
λm

z2
m(n) (5.106)

where M1 accounts for the M1 < M higher eigenvalues of the spatial covari-
ance matrix
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Solution 5.5 The observed signal, x(n) = s(n)+v(n), has a power spectral
density, assuming un-correlation between s(n) and v(n), of

Sx(eω) = Ss(e
ω) + Sv(e

ω) (5.107)

and to develop the pre-whitening filter of the EMG part we need to estimate
Ss(eω). Since at 0% MVC (σs = 0) just the noise will be recorded , an
estimate of this power spectrum can be derived as

Ŝv(e
ω) = Ŝx(eω; σs = 0) (5.108)

which also allows to have an estimate of the noise power, P̂v. When in the
calibration recording with an amplitude level σscal

we can have and estimate
of the observed signal power spectrum Ŝx(eω; σscal

) and their total power
P̂xcal

and derive and estimate of the underlying EMG signal power spectrum
as

Ŝs(e
ω, σscal

) = Ŝx(eω; σscal
)− Ŝv(e

ω), (5.109)

from where the whitening filter H−1(eω) can be designed as the inverse of
this power spectrum after normalization with the estimate of σscal

:

σ̂2
scal

= P̂xcal
− P̂v (5.110)

and then

|H−1(eω)|2 =
σ̂2

scal

Ŝs(eω; σscal
)

=
P̂xcal

− P̂v

Ŝx(eω; σscal
)− Ŝv(eω)

(5.111)

b) if we call the signal after the whitening filter xw(n) = sw(n) + vw(n)
we realize that sw(n) will be white, Ssw(eω) = σ2

s , but not vw(n) that will
have the power spectrum

Svw(eω) = Sv(e
ω)|H−1(eω)|2 (5.112)

that will contribute to the amplitude estimate with a bias equal to the
squared root of noise power P

1/2
v . To reduce this noise we know that the

optimum linear filter is the Winner filter which has the form

H∗(eω) = α
Ssw(eω)

Ssw(eω) + Svw(eω)
= α

σ2
s

σ2
s + Svw(eω)

(5.113)

where the parameter α is scale parameter. This filter need to have and
estimate of σs and Svw(eω) before it is implemented, situation that is prob-
lematic since those values are unknown. Assuming that the noise level re-
mains fix during the recording Svw(eω) can be estimated from the previous
recording at 0% MVC so

Ŝvw(eω) = Ŝv(e
ω)|H−1(eω)|2. (5.114)
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The signal amplitude of the filter σ2
s can be initialize to some value and

then actualize adaptively with the previous amplitude estimate of the filter
output, so if the amplitude increases the filter moves to become more all pass
and if the force reduces and so the amplitude, the filter attenuates more the
noise contribution and makes a stronger filtering. The parameter α can be
estimate adaptively so to guaranty that the signal power after the two filter
stages is the same than the power of the signal input, circumstances that is
not satisfied just with the pre-whitening since the noise can be amplified by
it.

Solution 5.6 If we have a power spectral density Sx(eω) corresponding to
an EMG signal x(n) = xc(nT ) and at some point the signal, was scaled by a
factor ν becoming y(n) = xc(νnT ) the PSD of the y(n) becomes Sy(eω) =
1
ν Sx

(
eω/ν

)
. The mean frequency for signal x(n), ωMNFx is

ωMNFx =

∫ π

0
ω Sx(eω)dω

∫ π

0
Sx(eω)dω

(5.115)

and for signal y(t), ωMNFy

ωMNFy =

∫ π

0
ω Sy(e

ω)dω
∫ π

0
Sy(e

ω)dω

=

∫ π

0
ω

1
ν

Sx(eω/ν)dω
∫ π

0

1
ν

Sx(eω/ν)dω

(5.116)

by doing the change ω′ = ω/ν

ωMNFy =

∫ π/ν

0
νω′ Sx(eω′

)dω′

∫ π/ν

0
Sx(eω′

)dω′

= νωMNFx (5.117)

where the last equality holds since the spectrum of Sx(eω) is suppose to by
band limited in frequency at least to [0, π/ν] so that Sy(eω) does not suffer
aliasing.

Doing parallel analysis for the median frequency

∫ ωMDFx

0
Sx(eω)dω =

∫ π

ωMDFx

Sx(eω)dω (5.118)
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and
∫ ωMDFy

0
Sy(e

ω)dω =
∫ π

ωMDFy

Sy(e
ω)dω (5.119)

∫ ωMDFy

0

1
ν

Sx(eω/ν)dω =
∫ π

ωMDFy

1
ν

Sx(eω/ν)dω (5.120)

again doing the change ω′ = ω/ν we have

∫ ωMDFy /ν

0
Sx(eω′

)dω′ =
∫ π/ν

ωMDFy /ν
Sx(eω′

)dω′ (5.121)

and from here it follows that ωMDFy = νωMDFx which is the same dependency
than for the mean frequency and so

ωMDFy

ωMNFy
= ωMDFx

ωMNFx

Solution 5.7 The power spectrum of the observed signal to deal with is

Sx(eω) = Ss(e
ω) + Sv(e

ω)

= Ss(e
ω) + σ2

v (5.122)

so the expected value of the mean frequency is:

E[ω̂MNF] =

∫ π

0
ω
(
Ss(e

ω) + σ2
v

)
dω

∫ π

0

(
Ss(e

ω) + σ2
v

)
dω

=

∫ π

0
ωSs(e

ω)dω
∫ π

0
Ss(e

ω)dω + πσ2
v

+
(π2σ2

v)/2
∫ π

0
Ss(e

ω)dω + πσ2
v

(5.123)

and considering high SNR,
∫ π

0
Ss(e

ω)dω � πσ2
v , it results

E[ω̂MNF] = ωMNF +
(π2σ2

v)/2
∫ π

0
Ss(e

ω)dω

(5.124)

so the bias for the mean, bMNF, is

bMNF =
(π2σ2

v)/2
∫ π

0
Ss(e

ω)dω

=
π

2SNR
(5.125)
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Proceeding now with the median wMDF

∫ ω̂MDF

0

(
Ŝs(e

ω) + Ŝv(e
ω)
)

dω =
∫ π

ω̂MDF

(
Ŝs(e

ω) + Ŝv(e
ω)
)

dω (5.126)

Assuming the Ŝs(eω) not bias and white E[Ŝs(eω)] = σ2
v we can write

∫ ω̂MDF

0
Ŝs(e

ω)dω + σ2
v ω̂MDF =

∫ π

ω̂MDF

Ŝs(e
ω)dω + σ2

v(π − ω̂MDF) (5.127)

assuming that the estimate of the EMG spectrum does not introduce error,
or that this is negligible respect to that introduced by the noise we can write

∫ ω̂MDF

ωMDF

Ŝs(e
ω)dω + σ2

v ω̂MDF = −
∫ ω̂MDF

ωMDF

Ŝs(e
ω)dω + σ2

v(π − ω̂MDF)

(5.128)

Assuming now high SNR so Ŝs(eω) ≈ Ŝs(eωMDF) in the interval [ωMDF, ω̂MDF]
we can write

2(ω̂MDF − ωMDF)Ŝs(e
ωMDF) = σ2

v(π − 2ω̂MDF) (5.129)

Taken the expected value and assuming ω̂MDF and Ŝs(eωMDF) uncorrelated

2(E[ω̂MDF]− ωMDF)Ss(e
ωMDF) = σ2

v(π − 2E[ω̂MDF]) (5.130)

so

2bMDFSs(e
ωMDF) = σ2

vπ − 2σ2
v(ωMDF + bMDF) (5.131)

and so the bias,bMDF, is

bMDF =
(π − 2ωMDF)σ2

v

2Ss(eωMDF) + 2σ2
v

≈
(π − 2ωMDF)σ2

v

2Ss(eωMDF)

If we accept that the ratio σ2
v

Ss(eωMDF ) is of the order of the inverse SNR
then we can write

bMDF ≈

(
π − 2ωMDF

2SNR

)

which will usually be smaller than for the bMNF case since the mean fre-
quency rarely will be at the band extreme. Also the value at Ss(eωMDF)
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is usually larger than the mean spectrum since the spectrum then to have
their maximum values around the median so the bias even smaller than this
expression. Then if noise contamination is appreciable this bias contribu-
tion will control the variance of the estimate in both cases and will made
the median a better estimate to characterize the dominant frequency.

The bias can certainly be reduced by filtering the noise so the factor π
in both expressions will reduce to the bandwidth, ωB , of the noise resulting
from a low pass filter with that frequency

bMDF ≈
(ωB

2
− ωMDF

) 1
SNR

bMNF ≈
(ωB

2

) 1
SNR

Solution 5.8 a) Doing parallel analysis as the one done in problem 5.6 for
the median frequency

∫ ωc
MDFx

0
Sx(eω)dω = c

∫ π

0
Sx(eω)dω (5.132)

and

∫ ωc
MDFy

0
Sy(e

ω)dω = c

∫ π

0
Sy(e

ω)dω (5.133)

∫ ωc
MDFy

0

1
ν

Sx(eω/ν)dω = c

∫ π

0

1
ν

Sx(eω/ν)dω (5.134)

doing the variable change ω′ = ω/ν we have

∫ ωc
MDFy

/ν

0
Sx(eω′

)dω′ = c

∫ π/ν

0
Sx(eω′

)dω′ (5.135)

and from here it follows that ωc
MDFy

= νωc
MDFx

b) From previous observation it seems reasonable to estimate the so call
percentile median frequency ωc

MDF at a set of different percentiles c in the
range [0,1]. From them we can estimate the least squared regression line
fit between ωc

MDFy
and ωc

MDFx
which slope will be an estimate of ν. This

estimate will be less affected by the noise than estimates from a individual
frequencies ωc

MDFy
as far as the noisy estimates at different percentiles have

some degree of un-correlation.
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Solution 5.9 From the definition we have for the EMG signal x(n)

H1x =

√√
√
√
√
√
√

∫ π

−π
ω2Sx(eω)dω

∫ π

−π
Sx(eω)dω

(5.136)

and for the EMG signal y(n) = x(νn)

H1y =

√√
√
√
√
√
√

∫ π

−π
ω2Sy(e

ω)dω

∫ π

−π
Sy(e

ω)dω

=

√√
√
√
√
√
√

∫ π

−π
ω2 1

ν
Sx(eω/ν)dω

∫ π

−π

1
ν

Sx(eω/ν)dω

= ν

√√
√
√
√
√
√
√

∫ π/ν

−π/ν
ω′2Sx(eω′

)dω′

∫ π/ν

−π/ν
Sx(eω′

)dω′

= νH1x (5.137)

In Problem ?? we see that for a bandpass spectrum the mean frequency
results a bit overestimated by the H1 but here we show that the excursion
of this parameter with the scaled spectrum generated by fatigue is equally
good than in the other frequency related parameters considered ωMNF and
ωMDF.

Solution 5.10 From the definition of ωMNFx we can proceed as:

ωMNFx =

∫ π

0
ω Sx(eω)dω

∫ π

0
Sx(eω)dω

=
1
j

∫ π

0
jω Sx(eω)dω

∫ π

0
Sx(eω)dω

(5.138)

where, apart form a factor 2, the numerator is the inverse Fourier transform
of the analytic function of the autocorrelation derivative, (r′x)A(n), evaluated
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at n = 0, so we can express it as

ωMNFx =
1
j

π (r′x(m) + jř′x(m)) |m=0

πrx(0)

=
ř′x(m)|m=0

rx(0)
(5.139)

and introducing the autocorrelation definition, using the stationarity condi-
tion, and denoting as Ě the Hilbert transform of the autocorrelation when
express in expectation terms

ωMNFx =
Ě[x(n)x′(n−m)]|m=0

rx(0)

=
Ě[x(n + m)x′(n)]|m=0

rx(0)

=
E[x̌(n + m)x′(n)]|m=0

rx(0)

=
E[x̌(n)x′(n)]

rx(0)

(5.140)

and then an estimate of the frequency can be obtained by

ω̂MNFx =

N−1∑

n=0

x̌(n)x′(n)

N−1∑

n=0

x2(n)

(5.141)

This implies to compute the derivative of the signal x′
x(n) and the Hilbert

Transform x̌(n) and normalize by the signal power. All these operations
can be done from the discrete time signal and then implemented without
need to use the Fourier transform. Care should be taken in that both the
differentiator filter and the Hilbert transformed had the same phase delay,
otherwise the result will be not correct. The differentiate signal with zero
delay can be estimated by

x′(n) =
1
2
(x(n + 1)− x(n− 1)) (5.142)

and the Hilbert transform by (see Section ?? on QRS detection)

x̌(n) =
2
π

(x(n− 1)− x(n + 1)) (5.143)
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Solution 5.11 a) The error in the velocity will be driven by the error in
the delay that in the best case will be driven by the sampling interval. Since
the relation between the two magnitudes is ν̂ = d/θ̂ the relation between
the errors will be

Δν =
∂ν

∂θ
Δθ =

d

θ2
Δθ =

ν2

d
Δθ (5.144)

That considering the maximum estimation error, for sampling interval T ,
as Δθ = T

2 and a sampling rate of 1 kHz, Δθ = 0.5 ms. This result gives a
maximum possible value of Δν = 0.8 m/s (relative error of 20%), which is
not acceptable in clinical applications

b) This problem can be referred to the one already consider in problem
4.25 for time delay estimate of EP. Here again the problem is in estimating
the delay θ and the we saw in Problem 4.25 That a finer resolution in the
estimated delay can be achieved by using a frequency domain formulation
of the latency estimation from the matched filter:

θ̂ = arg max
n0

∞∑

n=−∞

x2(n)s(n− θ) = arg max
θ

1
2π

∫ π

−π
X2(e

ω)S∗(eω)eωθdω.

Since X2(eω) and S(eω) are continuous functions, it is possible to examine
noninteger delays θ.

To show that this is equivalent to an interpolation we will consider θ
with finer, non integer, resolution than one sampling rate. We also denote
the smaller integer number θ′ such that θ′ = Dθ. Making a variable change
Dω′ = ω, and using the relation between the Fourier transform of a signal
X(eω) and that of their interpolated one X i(eω),

X i(eω) =

{
D X(eDω) |ω| < π

D
0 |ω| > π

D

(5.145)

we have that

θ̂ = arg max
θ

1
2π

∫ π/D

−π/D
X(eDω′

)S∗(eDω′
)eDω′θDdω′

= arg max
θ

1
2π

∫ π

−π

1
D

Xi(eω′
)Si∗(eω′

)eDω′θdω′

= arg max
θ′

1
D

∞∑

n=−∞

xi(n)si(n− θ′) (5.146)

where xi(n) is the signal x(n) interpolated by a factor D and same with s(n)
and their respective Fourier transforms. The operation then represents the
matched filter after interpolation by a factor D.
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c) considering that a estimate of s(n) can be the first signal recording
x1(n) we can compute the maximization as

arg max
θ

(
1
2π

∫ π

−π
X2(e

ω)S∗(eω)eωθdω

)

≈ arg max
θ

(
1
N

N−1∑

k=0

X2(k)X∗
1 (k)e2πθk/N

)

(5.147)

so we can apply the iterative Newton method for minimization to the
performance surface

J (θ) = −
N−1∑

k=0

1
N

X2(k)X∗
1 (k)e2πθk/N (5.148)

θ(i+1) = θ(i) − α

dJ (θ)
dθ

∣
∣
∣
θ=θ(i)

d2J (θ)
dθ2

∣
∣
∣
θ=θ(i)

(5.149)

where

dJ (θ)
dθ

=
2
N

N/2−1∑

k=0

(
2πk

N

)

=
[
X2(k)X∗

1 (k)e2πθk/N
]

d2J (θ)
dθ2

=
2
N

N/2−1∑

k=0

(
2πk

N

)2

<
[
X2(k)X∗

1 (k)e2πθk/N
]

(5.150)

and α < 1 is an updating parameter speed. The iteration can follow like
in the Woody method until the difference between different iteration esti-
mated delay is lower than a threshold. The initialization can be done by the
estimate form matched filter without interpolation.

Solution 5.12 Starting in the expression

θ̂ = arg max
θ

(
M∑

m=1

N−1∑

n=0

(
2
M

M∑

l=1

xm(n)xl(n + (l −m)θ)

−
1

M2

(
M∑

l=1

xl(n + (l −m)θ)

)2






 (5.151)
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and decomposing the second term

θ̂ = arg max
θ

(
M∑

m=1

N−1∑

n=0

(
2
M

M∑

l=1

xm(n)xl(n + (l −m)θ)

−
1

M2

M∑

l=1

M∑

l′=1

xl(n + (l −m)θ)xl′(n + (l′ −m)θ)

))

(5.152)

Noting that the second term does not really depend on m since the delay
affecting xl and xl′ in both cases includes the factor mθ, it can be rewritten
as

θ̂ = arg max
θ

(
N−1∑

n=0

M∑

m=1

2
M

M∑

l=1

xm(n)xl(n + (l −m)θ)

−
1
M

N−1∑

n=0

M∑

l=1

M∑

l′=1

xl(n + lθ)xl′(n + l′θ)

)

(5.153)

we can proceed

θ̂ = arg max
θ

(
N−1∑

n=0

M∑

m=1

2
M

M∑

l=1

xm(n)xl(n + (l −m)θ)

−
1
M

N−1∑

n=0

M∑

l=1

M∑

l′=1

xl(n)xl′(n + (l′ − l)θ)

)

(5.154)

and then

θ̂ = arg max
θ

(
1
M

M∑

m=1

M∑

l=1

N−1∑

n=0

xm(n)xl(n + (l −m)θ)

)

(5.155)

and since when m = l the cross product does not depend on θ it can also
be express as

θ̂ = arg max
θ






M∑

m=1

M∑

l=1
l 6=m

N−1∑

n=0

xm(n)xl(n + (l −m)θ)




 (5.156)

and considering that all cross product are counted twice it can also be further
reduced to

θ̂ = arg max
θ

(
M−1∑

m=1

M∑

l=m+1

N−1∑

n=0

xm(n)xl(n + (l −m)θ)

)

(5.157)
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Solution 5.13 We know that the estimate is

θ̂ = arg max
θ

(
M−1∑

m=1

M∑

l=m+1

1
2π

∫ π

−π
Xm(eω)X∗

l (eω)e(m−l)θωdω

)

(5.158)

which can be compute from the DFT as

θ̂ = arg max
θ

(
M−1∑

m=1

M∑

l=m+1

1
N

N−1∑

k=0

Xm(k)X∗
l (k)e(m−l)θ2πk/N

)

. (5.159)

So we can search the minimum of the performance surface

J (θ) = −
M−1∑

m=1

M∑

l=m+1

(
1
N

N−1∑

k=0

Xm(k)X∗
l (k)e(m−l)θ2πk/N

)

(5.160)

and apply the iterative algorithm as in previous problem

θ(i+1) = θ(i) − α

dJ (θ)
dθ

∣
∣
∣
θ=θ(i)

d2J (θ)
dθ2

∣
∣
∣
θ=θ(i)

(5.161)

where now

dJ (θ)
dθ

=
M−1∑

m=1

M∑

l=m+1



 2
N

N/2−1∑

k=0

(
2πk(m− l)

N

)

=
[
Xm(k)X∗

l (k)e2πθk(m−l)/N
]




d2J (θ)
dθ2

=
M−1∑

m=1

M∑

l=m+1



 2
N

N/2−1∑

k=0

(
2πk(m− l)

N

)2

<
[
X2(k)X∗

1 (k)e2πθk(m−l)/N
]




(5.162)

Solution 5.14 a) Assuming no interaction between MUAPT the autocor-
relation function can be express as

rx(τ) = E[x(t)x(t− τ)]

= E





(
L∑

l=1

ul(t) + v(t)

)


L∑

j=1

uj(t− τ) + v(t− τ)









=
L∑

l=1

rul
(τ) +

L∑

l=1

L∑

j=1
j 6=l

E

[
K∑

k=1

hl(t− tk)

]

E

[
K∑

k′=1

hj(t− tk′ − τ)

]

+ rv(τ)

=
L∑

l=1

rul
(τ) + λ2

L∑

l=1

L∑

j=1
j 6=l

(∫ ∞

−∞
hl(t)dt

)(∫ ∞

−∞
hj(t)dt

)

+ rv(τ).

(5.163)
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We see that it results in the summation of the corresponding MUAPT spec-
tra plus a DC level plus the noise power spectrum. Taking the Fourier
transform

Sx(Ω) =
L∑

l=1

Sul
(Ω) + λ2

r

L∑

l=1

L∑

j=1
j 6=l

(∫ ∞

−∞
hl(t)dt

)(∫ ∞

−∞
hj(t)dt

)

δ(Ω) + Sv(Ω)

(5.164)

b) If we now assume that the statistical properties of the inter-pulse
interval are equal for all MUAP trend then we can use Prl

(Ω) = Pr(Ω) and
then

Sx(Ω) = λr

(

1 +
Pr(Ω)

1− Pr(Ω)
+

P ∗
r (Ω)

1− P ∗
r (Ω)

) L∑

l=1

|Hl(Ω)|2

+ λ2
r

L∑

l=1

L∑

j=1
j 6=l

(∫ ∞

−∞
hl(t)dt

)(∫ ∞

−∞
hj(t)dt

)

δ(Ω) + Sv(Ω) (5.165)

So if the assumptions are satisfied it is possible to estimate the firing rate
from the lowest spectrum peak.

Even not close to the physiology in general one can also explore the
expression for invariant MUAP shape and Sx(Ω) can be simplified to

Sx(Ω) = λrL

(

1 +
Pr(Ω)

1− Pr(Ω)
+

P ∗
r (Ω)

1− P ∗
r (Ω)

)

|H(Ω)|2

+ λ2
rL(L− 1)

(∫ ∞

−∞
h(t)dt

)2

δ(Ω) + Sv(Ω) (5.166)

were it is evident that the EMG spectrum shape is basically controlled by the
MUAP shape. When the EMG goes away form this assumption, then the
shape can no longer be associated to the MUAP shape but the the average
over the shapes of the MUAP. Also if the MUAP firing is not correlated
only the DC level suffer from the iteration between MUAP trends that has
no relevance for the frequency domain EMG analysis
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Chapter 7

Solution 7.1 Assume that the ECG signal is described by the following
Fourier series,

x(t) =
a0

2
+

∞∑

n=1

(an cos(nΩ0t) + bn sin(nΩ0t)).

The angular frequency of the baseline wander component is less than Ω0, the
heart rate, and thus to reject the baseline wandering without distorting the
ECG waveform, the cut-off frequency of the highpass filter must be lower
than Ω0. Should one accidentally use a too high cut-off frequency, higher
than Ω0 but lower than 2Ω0, the fundamental frequency of the ECG signal
is lost:

y(t) =
∞∑

n=2

(an cos(nΩ0t) + bn sin(nΩ0t))

= x(t)−
a0

2
− a1 cos(Ω0t)− b1 sin(Ω0t).

This means that after the filtering, the ECG signal will appear as it is origi-
nally but with an added oscillatory component with frequency Ω0 (the heart
rate).

The following plots show the effect on a square wave with repetition rate
1/10 (Ω0 = 2π/10).

-5 -4 -3 -2 -1 0 1 2 3 4 5
-0.5

0

0.5

1

1.5

Continuous time t

x(
t)

-5 -4 -3 -2 -1 0 1 2 3 4 5
-1

-0.5

0

0.5

1

Continuous time t

y(
t)



72 Solutions Manual

Solution 7.2 For the FIR filter, the convolution sum

y(n) =
n∑

k=n−N+1

x(k)h(n− k) (7.167)

can be compacted using the symmetry properties of h(n) as:

y(n) =






n∑

k=n−(N−1)/2+1

(x(k) + x(2n− k −N + 1)) h(n− k)

+x(n− (N − 1)/2)h((N − 1)/2) for N odd

n∑

k=n−N/2+1

(x(k) + x(2n− k −N + 1))h(n− k) for N even

The total number of operations are counted in table 7.1:

Filter Sums Products
Symmetric FIR (order N odd) N − 1 (N − 1)/2 + 1
Symmetric FIR (order N even) N − 1 N/2
Forward/Backwards IIR (order N) 2 N 2 (N+1)
Decimation by D, even;
Interpolation filter order M, even N+2M

D − 3 N+2M
2D

(FIR order N/D, even)

Table 7.1: Computational load for different filters structures

In the case of forward/backward filtering using an Nth order IIR filter
we have that the filter equation can be express as two times the IIR filter
equation:

y(n) = b0x(n) +
N∑

k=1

aky(n− k) (7.168)

which gives the total number of operation express in table 7.1, that becomes
efficient when we get same amplitude transfer function for N/2 order that
is usually the case.

In case of sampling rate decimation by a factor D, and interpolation
filters (decimator and interpolator filters of order M) we have that we will
have a reduction in the FIR filter order of D so the equivalent order will
be N/D to which we should add the antialiasing filter of order M, but only
computed once every D samples, and the interpolation filter that we can
assume the same filter and then order M, but since there are D-1 zeros for
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each non-zero sample in the series each apply, it need again only a number
of operations like if were order M/D. the total number of operations will
be the described in table 7.1 that compared with the FIR symmetric case
will represent some improvement in number of products when

D >
N + 2M

N + 2
(7.169)

and in number of summations when

D >
N + 2M

N
(7.170)

which gives an order of magnitude of the filter needs to be computationally
efficient the decimation/interpolation approach. When N=1564 (-30 dB stop
band attenuation for sampling rate 250 Hz, see Table ??), the anti-aliasing
filter has order M=500, with decimation D=20, we have that number of
sums reduce from 1563 to 126, and the number of multiplication reduces
from 783 to 65, that in both cases represent a factor around 12 of reduction
in computation load, which is very remarkable.

Solution 7.3 If the length of the filter is N , then a buffer of length 2N
should store the 2N recent samples, then the output at time −N can be
computed both for the forward and backwards filters and generate the out-
put. This implies a delay of at least N samples (assuming that computation
time can neglected in comparison to the sampling period).

Solution 7.4 We will show this property for a IIR filter with a single pair
of complex conjugate poles d0 = reω0 , r < 1, which transfer function is:

H(z) =
z2

(z − d0)(z − d∗0)
(7.171)

The frequency transfer function of this filter can by computed by replacing
z = eω, and computed the module that will result in the ratio between the
product of distances from the unit circle location of ω to the zeros divided
to the same product but to the poles.

H(eω) =
1

|eω − reω0 ||eω − re−ω0 |
(7.172)

for r close to one, and the poles far from the origin, z = 1, the maximum
transfer function of this filter is located at ωm ≈ ω0 with a value |H(eωm)| ≈

1
(1−r)2 sin(ω0) (implies give a fix value to the influence of the second pole when
evaluating H(eω) close to the first one), and the -3 dB cut-off frequency will
be located at a frequency ωc that satisfies |H(eωc)| ≈ 1√

2(1−r)2 sin(ω0)
, which
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Figure 7.10: z-plane pole locations

under the same approximation becomes, ωc = ωm ± (1 − r), equivalent in
the un-normalized frequency to Ωc = Ωm ± (1− r)Fs.

Increasing the sampling rate, Fs, by a factor n, and still requiring the
same un-normalized frequency behavior will, by necessity, imply some changes
in the filter poles location that we can investigate in the following way:

To maintain the un-normalized frequency value, Ωm = ωmFs, of the filter
frequency response maximum unchanged, we need to move the normalized
frequency to ω′

m = ωm/n. Using same approximations as before, this can
be obtained by rotating the poles a factor 1/n; d′0 = reω0/n.

The cut-off frequency of this filter, in the normalized domain, will have
again the expression ω′

c = ω′
m ± (1 − r) which result in the un-normalized

frequency Ω′
c = Ωm ± (1 − r)nFs. This frequency is not the same as it was

in the previous case since it is a factor n farther away from the maximum
frequency Ωm. To solve this, we can also move the poles closer to the unit
circle, d′′0 = r′eω0/n, with (1− r′) = (1− r)/n, and with them we obtain the
same cut-off frequency in the un-normalized domain.

This solution, can lead to instabilities when the poles are so close to the
unit circle that round-off error made them cross to outside the circle and
made the filter unstable. For filter with pole number the approximations
are less evident, but the overall behavior also forces the poles closer to the
unit circle, increasing the risk for instabilities because round-off errors, see
figure 7.11.
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Figure 7.11: a) original ECG sampled at 360 Hz, b) forward/backwards filtered
ECG with a order 5 Butterworth high-pass filter with cut-off at 0.721 Hz (poles at
distance from origin r1 = 0.9990, r2 = 0.9975 and r3 = 0.9969) c) Same than in
b) but after up-sampling to 1500 Hz and redesigning the filters for same order and
same un-normalized cut-off frequency (poles at distance from origin r1 = 0.9998,
r2 = 0.9994 and r3 = 0.9992). See that the output has become unstable
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Solution 7.5 The ideal low-pass frequency response of a filter with cut-off
frequency ωc0 is

H0(e
ω) =

{
1 for 0 ≤ ω ≤ ωc0

0 for ωc0 < ω ≤ π

which taking the inverse Discrete-Time Fourier transform result in the fol-
lowing ideal filter impulse response hIL0(n):

h0(n) =
sin(ωc0n)

πn
(7.173)

This filter has dependency on the cut-off frequency only in the numerator,
so we can design a filter for a general cut-off frequency ωc still keeping h0(n)
as

h(n) =
sin(ωc0n)

πn

sin(ωcn)
sin(ωc0n)

=
h0(n)

sin(ωc0n)
sin(ωcn)

= c(n) sin(ωcn) (7.174)

and truncated to obtain the filter FIR impulse response hT (n) of length
2N+1

hT (n) =

{
c(0)ωc for n = 0
c(n) sin(ωcn) 1 ≤ |n| ≤ N

(7.175)

with

c(n) =

{
1
π for n = 0

h0(n)
sin(ωc0n) 1 ≤ |n| ≤ N

The filter design obtained just from truncation is well know not to be the
best design in terms of leakage, so some other more sophisticated methods
like windows method or Remez exchange algorithm [?] can be used. With
the obtained filter structure we can design just once the prototype filter
h0(n) and use equation (7.175) to obtain the time-varying filter once the
frequency ωc has been decided.

With the filter structure as function of ωc, the next step is the determi-
nation of this ωc as function of the observed ECG and their time-varying
properties, ωc(k), denoting by k the time index of the observed signal, to
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obtain the time-varying impulse response hT (k, n). Already in the book it
was proposed the ratio

ωc(k) = 2πfc(k) ∼
2π

r(k)
. (7.176)

as an estimate the heart rate dominant frequency, with

r(k) = ri +
ri+1 − ri

θi+1 − θi
(k − θi), θi ≤ k ≤ θi+1. (7.177)

To restrict the cut-off frequencies variability to a reasonable interval value,
we can force ωc(k) to take discrete values in the interval between ωc1 and
ωc2 in a grid of L different possible frequencies

ωc(k) = ωc1 + l(k)

(
ωc2 − ωc1

L

)

L > l(k) > 0 (7.178)

and the problem reduces to match the observed heart rate to the integer
value l(k). One possibility can be [?]

l(k) = int

[
1

Δω

(
2π

r(k)
− ωc1

)]

+ γ (7.179)

with Δω =
ωc2−ωc1

L the frequency grid step, and γ an integer accounting
for the offset we want to introduce from the heart rate frequency to the
cut-off frequency ωc. Other alternatives could be to estimate the l(k) as a
function of the RMS baseline estimate differences for l(k) = L (best esti-
mation, with ECG distortion) and a running l(k) < L. If the difference is
small it means that the baseline is still well estimated with a reduced ωc(k)
and then preferable to avoid ECG distortion. When the RMS increases it
implies that higher l(k) will be preferable. The interested reader for such a
implementation can find further details on [?]

Solution 7.6 a) The discrete time Fourier transform H(ω) of the triangular
shaped h(n) is given by

H(ω) =
1
L

(
sin(ωL/2)
sin(ω/2)

)2

.

Other interpolator of higher order will involve more samples in the interpo-
lation process and then h(n) will extend more than the 2L samples, L being
the interpolation factor. For example, a cubic interpolation will involve 2 ∙3L
samples.
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b) The transfer function H(ω) is a lowpass filter which a cut-off frequency
ωc at -3 dB can be estimated in a way analogous to Problem 4.8. Since the
cut-off frequency ωc will be small compared with π we can approximate by

H(ωc) = 0.7079L =
1
L

(
sin(ωcL/2)
sin(ωc/2)

)2

≈
1
L

(
ωcL/2− (ωcL/2)3

3!

)2

(ωc/2)2

≈
1
L

(ωcL/2)2 − 2 (ωcL/2)4

3!

(ωc/2)2

=L

(

1−
L2ω2

c

12

)

obtaining

ωc =
1.8722

L

c) To evaluate the equivalent analog frequency Fc we obtain

Fc =
ωc

2π

L

T
=

0.30
T

which for a heart rate of 60 bpm (T=1s) implies Fc = 0.3Hz. A lower heart
rate at 50 bpm results in Fc = 0.25Hz making the low-pass effect more
pronounced and therefore distorting the heart rate variability information
over this cut-off frequency.

The sin approximation introduced to arrive at this result is rather crude,
especially for low values of L. Solving the cut-off frequency with numerical
techniques we obtain Fc = 0.36/T Hz for small L up to Fc = 0.32/THz
for large L values. Also when interpolating a signal that is sampled at the
beat locations the interpolation interval, T , differs from beat to beat, thus
becoming a time-varying linear filter.

The lowpass filtering effect is illustrated by the figure below:

Solution 7.7 a) The Taylor series of y(t) around t0 is

y(t) =
∞∑

l=0

(t− t0)l

l!
y(l)(t0)

= y(t0) + (t− t0)y
(1)(t0) +

(t− t0)2

2
y(2)(t0) + . . . .
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Figure 7.12: Transfer function of the interpolating filters for linear and cubic
spline interpolation. The functions are calculated for an interpolation factor of
L = 2, assuming that Fs = 1/T = 1 and 0.7 Hz. Note that the lowpass filtering is
more drastic when the period between samples increases (Fs decreases). Also, it is
evident that cubic spline interpolation exhibits a better behavior than does linear
interpolation.

Now, assume that there is a function x(t) = y(k)(t). Then the Taylor
series of x(t) around t0 is

x(t) = y(k)(t) =
∞∑

l=0

(t− t0)l

l!
y(l+k)(t0)

= y(k)(t0) + (t− t0)y
(k+1)(t0) +

(t− t0)2

2
y(k+2)(t0) + . . . .

Hence, the matrix A has the following structure,

A =








1 (t− t0) (t− t0)2/2 (t− t0)3/6 . . .
0 1 (t− t0) (t− t0)2/2 . . .
0 0 1 (t− t0) . . .
...

. . . . . . . . . . . .








.

b) Inserting the origin at t0 = 0 and t = T = 1 (T the sampling period)
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into A given in (a), or alternatively considering (t−t0) = T = 1, yields

A∣
∣
∣
∣
∣
∣

t = T = 1, t0 = 0
or

(t − t0) = T = 1

=








1 1 1/2 1/6 . . .
0 1 1 1/2 . . .
0 0 1 1 . . .
...

. . . . . . . . . . . .








.

Thus, from this matrix it can be recursively compute the estimate of
the baseline to be subtracted as:









y(n)
y(1)(n)
y(2)(n)
y(3)(n)
y(4)(n)









= A









y(n− 1)
y(1)(n− 1)
y(2)(n− 1)
y(3)(n− 1)
y(4)(n− 1)









which implies to start with noT = t0 and assume the sampling interval
T=1, so the elements of A can be estimated as mentioned. In practice,
this implies a time units change that does not affect the result. It
should be paid attention when initiating the recursion with the values
of y(k)(n0), where Δtij need to be included in the renormalized units.

Solution 7.8 To find the transfer function of the IIR filter which appears
when the nonlinear 50/60 Hz removal filter in (??) is replaced by the linear
one in (??) we proceed in the following way: The equation which subtracts
the estimated powerline interference v̂(n) from the observed ECG signal
x(n) is

y(n) = x(n)− v̂(n),

where the sinusoidal interference v̂(n) is estimated as a linear update from
the error e′(n)

v̂(n) = v(n) + αe′(n).

Expressing the filter as function of the v̂(n) recursion and the e′(n) definition
in (6.38) we have that

y(n) = x(n)− v(n)− αe′(n)

= x(n)− v(n)− α(x(n)− x(n− 1)− v(n) + v(n− 1))

= (1− α)(x(n)− v(n)) + αy(n− 1).

Note that (x(n − 1) − v(n − 1)) can be replaced by y(n − 1) since v(n)
is replaced by v̂(n) after each iteration and then v(n − 1) is v̂(n − 1) at
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iteration (n − 1) and so it can be replaced. This step cannot be done with
(x(n) − v(n)) because the replacement will take place after y(n) has been
obtained and before starting calculations of the sample at time (n− 1). So
we should replace v(n) by the recursive estimation equation used to obtain
it in (??),

y(n) = (1− α)(x(n)− v(n)) + αy(n− 1)

= (1− α)(x(n)− 2 cos ω0v(n− 1) + v(n− 2)) + αy(n− 1).

One way to eliminate v(n − 1) and v(n − 2) is by adding and subtracting
the necessary x(n− 1) and x(n− 2) which can be replaced by y(n− 1) and
y(n − 2) since, again, v(n − 1) and v(n − 2) equal the estimated v̂(n − 1)
and v̂(n− 2) at time instants (n− 1) and (n− 2), respectively. In doing so,
we obtain

y(n) =(1− α) [x(n)− 2 cos ω0(x(n− 1)− y(n− 1)) + x(n− 2)− y(n− 2)]

+ αy(n− 1).

The corresponding transfer function is given by

H(z) =
(1− α)

(
1− 2 cos ω0z

−1 + z−2
)

1− (α + 2(1− α) cos ω0)z−1 + (1− α)z−2
.

Note that the poles are not located at ω0 but rather at ω′
0

cos(ω′
0) =

α + 2(1− α) cos(ω0)

2
√

1− α
.

This result can be obtained by identification from (6.34). Note that if α <<
1, as is usually the case, ω′

0 ≈ ω0.

Solution 7.9 The 3 dB and 10 dB notch bandwidths of the filters are found
by solving the following equation,

|H(eω)|2 = 10−x/10 ∙max
ω
|H(eω)|2,

where x is the attenuation in dB, and maxω |H(eω)|2 is the maximum gain
of the filter. Both filters have maximum gain at ω = 0 for ω0 > π/2, and at
ω = π for ω0 < π/2. For ω0 = π/2, |H(e0)|2 = |H(eπ)|2.

The second order FIR filter:

H(z) = 1− 2 cos(ω0)z
−1 + z−2

|H(eω)|2 = H(z)H(z−1)|z=eω = 4(cos2(ω)− 2 cos(ω) cos(ω0) + cos2(ω0))

= 4 (cos(ω)− cos(ω0))
2

|H(eω)|2|ω=0 = 4(1− cos(ω0))
2
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Thus,

cos(ω)− cos(ω0) = ±10−x/20(1− cos(ω0))

ω1,2 = arccos(cos(ω0)± 10−x/20(1− cos(ω0)))

Δωx dB = ω2 − ω1 (ω2 > ω1)

For ω0 = π/2, Δω3 dB ≈ 0.5008π and Δω10 dB ≈ 0.2048π.

The second order IIR filter (notch):

H(z) =
1− 2 cos(ω0)z−1 + z−2

1− 2r cos(ω0)z−1 + r2z−2

|H(eω)|2 = H(z)H(z−1)|z=eω

=
4(cos2(ω)− 2 cos(ω) cos(ω0) + cos2(ω0))

(1− r2)2 + 4r(r cos2(ω)− (1 + r2) cos(ω) cos(ω0) + r cos2(ω0))

This expression will obviously be difficult to use. Inserting ω0 = π/2 yields

|H(eω)|2|ω0=π/2 =
4 cos2(ω)

(1− r2)2 + 4r2 cos2(ω)

|H(eω)|2|ω=0, ω0=π/2 =
4

(1− r2)2 + 4r2
=

4
(1 + r2)2

Thus,

cos2(ω)
(1− r2)2 + 4r2 cos2(ω)

= 10−x/10 1
(1 + r2)2

cos2(ω) =
(1− r2)2

10x/10(1 + r2)2 − 4r2

cos(ω) = ±

√
(1− r2)2

10x/10(1 + r2)2 − 4r2

ω1,2 = arccos

(

±

√
(1− r2)2

10x/10(1 + r2)2 − 4r2

)

Δωx dB = ω2 − ω1 (ω2 > ω1)

For ω0 = π/2 and r = 0.95, Δω3 dB ≈ 0.0327π and Δω10 dB ≈ 0.0109π.
Note that the value for 3dB agrees with the one that can be estimated from
the approximation in [?, p. 342] Δω3 dB ≈ 2(1− r).

When ω0 6= π/2, the magnitude at ω = 0 will differ from the one at
ω = π. If this difference is larger than, e.g., 3 dB, Δω3 dB is no longer well-
defined, and indicates that a very large part of the spectrum is distorted
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by the filter. While this effect is observed for the IIR filter only when ω0

is close to 0 or π, relatively small deviations from ω0 = π/2 will have a
dramatic impact on the FIR filter. This phenomenon is best understood by
studying a pole-zero plot, recalling how poles and zeros interact in forming
the spectrum.

Solution 7.10 First, using the linear combiner depicted in Figure ??, the
estimated interference is obtained by adjusting the weights w1 and w2 for
cos(ω0n) and sin(ω0n), respectively, using the LMS algorithm. Matching of
the amplitude and phase of the disturbance A cos(ω0n− φ) can be achieved
since

w1 cos(ω0n) + w2 sin(ω0n) =
√

w2
1 + w2

2 cos

(

ω0n− arctan
w2

w1

)

.

Now, assume that instead of cos(ω0n) and sin(ω0n), the reference samples
cos(ω0n) and cos(ω0(n − 1)) are available, corresponding to the two most
recent samples of a signal oscillating with angular frequency ω0. Then by
using the trigonometric relation

cos(α− β) = cos(α) cos(β) + sin(α) sin(β)

we obtain that

w1 cos(ω0n) + w2 cos(ω0(n− 1)) = (w1 + w2 cos(ω0)) cos(ω0n)

+ w2 sin(ω0) sin(ω0n)

= A′ cos(ω0n− φ′)

where

A′ =
√

w2
1 + 2w1w2 cos(ω0) + w2

2

φ′ = arctan
w2 sin(ω0)

w1 + w2 cos(ω0)
.

Since A′ and φ′ can be adjusted to any amplitude and phase by tuning
w1 and w2, it is clear that the linear combiner may be implemented as a
first-order FIR filter. When ω0 = π/2, the two approaches are equivalent.

Solution 7.11 The structure of Φ in H = I−ΦΦT is

Φ = [ϕ1 ϕ2] =

√
2
N








1 0
cos(ω0) sin(ω0)

...
...

cos(ω0(N − 1)) sin(ω0(N − 1))








.
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The matrix product ΦΦT = ϕ1ϕ
T
1 +ϕ2ϕ

T
2 is of dimension N ×N elements.

The element (i, j) is

[ΦΦT ](i,j) =
2
N

cos(ω0(i− 1)) cos(ω0(j − 1)) +
2
N

sin(ω0(i− 1)) sin(ω0(j − 1))

=
2
N

cos(ω0(i− j)), i = 1, 2, . . . , N, j = 1, 2, . . . , N.

Hence, it is evident that

[H](i,j) =
[
I−ΦΦT

]
ij

=

{
− 2

N cos(ω0(i− j)), i 6= j
1− 2

N , i = j
.

Solution 7.12 This filter is such that the impulse responses HT
i (rows in

H)

Hi = −
2
N













cos((i− 1)ω0)
cos((i− 2)ω0)

...
1− N

2
...

cos((N − i)ω0)













i = 1, 2, . . . , N. (7.180)

are circularly shifted versions of each other. Since every impulse response
acts on the input vector x

y = Hx (7.181)

the output signal y(i) is obtained as the convolution of the impulse response
with the periodic extension of the vector x

y(i) = HT
i x, i = 1, 2, . . . , N. (7.182)

This filter is a noncausal, a property which does not impose any problems
since the processing is performed off-line. It should be noted that x(i) is
always multiplied by (1 − 2/N) in estimating y(i), as is done with x(i + 1)
which always multiplied by (−2) cos ω0/N , and so on. This can alternatively
be expressed by generating the periodic extension xc(n), that is,

xc(n) = x(n−
⌊ n

N

⌋
N) (7.183)

and then

y(i) =
N∑

n=1

H(N+1)/2(n)xc(i− (N − 1)/2 + n), i = 1, 2, . . . , N. (7.184)
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where H(N+1)/2(n) is a symmetric impulse response and, hence, with linear
phase.

Solution 7.13 The transfer function is

H(z) =
B(z)
A(z)

=
1− 2 cos(ω0)z−1 + z−2

1− 2(1− μC2) cos(ω0)z−1 + (1− 2μC2)z−2
.

The zeros of the numerator are

B(z) = 1− 2 cos(ω0)z
−1 + z−2 = 1− (eω0 + e−ω0)z−1 + z−2

= (1− eω0z−1)(1− e−ω0z−1)⇒ e±ω0 .

which are located on the unit circle at the angles ±ω0. When μC << 1, the
poles of the denominator are approximately given by

A(z) = 1− 2(1− μC2) cos(ω0)z
−1 + (1− 2μC2)z−2

≈ 1− (1− μC2)(eω0 + e−ω0)z−1 + (1− μC2)2z−2

= (1− (1− μC2)eω0z−1)(1− (1− μC2)e−ω0z−1)

⇒ (1− μC2)e±ω0 .

Another way to arrive to this value is by identifying the terms in (??)
such that the poles p1,2 = re±ω′

0 are defined by

r =
√

(1− 2μC2) (7.185)

and

cos(ω′
0) =

(1− μC2) cos(ω0)√
(1− 2μC2)

(7.186)

Again, when μC2 << 1, the previous derivation will result. The pole are
located on the inside of the unit circle, with radius (1−μC2), and at the same
angles as are the zeros at ω0. The approximation is that a quadratic term,
which is assumed to be zero, is introduced: 1 − 2μC2 ≈ 1− 2μC2 + μ2C4 =
(1 − μC2)2. It is valid when μC2 << 1, i.e., when the adaptation rate is
slow.

Solution 7.14 The filter output will be

y(n) =
∞∑

k=−∞

x(n− k)h(k, n) (7.187)
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that to be express as sum of x(n) plus other term, it seems to be reasonable
to expand x(n + k) around n with a Taylor series expansion that, assuming
unit sampling period, is:

x(n + k) = x(n) +
∞∑

m=1

kmx(m)(n)
m!

(7.188)

which inserted into the convolution sum with the impulse response gives:

y(n) =

(
β(n)

π

)1/2
(

x(n)
∞∑

k=−∞

e−β(n)k2
(7.189)

+
∞∑

m=1

x(m)(n)
m!

(
∞∑

k=−∞

(−1)mkme−β(n)k2

))

(7.190)

which after introducing the normalized impulse response sum, and the fact
that for odd orders of m, the sum in k is of a antisymmetric function and
equals zero, can be simplified to

y(n) = x(n) +

(
β(n)

π

)1/2 ∞∑

m=1

x(2m)(n)
(2m)!

(
∞∑

k=−∞

k2me−β(n)k2

)

. (7.191)

The sum in k, can be approximated by the the integral of the continuous
time function (sampling period fine enough)

∞∑

k=−∞

k2me−β(n)k2
=
∫ ∞

−∞
t2me−β(n)t2dt (7.192)

=
1 ∙ 3 ∙ 5 ∙ ∙ ∙ (2m− 1)

2m

(
π

β(n)2m+1

)1/2

(7.193)

which results in

y(n) = x(n) +
∞∑

m=1

x(2m)(n)
(2β(n))m

∏m
p=1 2p

. (7.194)

then the difference, ε, between observed, x(n), and filtered y(n), signal is

ε =

∣
∣
∣
∣
∣

∞∑

m=1

x(2m)(n)
(2β(n))m

∏m
p=1 2p

∣
∣
∣
∣
∣

(7.195)

from this expression we have a relation between ε and β(n) and the observed
signal (its derivatives) x(n). If we assume that the signal x(n), around n, is
adequately represented by a polynomial up to third order, then

β(n) =

∣
∣
∣
∣
∣
x(2)(n)

4ε

∣
∣
∣
∣
∣

(7.196)
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which allows to, once estimated the noise variance at some area of the ECG
like the TP interval, give a value to β(n) from a estimate of the second
derivative of the signal. Note that for high values of x(2)(n) it is obtained
high β(n) so narrow h(k, n) which implies higher low-pass cut-off frequency,
as expected for high values of the derivatives implying high frequency con-
tent. By other hand small ε again implies high cut-off frequency and the
reverse, meaning that higher filtering is obtained by higher noise contami-
nation as one would find natural.

For higher order polynomial, like up to fifth order we need to solve the
relation

ε =

∣
∣
∣
∣
∣
x(2)(n)
4β(n)

+
x(4)(n)
32β(n)2

∣
∣
∣
∣
∣
. (7.197)

At areas with very high frequency like at the QRS peaks, still this approx-
imation can fail, and some ad hoc rules could help in improving the filter
performance [?].

For real filter implementation, also truncation need to be introduced in
the impulse response resulting in:

y(n) =
m∑

k=−m

x(n− k)
e−β(n)k2

C(n)
(7.198)

with C(n) =
∑m

k=−m e−β(n)k2

Solution 7.15 The orthonormal basis set Φ taken into consideration should
be that ones that made the filter characteristics adapted to the time-varying
properties of the signal, so it can be selected from a basis that resemble the
beat morphology, as the Hermite polynomials [?], even more adapted to the
signal shape from a truncated KL-based set of basis obtained from a training
set. The training set can be obtained form a universal purpose data set or
from the initial part of each recording, so better fit to the analyzing data
will be obtained.

Then the issue of number of basis, K < N , used in the truncation need
to be taken in consideration to obtain the projection matrix Φs, and this can
be designed from the behavior illustrated in figure ?? where one possibility
is to design the number of basis, K, as those that give a power of the residual
difference between the observed xi ith beat and filtered one yi = ΦsΦT

s xi

equal to the a priori estimated noise power in the observed signal σ2
i at the

ith beat (as usually estimated at the at TP interval).
(
xi −ΦsΦ

T
s xi

)T (
xi −ΦsΦ

T
s xi

)
< Nσ2

i (7.199)

Finally, if continuous filtered signal is required, we need to deal with the
segmentation gaps generated by no-uniform RR intervals. Since this gaps
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usually are at the TP interval they can be filled by a connecting line between
recurrences, always keeping in main that no useful info is provided in that
area.

Solution 7.16 Arrange the recorded noise-contaminated signal and the
known waveform into x and s, respectively:

x =
[

x(0) x(1) . . . x(N − 1)
]T

,

s =
[

s(0) s(1) . . . s(N − 1)
]T

.

Now the probability density functions and the hypothesis testing may be
formulated as

p(x;H0) =
1

(2πσ2
v)N/2

e
− 1

2σ2
v
xT x

p(x;H1) =
1

(2πσ2
v)N/2

e
− 1

2σ2
v

(x−s)T (x−s)

L(x) =
p(x;H1)
p(x;H0)

= e
− 1

2σ2
v
((x−s)T (x−s)−xT x) H1

> η

ln L(x) = −
1

2σ2
v

(
(x− s)T (x− s)− xTx

) H1
> ln η

ln L(x) =
1
σ2

v



xT s−
1
2

sT s︸︷︷︸
Constant



 H1
> ln η.

The constant term is known a priori. Hence, the test statistics is

xT s
H1
> η′,

where η′ = σ2
v ln η + 1

2s
T s. We recognize this as the matched filter ap-

proach.

Solution 7.17 The filter is described by

H(z)|z=ejω = (1− e−jω)K(1 + e−jω)L−K

= e−j ω
2

K
(
ej ω

2 − e−j ω
2

)K
e−j ω

2
(L−K)

(
ej ω

2 + e−j ω
2

)L−K

= e−j ω
2

L
(
2j sin

(ω

2

))K (
2 cos

(ω

2

))L−K

= 4Le−j(ω
2

L−π
2

K) sinK
(ω

2

)
cosL−K

(ω

2

)

= 4Le−j(ω
2

L−π
2

K) tanK
(ω

2

)
cosL

(ω

2

)
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Observing that (1 − z−1)K(1 + z−1)L−K places K zeros at z = 1 (DC com-
ponent) and L−K zeros at z = −1 (ω = π), it is clear that a lowpass filter
is obtained when K = 0, L 6= K, and a highpass filter when L = K. Any
other combination of K and L will yield a bandpass filter, with damping at
ω = 0 and ω = π. The degree of damping at each end of the spectrum, and
hence the passband, is determined by the specific combination of K and L.

0 1 2 3 4 5 6
10

-3

10
-2

10
-1

10
0

ω

|H
(e

-j
ω
)|

Figure 7.13: Examples of magnitude functions of the binomial-Hermite family of
filters for different values of K and L, that is, (K,L)=(0,5), (0,15), (5,5), (10,10),
(1,2, and (3,4). Note that the normalized frequency ranges from 0 to 2π.

Solution 7.18 The squared deviation signal σ2(n) is

σ2(n) = E
[
(xi(n)− E[xi(n)])2

]

= E
[
(xi(n)− s(n))2

]

= E
[
v2
i (n)

]
(7.200)

So it can be estimated by

σ̂2(n) =

M∑

i=1

v2
i (n)

M
(7.201)

When misalignment is introduced in the model, we will temporary move
to the continuous-time domain to account for continuous delay τi. Within
this framework

σ2(t) = E
[
(xi(t)− E[xi(t)])

2
]

(7.202)
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with

E[xi(t)] = E[s(t− τi) + vi(t)] (7.203)

= E

[

s(t)− τi
ds(t)
dt

]

(7.204)

= s(t) (7.205)

and then

σ2(t) = E
[
(xi(t)− s(t))2

]
(7.206)

= E

[(

τi
ds(t)
dt

+ vi(t)

)2
]

(7.207)

= E[τ2
i ]

(
ds(t)
dt

)2

+ E[v2
i (t)] (7.208)

that when sampled and estimated results in

σ̂2(n) = σ2
τs

′2(n) +

M∑

i=1

v2
i (n)

M
(7.209)

(7.210)

This result shows that the misalignment introduce errors but not only de-
pendent of its statistics (σ2

τ ) if not also of the signal properties s′(n), being
more relevant as the derivative is bigger, in other words for components of
higher frequency.

If now we want to keep the contribution of the misalignment to P lower
than 10% of the Pv contribution, knowing that power of vi(n), Pv, is 30 dB
lower than that of Ps, Pv = 10−3, we should impose that

σ2
τPs′ <

Pv

10
(7.211)

Ps′

12F 2
s

<
Pv

10
(7.212)

Fs >

√
10Ps′

12Pv
= 4kHz (7.213)

Solution 7.19 The QRS complex always acts as a big step impulse for the
filter, and then it spreads ringing after the QRS that will eventually overlap
the late potentials being impossible to distinguish this ringing from the real
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clinically relevant high frequency contents. This is similar to the ringing
introduced by the linear phase filter used for 50/60 Hz attenuation.

One way to solve this is with a bidirectional filter which filters the right-
most half of the QRS part in backward direction. This will made the ringing
to spread into the first part of the QRS complex rather than into the last
part, so avoiding the overlap with the late potentials. The first leftmost
part is filtered forward just in case QRS width duration is to be measured
so also avoiding ringing into the “early” potential area and being possible to
estimate both onset and end positions of the filtered QRS waveform. If the
filter is IIR then the effect is even better marked since the phase response
is highly non-linear and frequencies lower than those at cut-off frequency
are even more delayed than those on the pass band so further separating
the high frequency components from the attenuated low frequency from the
QRS waveform.

Solution 7.20 a) Since the error τ is uniformly distributed in the sampling
interval [−T/2, T/2] the PDF function is Pτ (τ) = 1/T on that interval and
the misalignment error variance, σ2

τ , is

σ2
τ =

∫ T/2

−T/2

1
T

τ2dτ

=
T 2

12
(7.214)

which give a standard deviation στ = 0.144 ms
b) The cut-off frequency can be compute from the result already obtained

in problem 4.23 as Fc = 0.422/T resulting in Fc = 844 Hz

c) the bigger restriction will be the averaging since impose a cut-off
frequency of 844 Hz whereas the sampling limits to half the sampling rate,
being then 1000 Hz

Solution 7.21 Lets assume that the max
n0>m>n

g(m,−ε0) = g(c,−ε0) occurs

at sample c, and the min
n0>m>n

g(m, ε0) = g(n, ε0) occurs at the sample n just

candidate to be a vertex since next one n + 1 already satisfies ??. In this
situation the reconstruction error em at sample m will be (see Fig. 7.14)

em =

∣
∣
∣
∣x(m)− x(n0)− (m− n0)

x(n)− x(n0)
n− n0

∣
∣
∣
∣ (7.215)

For any value m it is satisfied

|x(m)− x(n0)− (m− n0)g(n, ε)| ≤ ε (7.216)
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Figure 7.14: Plot for SAPA-1 principle

and also
∣
∣
∣
∣x(n0) + (m− n0)

x(n)− x(n0)
n− n0

− x(n0)− (m− n0)g(n, ε)

∣
∣
∣
∣ ≤ ε (7.217)

by combining both equations

em =

∣
∣
∣
∣x(m)− x(n0)− (m− n0)

x(n)− x(n0)
n− n0

∣
∣
∣
∣ ≤ 2ε (7.218)

Solution 7.22 With the model assumptions the running average beat ŝi(t) =
s(t), and the residual yi(t) signal will be

yi(t) = xi(t)− ŝi(t) (7.219)

yi(t) = s(t) + vi(t)− s(t− τi) + vi−1(t) (7.220)

yi(t) = recgi
(t) + vi(t) + vi−1(t) (7.221)

where τi is the misalignment error at beat ith, and recgi
(t) = s(t)− s(t− τi).

We made the study in continuous-time since the misalignment refer to a
continuous value respect to the perfect alignment, the sampling will be done
at the end. The power spectrum of y(t), Sy(Ω), will include two terms

Sy(Ω) = E[Srecgi
(Ω)] + 2Sv(Ω) (7.222)
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where the second term comes from the consideration that the noise is sta-
tionary across beats and uncorrelated from beat-to-beat, and the first term
in (7.222) can be express as

E
[
Srecgi

(Ω)
]

= Ss(Ω)E
[∣
∣1− e−Ωτi

∣
∣2
]

(7.223)

= Ss(Ω)E [(2− 2 cosΩτi)] . (7.224)

Making the expected value for τi from −0.5Tm to 0.5Tm we obtain

E[Srecgi
(Ω)] = 2Ss(Ω)

(

1−
2 sin(ΩTm/2)

ΩTm

)

, (7.225)

so the power spectral density of the residual is

Sy(Ω) = 2Ss(Ω)

(

1−
2 sin(ΩTm/2)

ΩTm

)

+ 2Sv(Ω), (7.226)

which has a multiplicative factor with the ECG power spectrum Ss(Ω) that
increases with Ω and with the misalignment Tm. See that this factor, for
Ω << 2/Tm, takes a quadratic dependence

2

(

1−
2 sin(ΩTm/2)

ΩTm

)

≈ Ω2T 2
m/4. (7.227)

This implies this problem is more relevant at the QRS area, higher fre-
quency components, than at the P and T wave areas, see Figure ??, where
the residual energy increment with misalignment at the QRS area is much
higher and at the rest, as predicted by this result. In the best alignment
situation, Tm = T , with T the sampling period, still this problems have a
relevant effect, mainly for low sampling rates. When discrete time signal
is considered, sampling rate Fs = 1/T , the sampling theorem should be
applied to equation (7.226) obtaining

Sy(e
ω) = Fs

∞∑

i=−∞

Sy(Ω− 2πiFs)bΩ=ωFs (7.228)

and same analysis can be done.

Solution 7.23 In the strategy a), the quantized signal, xqi(n) = Qc(xi(n)),
i the beat number, will be

xqi(n) = s(n) + vi(n)− eqi(n). (7.229)
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The averager output is

ŝqi(n) = Qc



 1
N

i∑

j=i−N+1

xqj (n)



 , (7.230)

where a new roundoff error, e′qi
(n), appears because quantization of the

average to be able to posterior subtraction from the xqi(n) signal. ŝqi(n)
becomes

ŝqi(n) = s(n) +
i∑

j=i−N+1

vj(n)− eqj (n)

N
− e′qi

(n) (7.231)

and so the residual signal yqi(n) takes the value

yqi(n) = vi(n)− eqi(n)−
i−1∑

j=i−N

vj(n)− eqj (n)

N
+ e′qi

(n). (7.232)

Assuming roundoff error after the averager, e′qi
(n), uncorrelated with the

running quantization error, eqi(n), and neglecting the averaged noise power,
results in a power of

Pyq = σ2
v + 2σ2

eq
+

σ2
v + σ2

eq

N
≈ σ2

v + 2
Δ2

c

12
. (7.233)

For the second strategy b), the analysis is a bit different, with two dif-
ferent quantizer, “f” for fine and “c” for coarse, take place.

xqi(n) = s(n) + vi(n)− ef
qi

(n). (7.234)

At the output of the averager, and already neglecting the averaged noise
component, we will have

ŝqi(n) = s(n)− ef ′
qi

(n), (7.235)

and the residual yqi(n), after the coarse quantizer, is

yc
qi

(n) = vi(n)− ef
qi

(n) + ef ′
qi

(n)− ec
qi

(n), (7.236)

which lead to the power expression

Pyq = σ2
v + 2σ2

ef
q

+ σ2
ec
q

= σ2
v + 2

Δ2
f

12
+

Δ2
c

12
. (7.237)

Comparing with strategy a) the residual power is

(
Δ2

c
12 − 2

Δ2
f

12

)

times lower

in the case b). For fine quantization with 12 bits, dynamic range 4 mV, and
coarse quatization with 4 bits, dynamic range 0.5 mV the difference is of
44.7 μV 2
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Solution 7.24 To minimize Ei we should differentiate it with respect to
the coefficients ak to be estimated, and set the result to zero.

∂Ei

∂aj
=

N2−1∑

n=−N1

2
p∑

k=−p

akx(θ̂i−1 + n + k)x(θ̂i−1 + n + j) (7.238)

−
N2−1∑

n=−N1

2x(θ̂i + n)x(θ̂i−1 + n + j) (7.239)

by denoting

r(k, j) =
N2−1∑

n=−N1

x(θ̂i + n− k)x(θ̂i + n− j) (7.240)

and αi = θ̂i− θ̂i−1 the estimated RR interval at beat ith, we have the set of
equations

p∑

k=−p

akr(αi − k, αi − j) = r(0, αi − j); j = −p, . . . , p (7.241)

that in matrix form becomes

Ria = ri (7.242)

where

Ri =








r(αi + p, αi + p) . . . r(αi + p, αi − p)
r(αi + p− 1, αi + p) r(αi + p− 1, αi − p)

...
. . .

...
r(αi − p, αi + p) r(αi − p, αi − p)








and

aT =[a−p, a−p+1, . . . , ap] (7.243)

rT
i =[r(0, αi + p), . . . , r(0, αi − p)]. (7.244)

Then
a = R−1

i ri (7.245)

Matrix Ri is symmetric, positive semi-define and can be inverted using ma-
trices algebra. Note that Ri is basically the auto-correlation of beat i−1 and
ri is the cross-correlation between observed beat i and previous one i − 1,
and even it has been omitted the estimated parameters a depend on the
beat under consideration. A straight forward extension of the technique will
be to use an averaged beat to estimated Ri and ri rather than the previous
beat, so noise will be attenuated in the parameter estimation
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Solution 7.25 The truncated transform coding, in noise free signals where
every beat block of N samples can be model by x = s, gives a reconstruction
error, e = x̂ − x = ŝ − s, signal that can be properly quantified by their
PRMS value,

PRMS =

√
eTe
N

. (7.246)

However, when noise is present in the signal, x = s+v, any coder which tries
to minimize the PRMS value what in fact is doing is to code the noise. This
can not always be a desirable situation, and rather we will like to truncate
the transform when the signal of interest, s, is fully coded, rather than the
observed signal x.

If we assume the conditions at the formulation, with noise uncorrelated
with the signal and white, it will be equally spread in the transform domain
and then with the transform also select to have high compression perfor-
mance for low truncation value K (K << N ), we can use the approximation
proposed at the formulation obtaining that x̂, is basically an approximation,
ŝ, of the desired signal

x̂ = ŝ + v̂ ≈ ŝ. (7.247)

Then the error signal
e = x̂− x ≈ ŝ− s− v, (7.248)

and the PRMS value, considering that ŝ− s is uncorrelated with the noise v
is

PRMS ≈

√
(ŝ− s)T (ŝ− s)

N
+ σ2

v . (7.249)

So a much better performance criteria of the fit between the reconstructed
and the desired signals could be

P ′
RMS =

√
eTe
N
− σ̂2

v . (7.250)

where the estimate of the noise power σ̂2
v can be obtained at the TP in-

terval, or by some alternative technique like average beat subtraction and
computing the power of the residual, etc.

Solution 7.26 The relevant error to be computed can now be refereed to
the inter-observer variability in such a way that errors of the same order of
magnitude that the inter-observer variability should be given equal relevance
in the index. For that a new normalized error can be introduced as

Δβ′
k =
|βk − β̃k|

Vk
(7.251)
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where values around one will imply acceptable performance and as the values
increases from one, the performance deteriorates progressively. Also a non-
quadratic norm can be introduced to better account for linear interpretation
between the performance index and the real distance from the inter-observer
variability values.

P ′
WDD =

∑P
k=1 αkΔβ′

k∑P
k=1 αk

(7.252)

This index again should be read taken one as the the error that will be
made between two different expert measuring manually, according to the
data provide by the Vk values.
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Chapter 8

Solution 8.1 In order to study this influence we will start by modeling the
misestimation by the error

tk = θk − ξk

where ξk can be consider as a zero-mean white noise sequence. If we assume
that ξk is solely given by the ECG sampling frequency 1/T effect, ξk will
be a white random variable which is uniformly distributed in [−T/2, T/2]
whose variance σ2

ξ is given by

σ2
ξ = E[ξ2

k] =
T 2

12
.

Now we will study the effect on the different HRV representations

• Interval Tachogram

The estimation d̂IT (k) from the observed QRS detector mark will be

d̂IT (k) = θk − θk−1

= tk − tk−1 + ξk − ξk−1

= dIT(k) + ε(k)

where the error ε(k) = ξk − ξk−1 is independent of the signal dIT(k)
and has a power spectral density that can be calculated from their
autocorrelation function and the fact that

rε(k) = E[ε(n)ε(n− k)]

= E[(ξn − ξn−1)(ξn−k − ξn−1−k)]

= 2rξ(k)− rξ(k + 1)− rξ(k − 1)

=
T 2

6
δ(k)−

T 2

12
(δ(k + 1) + δ(k − 1))

then the power spectral density of the error ε is

Sε(e
ω) =

T 2

6
(1− cos(ω))

where ω is the normalized frequency in cycles-by-interval. The power
spectral density under consideration SdIT

(eω) is then

ŜdIT
(eω) = SdIT

(eω) + Sε(e
ω)

= SdIT
(eω) +

T 2

6
(1− cos(ω))
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Note that this term is a new bias term in the already biased SdIT
(eω)

when used to estimate the modulating signal spectrum Sm(eω) ac-
cording to the IPFM model. The bias is proportional to the sampling
period T . since in SdIT

(eω) we can only look until ω < π For low
frequencies ω << π we can approximate

ŜdIT
(eω) = SdIT

(eω) +
T 2

12
ω2

= SdIT
(eω) + σ2

ξω
2

• Inverse Interval Tachogram

Now, the estimation, d̂IIT (k), from the observed QRS detector mark
will be

d̂IIT (k) =
1

θk − θk−1

=
1

tk − tk−1 + ε(k)
.

Considering that usually ε(k) << (tk − tk−1) because the sampling
interval T is much much smaller that the interbeat RR interval, we
can approximate

d̂IIT (k) ≈
1

tk − tk−1

(

1−
ε(k)

tk − tk−1

)

= dIIT(k)−
ε(k)

(tk − tk−1)2

and by noting that (tk − tk−1) = T0 + ΔT0k
with T0 being the mean

heart period with usually ΔT0k
<< T0 we can write

d̂IIT (k) ≈ dIIT(k)−
ε(k)
T 2

0

and then

ŜdIIT
(eω) = SdIIT

(eω) +
Sε(eω)

T 4
0

= SdIIT
(eω) +

T 2

6T 4
0

(1− cos(ω))

From this result it could erroneously be concluded that dIIF(k) is less
sensitive to the sampling rate that is the dIF(k) because the factor T0

in the denominator. However this is not true because to be able to
compare the HRV from this two different measures we need to generate
a dimensionless signal [?] as T0∙dIIF(k) and dIF(k)/T0. When comparing
this two signal the sampling effect becomes the same.



100 Solutions Manual

• Event series

Now, the estimation, d̂E(t), from the observed QRS detector mark will
be

d̂u
E(t) =

∞∑

k=−∞

δ(t− θk)

and its Fourier transform can be expressed as

D̂u
E(Ω) =

∞∑

k=−∞

e−Ωθk

=
∞∑

k=−∞

e−ΩtkeΩξk

Since Ω < 2π0.5 in HRV signals, and ξk < T/2 with T typically having
values T < 0.004 (sampling rates bigger than 250 Hz) we have that
eΩξk < 2π0.001 << 1 and then it can be approximated

D̂u
E(Ω) ≈

∞∑

k=−∞

e−Ωtk(1 + Ωξk)

= Du
E(Ω) + Ω

∞∑

k=−∞

ξke
−Ωtk

When estimating the power spectrum by truncating to k = 0, ..., N ,
squaring, taking the expectation respect to ξk, and making the limit
N →∞ we have

Ŝu
dE

(Ω) ≈ Su
dE

(Ω) +
Ω2σ2

ξ

T0

where it has been taken into account that ξk is zero-mean and white.

• Heart timing

Now, the estimation, d̂HT (t), from the observed QRS detector mark
will be

d̂u
HT (t) =

∞∑

k=−∞

(kT0 − θk)δ(t− θk)

=
∞∑

k=−∞

(kT0 − tk + ξk)δ(t− θk)
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assuming that dHT (tk) = dHT (θk),which is reasonable since dHT is
band-limited to 0.5 Hz and tk will only differ from θk in several ms
compared with 500 ms that is the fast period of change in dHT (t).

d̂u
HT (t) = dHT (t)

∞∑

k=−∞

δ(t− θk) +
∞∑

k=−∞

ξkδ(t− θk)

We have then two term. The first one is the convolution of the dHT (t)
with the previously solved term for the event series. The second one
is a white noise term represented by ξk. So we can write.

D̂u
HT (Ω) = Du

HT (Ω) + DHT (Ω) ∗ Ω
∞∑

k=−∞

ξke
−Ωtk +

∞∑

k=−∞

ξke
−Ωθk

where the first term is the value to estimate, the second is the effect of
the error in the time locations, and the third is the effect of the error
in the signal amplitude estimation.

The second term can be neglected respect to the third because we have
a noise spectrum (same term than in the third) multiplied by Ω < 0.5,
then resulting in a noise with lower power. This is then convolved with
a spectrum DHT (Ω) whose area is usually much lower than one since
m(t) < 1, zero-mean and band-limited, and dHT (t) is the integral of
m(t). The convolution results is then even lower so the dominant term
will be the third. This implies that the effect on time location is much
reduced that the effect in amplitude modification. Then estimating
D̂m(Ω) = ΩD̂HT (Ω)

D̂u
M (Ω) = Du

M (Ω) + Ω
∞∑

k=−∞

ξke
−Ωθk

and then

Ŝu
M (Ω) = Su

M (Ω) +
Ω2σ2

ξ

T0

• Interval function

Now, the estimation, d̂IF (t), from the observed QRS detector mark,
and following parallel procedure as in dIT(k) and dHT (θk) it will be

d̂u
IF(t) = dIF(t)

∞∑

k=−∞

δ(t− θk) +
∞∑

k=−∞

εkδ(t− θk)
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and then

D̂u
IF (Ω) ≈ Du

IF (Ω) +
∞∑

k=−∞

εke
−Ωθk

The difference now is that εk is not longer white so

Ŝu
IF (Ω) = Su

IF (Ω) +
2σ2

ξ

T0
− lim

N→∞

N∑

k=−N

σ2
ξ

2NT0

(
e−Ω(θk−θk+1) + e−Ω(θk−θk−1)

)

since we are calculating the term due to the amplitude misestimation,
we can very well estimate it for the case of uniform sampling in the
θk = kT0 so

Ŝu
IF (Ω) = Su

IF (Ω) +
2σ2

ξ

T0
− 2

σ2
ξ

T0
cos(ΩT0)

= Su
IF (Ω) +

2σ2
ξ

T0
(1− cos(ΩT0))

(8.253)

that is equivalent to the case of interval tachogram

• Inverse Interval function

Just proceeding as with Interval function and the Interval functionIn-
verse interval tachogram we will get

Ŝu
IIF (Ω) = Su

IIF (Ω) +
2σ2

ξ

T 5
0

(1− cos(ΩT0))

(8.254)

Finally note that to compare dHT with dIF and dIIF the former should be
divided by T0 and the later multiplied by the same quantity, so the results
in the three cases are equal for low Ω and for the case of dHT this effect is
more pronounced with increased frequency.

Solution 8.2 a) The problem with the IT index comes from the definition,
since given a recording the number M is fix, but the maximum Pm

r will
depend on the precision at which the RR histogram is computed. The
maximum precision will be the sampling interval, that can change from
experiment to experiment, but also computation of the histogram can be
made at lower RR resolution that the sampling interval. e.g in Fig. ?? the
resolution that was used is 10 ms. With this situation the index can only be
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used and compared if given together with the resolution that is not a nice
property.

b) The second index does not suffers from this problem since the result
is directly express in ms. One way to estimate the ro and re will be to made
a LS fit of a triangle, q(r), to the estimated histogram P̂r(r) forcing the
triangle to have the peak at the maximum position (rm, Pm

r ). See figure in
formulation. This can be obtained by minimization of the error ε

ε =
∫ ∞

0
(P̂r(r)− q(r))2dr (8.255)

with respect to ro and re being included in the triangle approximation q(r)
as.

q(r) =






0 for r ≤ ro
P m

r
rm−ro

r − P m
r ro

rm−ro
for ro ≤ r ≤ rm

− P m
r

re−rm
r + P m

r re

re−rm
for rm ≤ r ≤ re

0 for r ≥ re

(8.256)

The minimization can be done separately in the upwards slope of the triangle
to obtain ro and in the downwards slope to get the re value.

Solution 8.3

a) The first thing that we need to obtain is the PDF pIIT(x) to be able
to estimate from it the variance. For that we first estimate the probability
distribution function

PIT(x) = Probability(dIT(k) ≤ x). (8.257)

since dIIT(k) = 1/dIT(k) we can easily relate one to the other by

PIIT(x) = Probability(dIIT(k) ≤ x).

= Probability

(

dIT(k) ≥
1
x

)

= 1− Probability

(

dIT(k) <
1
x

)

= 1− PIT

(
1
x

)

(8.258)



104 Solutions Manual

where we have assumed PIT(x) is a continuous function, Probability(dIT(k)=1/x)=0.
Since the probability density functions, PDF, are the differentiated of the
probability distribution function, F, we have

pIIT(x) =
pIT(x)

x2
=

{ 1
2Ax2

1
mIT+A ≤ x ≤ 1

mIT−A

0 otherwise.

First observation is that this density distribution is no longer uniform even if
the pIT(x) is. We can now estimate the mean and variances of the two PDF.
for the dIT the calculation are very straight forward giving E[dIT(k)]=mIT

and V ar[dIT(k)] = A2/3.
For the dIIT we need to compute

mIIT = E[dIIT(k)] =
∫ 1

mIT−A

1
mIT+A

x
1

2Ax2
dx

=
1

2A
ln

(
mIT + A

mIT −A

)

and the variance

V ar[dIIT(k)] =
∫ 1

mIT−A

1
mIT+A

(x−mIIT)2
1

2Ax2
dx

=
1

m2
IT −A2

−m2
IIT

b) Next table shows the results for values mIT=1s and A=0.2 and those
when moving to mIT=707s and A=0.1414.

mIT A Var[dIT(k)] mIIT Var[dIIT(k)]
1 0,2 0,0133 1,0136 0,0143

0,707 0,1414 0,0066 1,4541 0,0602

We see that Var[dIT(k)] is reduced by a 50% whereas Var[dIIT(k)] is increased
by 300% . So this illustrate how care should be taken when interpreting HRV
from different quantification indices.

Solution 8.4 If the modulating signal m(t) is compose of a single tone

m(t) = m1 cos(2πF1t)

we can use equation (6.147)

Du
E(Ω) =

(
δ(Ω) + M(Ω)

TI

)

∗

[

δ(Ω) +
∞∑

k=1

DFM−HTk
(Ω)

]
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and estimate the frequency modulating term

DFM−HTk
(Ω) = F

{

2 cos

(
2πk

TI
(t + dHT (t))

)}

now dHT (t) is

dHT (t) =
∫ t

−∞
m(τ)dτ = −

m1

2πF1
sin(2πF1t)

so the frequency modulating term will be the know expression for tone mod-
ulation [?]

DFM−HTk
(Ω) = F

{

2 cos

(
2πk

TI

(

t−
m1

2πF1
sin(2πF1t)

))}

DFM−HTk
(Ω) = F

{

2
∞∑

l=−∞

Jl

(
m1k

F1TI

)

cos

(
2πk

TI
t + 2πlF1t

)}

and taking the inverse Fourier transform we obtain

dE(t) =
1
TI

+
m1

TI
cos(2πF1t) +

2
TI

∞∑

k=1

∞∑

l=−∞

Jl

(
m1k

F1TI

)

cos

(
2πk

TI
t + 2πlF1t

)

+
2m1

TI

∞∑

k=1

∞∑

l=−∞

Jl−1

(
m1k
F1TI

)
+ Jl+1

(
m1k
F1TI

)

2
cos

(
2πk

TI
t + 2πlF1t

)

and using the property of the Bessel functions

Jl+1(x) + Jl−1(x) =
2l

x
Jl(x) (8.259)

dE(t) =
1
TI

+
m1

TI
cos(2πF1t)

+
2
TI

∞∑

k=1

∞∑

l=−∞

(

1 +
lF1TI

k

)

Jl

(
m1k

F1TI

)

cos

(
2πk

TI
t + 2πlF1t

)

(8.260)

Solution 8.5 a) The impulse response h(t) of a ideal low-pass filter with
cutoff frequency Fc is:

h(t) =
sin(2πFct)

πt
, −∞ < t <∞, (8.261)
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and then dLE(t) can be expressed according to ?? as

dLE(t) =
∫ ∞

−∞
h(t− τ)du

E(τ)dτ

=
K∑

k=0

h(t− tk)

=
K∑

k=0

sin(2πFc(t− tk))
π(t− tk)

. (8.262)

Sampling this dLE(t) function at the Nyquist rate, 2Fc, will give the
dLE(n) when substituting t by n/(2Fc) so,

dLE(n) =
K∑

k=0

sin(2πFc( n
2Fc
− tk))

π( n
2Fc
− tk)

= 2Fc

K∑

k=0

sin(πn) cos(2πFctk)− cos(πn) sin(2πFctk)
πn− 2πFctk

= 2Fc

K∑

k=0

(−1)(n+1) sin(2πFctk)
πn− 2πFctk

(8.263)

If we had used a different sampling rate Fs > Fc/2, then the term
sin(πn) that has appeared in the numerator will be sin(2πnFc/Fs) and
will no longer be zero, also the term (−1)(n+1) will become cos(2πnFc/Fs)
which is more involve from a computational point of view.

b) In practice previous result can be argued that, since the available data
in newer infinity the filter will never be ideal and the sampling at
exactly the Nyquist frequency will introduce some attenuation and
aliasing errors [?]. To avoid the aliasing and still have nice computa-
tional properties, in [?] was presented the algorithm for sampling at
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two times the Nyquist rate, 4 Fc. Preceding as before

dLE(n) =
K∑

k=0

sin(2πFc( n
4Fc
− tk))

π( n
4Fc
− tk)

= 2Fc

K∑

k=0

sin(πn
2 ) cos(2πFctk)− cos(πn

2 ) sin(2πFctk)
πn
2 − 2πFctk

=






2Fc

K∑

k=0

(−1)
n+2

2 sin(2πFctk)

π
(n

2
− 2Fctk

) n even

2Fc

K∑

k=0

(−1)
n+3

2 cos(2πFctk)

π
(n

2
− 2Fctk

) n odd.

(8.264)

Solution 8.6 a) The double integral IPFM model can be express in math-
ematical terms as

∫ tk

0

(∫ t

0
(1 + m(τ))dτ

)

dt = kTI (8.265)

being k the beat index. Integrating the expression we obtain

t2k
2

+
∫ tk

0

(∫ t

0
m(τ)dτ

)

dt = kTI (8.266)

and defining a new heart timing as

dHT (t) = kTI −
t2

2

=
∫ t

0

(∫ t′

0
m(τ)dτ

)

dt′ (8.267)

we have that this signal can be estimated at the event times

dHT (tk) = kTI −
t2k
2

b) An estimate of the spectrum of the modulating signal M(Ω) can
be obtained from an estimate of the spectrum of the heart timing signal
DHT (Ω), assuming m(t) zero-mean and causal, trough the relation

M(Ω) = (Ω)2DHT (Ω) (8.268)
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Solution 8.7 Respect to the maximum heart period, in problem 7.6 we
already shown that a linear interpolator has a -3 dB cut-off frequency that
can be estimated from the expression.

Fc =
0.30
T

(8.269)

being T the interval gap between samples under interpolation. Then, to
have always Fc > 0.4Hz we need to be sure that always

T < 0.3/0.4 = 0.75

implying that the maximum RR interval should have 750 ms. In other words
the heart rate need to be always higher than 80 bpm.

Solution 8.8 Taylor series expansion of g(t) around t = τ gives

g(t) = g(τ) +
∂g(t)
∂t

∣
∣
∣
∣
t=τ

(t− τ) + . . . (8.270)

Inserting the condition that g(τ) = 0 we obtain

g(t) =
∂g(t)
∂t

∣
∣
∣
∣
t=τ

(t− τ) + . . . (8.271)

To estimate δ(g(t)) we need to care about the t values for which g(t) = 0
that is when t = τ so we can use the first order approximation of g(t) around
t = τ and made the equality

δ(g(t)) = δ

(
∂g(t)
∂t

∣
∣
∣
∣
t=τ

(t− τ)

)

=
δ(t− τ)
∣
∣
∣∂g(t)

∂t

∣
∣
∣
t=τ

. (8.272)

Then, we obtain the desired result

δ(t− τ) =

∣
∣
∣
∣
∂g(t)
∂t

∣
∣
∣
∣
t=τ

δ(g(t))

=

∣
∣
∣
∣
∂g(t)
∂t

∣
∣
∣
∣ δ(g(t)) (8.273)

Solution 8.9 In order to speed the computations of the Lomb periodogram,
it is proposed to shift the sin and cos basis function by a factor τ so to get
the condition express in (??)

hT
1,τh2,τ =

K∑

k=0

cos(Ω(tk − τ)) sin(Ω(tk − τ)) = 0
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The value of τ satisfying this condition can be obtained by doing some
trigonometric transformations, and expressing

hT
1,τh2,τ =

K∑

k=0

1
2

sin(2Ω(tk − τ))

=
1
2

[

cos(2Ωτ)
K∑

k=0

sin(2Ωtk)− sin(2Ωτ)
K∑

k=0

cos(2Ωtk)

]

= 0.

From here we obtain

tan(2Ωτ) =

∑K
k=0 sin(2Ωtk)

∑K
k=0 cos(2Ωtk)

,

and the result for τ in (??) appears,

τ =
1

2Ω
arctan

(∑K
k=0 sin(2Ωtk)

∑K
k=0 cos(2Ωtk)

)

,

Solution 8.10 Under the IPFM model we assume that the signal m(t) is
zero mean, so

∫ tK

0
m(τ)dτ = 0

then

dHT (tK) =
∫ tK

0
m(τ)dτ

KTI − tK = 0

and one estimate of TI , in ectopic beat absence is (6.125)

T̂I =
tK
K

.

When there is one ectopic beat the

dHT (tK) =
∫ tK

0
m(τ)dτ

(K + s)TI − tK = 0

and the estimate of TI in (??) can be obtained from a estimate of s as in
(??)

T̂I =
tK

K + ŝ
.
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When there is more than isolated ectopic beat, we will have associated to
each jth ectopic a sj parameter, so

dHT (tK) =
∫ tK

0
m(τ)dτ

(K +
∑

j

sj)TI − tK = 0

and the estimate of TI is then

T̂I =
tK

K +
∑

j ŝj
.

Solution 8.11 In the HRV analysis by the dLE(t) representation the ec-
topics will introduce two types of errors. First the ectopic will generate a
spike in a position that does not correspond with the regular series coming
from the SA node. In addition the spike sequences after the ectopic will be
shifted because the resetting of the SA node generating the so call compen-
satory pause. The first problem can be address like with any other method,
identify the ectopic beat and reject the spike associated with it.

From the “cleaned” spike series dE(t) we can propose a first strategy
by just low-pass filtering this even series to obtain dLE(t). This strategy
has to interpolate a large gap in the ectopic neighborhood and will result in
low-pass filtering of the estimated signal.

Other alternative can be to estimate also the ŝ associated with the ec-
topic as introduced with the dHT (t) signal. Once s is estimated, we can

backwards shift the spikes after the ectopic by one amount, ŝ T̂ 0, that is the
responsible for the compensatory pause after the ectopic.

dE(t) =
ke∑

k=0

δ(t− tk) +
K∑

k=ke+1

δ(t− tk + ŝT̂ 0).

From this even series we can proceed to generate the dLE(t) as a estimate
of m(t).

Solution 8.12 From the definition of Sxy(eω) we see that

rxy(0) =
1
2π

∫ π

−π
Sxy(e

ω)dω (8.274)

Introducing the definition of the Γxy(eω) we obtain that

Sxy(e
ω) = Γxy(e

ω)
√

Sxx(eω)
√

Syy(eω) (8.275)
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and integrating and realizing that

rxy(0) =
1
N

E[xTy] (8.276)

it appear the result

ρ =

1
2π

∫ π

−π
Γxy(e

ω)
√

Sxx(eω)
√

Syy(eω)dω

√
E[xTx]

√
E[yTy]

. (8.277)

Solution 8.13 The solution is obtained by solving equation 8.105 (ref??’)
to obtain the elements of (1.104) as function of the element in (1.103).

Sx1x1(e
ω) = σ2

v1
|H11(e

ω)|2 + σ2
v2
|G12(e

ω)H22(e
ω)|2 (8.278)

Sx2x2(e
ω) = σ2

v1
|G21(e

ω)H11(e
ω)|2 + σ2

v2
|H22(e

ω)|2 (8.279)

Sx1x2(e
ω) = σ2

v1
G21(e

ω)|H11(e
ω)|2 + σ2

v2
G∗

12(e
ω)|H22(e

ω)|2 (8.280)

and using the definition

Γxy(eω) =
σ2

v1
G21(z)|H11(z)|2 + σ2

v2
G∗

12(z)|H22(z)|2
(
σ4

v1
|H11(z)|4|G21(z)|2 + σ4

v2
|H22(z)|4|G12(z)|2 + σ2

v1
σ2

v2
|H11(z)H22(z)|2(1 + |G12(z)G21(z)|2)

)1/2

⌋

z=eω

.

(8.281)

with
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Appendix A

Solution A.1
Formulation:

Show that for a positive definite (semidefinite) symmetric matrix all their
eigenvalues are positive (or zero)

Solution
If A is symmetric and positive definite (semidefinite) and vi it the ith

eigenvalue then,
0 ≤ vT

i Avi = λi‖vi‖
2
2 (A.282)

and then all eigenvalues λi are real-valued and positive (non-negative).

Solution A.2
Formulation:

Show that an autocorrelation matrix Rx = E
[
xxT

]
is allways positive

semidefinite.

Solution
Computing the quadratic form we have that

yT E
[
xxT

]
y = E

[
(yTx)2

]
≥ 0 (A.283)

and then is is obvious that the matrix is positive semidefinite

Solution A.3
Formulation:

Show that the LS solution to the overdetermined problem presented in

Ax = b, (A.284)

is given by
x =

(
ATA

)−1
ATb, (A.285)

Solution
The LS solution consist in minimizing

‖Ax− b‖22 (A.286)

This expression can be rewriten as

‖Ax− b‖22 = (Ax− b)T (Ax− b)

= xTATAx + bTb− bTAx− xTAT b (A.287)
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and computing the gradient and forcing it to be zero-valued

∇x‖Ax− b‖22 = 2ATAx− 2ATb = 0 (A.288)

gives the solution
x =

(
ATA

)−1
ATb, (A.289)

Solution A.4
Formulation: Obtain the first and second basis function of the KL expansion
for a ECG beat model as

xi = si + vi (A.290)

where the dependency of s with the beat order i comes from the misalign-
mment τi in the segmentation and sampling of the analog signal s(t),

si(n) = s(t− τi)|t=nTs
. (A.291)

Where τi is zero-mean and gaussian distributed. It is going to be obtain that
the first eigenvector is proportional s as was already obtained in 4.248 in the
book, and the second eigenvector is the derivative of the signal s′, s′(n) =
ds(t)
dt

∣
∣
∣
t=nTs

. Assume that τi is small compared with the signal derivative

s′(n).
Explain with this result the shape of the first and second eigenvalues in

figure 7.37 b).

Solution
First, since τi is suppose to be small, we can approximate the signal as

xi(n) = si(n) + vi(n) (A.292)

≈

∣
∣
∣
∣s(t)− τi

ds(t)
dt

∣
∣
∣
∣
t=nTs

+ vi(n) (A.293)

= s(n)− τis
′(n) + vi(n) (A.294)

which in vector notation is

xi = s− τis
′ + vi (A.295)

Now we can recall that a energy signal s(t) and its derivative s′(t) are
orthogonal. This can be easily shown from the Parseval theorem

∫ ∞

−∞
s(t)s′(t)dt =

1
2π

∫ ∞

−∞
S(Ω)(−jΩ)S∗(Ω)dΩ (A.296)

=
1
2π

∫ ∞

−∞
−jΩ|S(Ω)|2dΩ = 0. (A.297)
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If sampling satisfies Nyquist theorem, this results directly extrapolates to
the discrete time domain and we have that sT s′ = 0.

Computing the autocorrelation function of x, assuming white noise and
uncorrelated with the signal and its derivative, using the fact that E[τi] = 0,
and denoting E

[
τ2
i

]
= σ2

τ , Es = sT s and Es′ = s′T s′ we have

Rx = ssT + σ2
τs

′s′T + σ2
vI. (A.298)

The eigenvalues and eigenvectors of Rx are found by solving the equa-
tions

(ssT + σ2
τs

′s′T + σ2
vI)ϕk = λkϕk. (A.299)

The signal s is proportional to one of the eigenvectors because

Rxs = ssT s + σ2
τs

′s′T s + σ2
vs = (Es + σ2

v)s, (A.300)

and the corresponding eigenvalue is equal to Es + σ2
v . Then The signal s′ is

also proportional to other of the eigenvectors because

Rxs
′ = ssT s′ + σ2

τs
′s′T s′ + σ2

vs
′ = (σ2

τEs′ + σ2
v)s

′, (A.301)

and the corresponding eigenvalue is equal to σ2
τEs′ + σ2

v .
The remaining eigenvectors ϕk, which must be orthonormal to s and s′

as well as mutually orthonormal, are determined by

Rxϕk = ssT + σ2
τs

′s′T ϕk + σ2
vϕk = σ2

vϕk, (A.302)

where sT ϕk = s′T ϕk = 0 is used to arrive at the last step. The correspond-
ing eigenvalues are all equal to σ2

v and are thus smaller than Es + σ2
v and

σ2
τEs′ + σ2

v .
So assuming σ2

τEs′ < Es, which is quite reasonable since σ2
τ is assumed

small compared with the signal differentiate and also the signal is low-pass,
the first eigenvector is proportional to s and the second to s′.

This result explains the eigenvalues obtained in figure 7.37 b) where a
subject specific KL transform is presented for ECG compression. In that
case the beat repetition can be considered constant with the misalignment
fluctuation, and it is evident how the first eigenfunction resembles the orig-
inal beat , and the seconds to its derivative

Solution A.5
Formulation: Obtain the first and second and third basis function of the KL
expansion for a ECG beat model as

xi = si + vi (A.303)
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where the dependency of s with the beat order i comes from the misalign-
ment τi in the segmentation and sampling of the analog signal s(t), but now
with larger τ which recommends to use a second order approximation

si(n) = s(t− τi)|t=nTs
. (A.304)

Where τi is zero-mean and gaussian distributed. It is going to be obtain
that the first and third eigenvector are proportional to a linear combiantion
of s and s′′, and the second eigenvector is the derivative of the signal s′,

s′(n) = ds(t)
dt

∣
∣
∣
t=nTs

. Assume that τi is small (to a second order approxima-

tion) compared with the signal derivative s′(n).
.

Solution
First, since τi is suppose to be small, we can approximate the signal as

xi(n) = si(n) + vi(n) (A.305)

≈

∣
∣
∣
∣s(t)− τi

ds(t)
dt

+
τ2
i

2
d2s(t)
dt2

∣
∣
∣
∣
t=nTs

+ vi(n) (A.306)

= s(n)− τis
′(n) +

τ2
i

2
s′′(n) + vi(n) (A.307)

which in vector notation is

xi = s− τis
′ +

τ2
i

2
s′′ + vi (A.308)

Now we can recall that a energy signal s(t) and its derivative s′(t) are
orthogonal, and so its derivative s′(t) and the second derivative s′′(t), if If
sampling satisfies Nyquist theorem, this results directly extrapolates to the
discrete time domain and we have that sT s′ = 0 and s′T s′′ = 0.

Computing the autocorrelation function of x, assuming white noise and
uncorrelated with the signal and its derivatives, using the fact that E[τi] =
0, and denoting E

[
τ2
i

]
= σ2

τ , Es = sT s, Es′ = s′T s′, Es′′ = s′′T s′′ and
Es′′s = s′′T s we have

Rx = ssT +
σ2

τ

2

(
ss′′T + s′′sT

)
+ σ2

τs
′s′T + 3

σ4
τ

4
s′′s′′T + σ2

vI. (A.309)

The eigenvalues and eigenvectors of Rx are found by solving the equa-
tions

(

ssT +
σ2

τ

2

(
ss′′T + s′′sT

)
+ σ2

τs
′s′T + 3

σ4
τ

4
s′′s′′T + σ2

vI

)

ϕk = λkϕk.

(A.310)
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The signal s′ is proportional to one of the eigenvectors because

Rxs
′ = σ2

τs
′s′T s′ + σ2

vs
′ = (σ2

τEs′ + σ2
v)s, (A.311)

and the corresponding eigenvalue is equal to λ2 = σ2
τEs′ + σ2

v .
Since s and s′′ are not orthogonal the eigenvectors attached to the space

this two signal expand should be a linear combination of then ϕk = as+ bs′′

Rx(as + bs′′) = aEss + a
σ2

τ

2
Es′′ss + a

σ2
τ

2
Ess

′′ + 3a
σ4

τ

4
Es′′ss

′′ + aσ2
vs

+ bEs′′ss + b
σ2

τ

2
Es′′s + b

σ2
τ

2
Es′′ss

′′ + 3b
σ4

τ

4
Es′′s

′′ + bσ2
vs

′′

= λk(as + bs′′) (A.312)

By denoting
c1 = Es + σ2

τ
2 Es′′s

d1 = Es′′s + σ2
τ
2 Es′′

c2 = σ2
τ
2 Es + 3σ4

τ
4 Es′′s

d2 = σ2
τ
2 Es′′s + 3σ4

τ
4 Es′′

we have to solve the equation system

(λ− σ2
v)a = ac1 + bd1 (A.313)

(λ− σ2
v)b = ac2 + bd2 (A.314)

Which results in

a =
bd1

(λ− σ2
v)− c1

(A.315)

and introducing this into A.337 we have to solve a quadratic equation in λ

(λ− σ2
v)

2 − (λ− σ2
v)(c1 + d2) + c1d2 − d1c2 = 0 (A.316)

which results in

λ =
(c1 + d2)±

√
(c1 + d2)2 − 4(c1d2 − d1c2)

2
+ σ2

v (A.317)

assuming that factors 4(c1d2−d1c2) << (c1+d2)2 The eigenvector results

λ1 ≈ (c1 + d2) + σ2
v (A.318)

λ3 ≈
c1d2 − d1c2

(c1 + d2)
+ σ2

v (A.319)
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And the relation between a and b results in (when assuming noise small and
also στ )

a =
bd1

d2
≈ b

2
σ2

τ

(A.320)

and the eigenvector will be

s +
σ2

τ

2
s′′ (A.321)

and their orthogonal

s−
Es + σ2

τ Es′′s
2

Es′′s + σ2
τ Es′′

2

s′′ (A.322)

with eigenvalues

λ1 ≈ Es + σ2
τEs′′s +

3σ4
τ

4
Es′′ + σ2

v (A.323)

λ3 ≈
σ4

τ

2
EsEs′′ − E2

s′′s

Es + σ2
τEs′′s + 3σ4

τ
4 Es′′

+ σ2
v (A.324)

The remaining eigenvectors ϕk, which must be orthonormal to s, s′ and
s′′ as well as mutually orthonormal, are determined by

Rxϕk = σ2
vϕk, (A.325)

Now we see how even in the case of a larger delay both the second and
the third eigenvalue are proportional to the variance of the delay so by
minimizng the sum of the two eigenvalues we still minimize the delay.

Solution A.6
Formulation: Obtain the first and second and third basis function of the KL
expansion for a ECG beat model as

xi = βisi + αiu + vi (A.326)

where the dependency of s with the beat order i comes from the misalign-
ment τi in the segmentation and sampling of the analog signal s(t), and ui

represents a component which dominant shape u (In PCA terms) is orthog-
onal to si component accounting for the variability in shape from recurrence
to recurrence.

si(n) = s(t− τi)|t=nTs
. (A.327)

Where τi is zero-mean and gaussian distributed. It is going to be obtain that
the second and third eigenvector are proportional to a linear combiantion of
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s′ () and u, and the first eigenvector is the signal s. Assume that τi is small
(to a first order approximation) compared with the signal derivative s′(n).

Solution
First, since τi is suppose to be small, we can approximate the signal as

xi(n) = βisi(n) + αiu(n) + vi(n) (A.328)

≈ βi

∣
∣
∣
∣s(t)− τi

ds(t)
dt

∣
∣
∣
∣
t=nTs

+ αiu(n) + vi(n) (A.329)

= βis(n)− βiτis
′(n) + αiu(n) + vi(n) (A.330)

which in vector notation is

xi = βis− βiτis
′ + αiu + vi (A.331)

Now we can recall that a energy signal s(t) and its derivative s′(t) are
orthogonal, and so is s(t) and u(t). This results directly extrapolates to the
discrete time domain and we have that sT s′ = 0 and sTu = 0.

Computing the autocorrelation function of x, assuming white noise and
uncorrelated with the signal and its derivatives, using the fact that E[τi] =
0, and denoting E

[
τ2
i

]
= σ2

τ , Es = sT s, Es′ = s′T s′, Eu = E[uTu] and
Es′u = E[s′Tu] we have

Rx = E[β2
i ]ssT + E[β2

i ]σ2
τs

′s′T + E[α2
i ]uuT + σ2

vI. (A.332)

The eigenvalues and eigenvectors of Rx are found by solving the equa-
tions

(
E[β2

i ]ssT + E[β2
i ]σ2

τs
′s′T + E[α2

i ]uuT + σ2
vI
)

ϕk = λkϕk. (A.333)

The signal s is proportional to one of the eigenvectors because

Rxs = (E[β2
i ]Es + σ2

v)s, (A.334)

and the corresponding eigenvalue is equal to λ1 = E[β2
i ]Es + σ2

v .
Since s′ and u are not orthogonal the eigenvectors attached to the space

this two signal expand should be a linear combination of then ϕk = as′ + bu

Rx(as′ + bu) = aE[β2
i ]σ2

τEs′s
′ + bE[β2

i ]σ2
τEs′us

′ + aE[α2
i ]Es′uu + bEuE[α2

i ] + σ2
v(as

′ + bu)

= λk(as
′ + bu) (A.335)

By denoting
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c1 = E[β2
i ]σ2

τEs′

d1 = E[β2
i ]σ2

τEs′u

c2 = E[α2
i ]Es′u

d2 = EuE[α2
i ]

we have to solve the equation system

(λ− σ2
v)a = ac1 + bd1 (A.336)

(λ− σ2
v)b = ac2 + bd2 (A.337)

Which results in

a =
bd1

(λ− σ2
v)− c1

(A.338)

and introducing this into A.337 we have to solve a quadratic equation in λ

(λ− σ2
v)

2 − (λ− σ2
v)(c1 + d2) + c1d2 − d1c2 = 0 (A.339)

which results in

λ =
(c1 + d2)±

√
(c1 + d2)2 − 4(c1d2 − d1c2)

2
+ σ2

v (A.340)

assuming that factors 4(c1d2−d1c2) << (c1+d2)2 The eigenvector results

λ2 ≈ (c1 + d2) + σ2
v (A.341)

λ3 ≈
c1d2 − d1c2

(c1 + d2)
+ σ2

v (A.342)

And the relation between a and b results in (when assuming noise small and
also στ )

a =
bd1

d2
≈ b

E[β2
i ]σ2

τEs′u

E[α2
i ]Eu

(A.343)

and the eigenvector will be

s′ +
EuE[α2

i ]
σ2

τEs′u
u (A.344)

and their orthogonal

s′ −
Es′E[β2

i ]σ2
τEs′u + EuE[α2

i ]
E2

s′uE[β2
i ]σ2

τ + E2
uE[α2

i ]
u (A.345)

with eigenvalues
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λ2 ≈ E[β2
i ]σ2

τEs′ + EuE[α2
i ] + σ2

v (A.346)

λ3 ≈
E[β2

i ]σ2
τE[α2

i ](EsEu − E2
s′u)

E[β2
i ]σ2

τEs′ + EuE[α2
i ]

+ σ2
v =

(EsEu − E2
s′u)

Es′

E[α2
i ]

+ Eu

E[β2
i ]σ2

τ

+ σ2
v (A.347)

The remaining eigenvectors ϕk, which must be orthonormal to s, s′ and
u as well as mutually orthonormal, are determined by

Rxϕk = σ2
vϕk, (A.348)

Now we see how even if the signal to be aligned have some shape vari-
ability both the second and the third eigenvalue are increasing functions of
the variance of the delay so by minimizing the sum of the two eigenvalues
we still minimize the delay.

Solution A.7
Formulation: Revisiting the model

xi = si + vi (A.349)

where
si(n) = s(t− τi)|t=nTs

. (A.350)

and τi is zero-mean and gaussian distributed. Show that the first and second
eigenvectors of the inter-signal correlation matrix R•

x = E[x(n)x(n)T ] with

x(n) = [x1(n), x2(n), ..., xM (n)]T (A.351)

are respectively 1 and θ
Solution

Applying the Taylor series approximation which makes xi(n) = s(n) −
τis

′(n) + vi(n) we obtain

x(n) = s(n)1− s′(n)θ + v(n) (A.352)

where 1 is the all-ones vector, v(n) is defined analogously to x(n) and

θ = [θ1, θ2, ..., θM ]T (A.353)

The correlation matrix is now

R•
x = E[x(n)x(n)T ] =

Es

N
11T +

Es′
N

θθT + σ2
vI (A.354)

which largest eigenvalue equals λ1 = Es + σ2
v with eigenvector 1, and the

second largest eigenvalue is λ2 = Es′σ
2
τ +σ2

v with eigenvector θ and assuming
τi is zero-mean. The rest are any orthogonal combination to those with
eigenvalue λ = σ2

v



Solutions. Appendix A 121

Solution A.8
Formulation: As made in A.6 to account for shape and variability, find the
first, second and third basis function of the KL expansion of the inter signal
correlation for a ECG beat model as

xi = si + αiu + vi (A.355)

where u represents a component which dominant shape u (In PCA terms)
is orthogonal to si component accounting for the variability in shape from
recurrence to recurrence.

Solution Now x(n) can be express as

x(n) = s(n)1− s′(n)θ + u(n)α + v(n) (A.356)

The correlation matrix is now

R•
x = E[x(n)x(n)T ] =

Es

N
11T +

Es′
N

θθT +
Eu

N
ααT + σ2

vI (A.357)

If we assume that the delay τi has nothing to do with the shape variability
αi which is vary plausible, and also that α is zero-mean (if where not, the
dc level coudl be included in s(n)), we can consider α and θ orthogonal.
This will be more accurate the larger the number of recurrences M are.

Under this approximations the largest eigenvalue equals again λ1 = Es+
σ2

v with eigenvector 1, the second largest eigenvalue is λ2 = Es′σ
2
τ +σ2

v with
eigenvector θ and assuming τi is zero-mean. The thrisd is λ3 = Euσ2

α + σ2
v

with eigenvector α and again the rest are any orthogonal combination to
those with eigenvalue λ = σ2

v . So the third eigenvector is a estimate of the
dominant shape variability and the second eigenvalue remains being a good
first estimate of the delay.

Solution A.9
Formulation: Now to additionally account for shape and amplitude variabil-
ity, find the first, second and third basis function of the KL expansion of
the inter signal correlation for a ECG beat model as

xi = βisi + αiu + vi (A.358)

and propose a time delay estimate.

Solution Now x(n) can be express as

x(n) = s(n)β − s′(n)θβ + u(n)α + v(n) (A.359)
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where
θ = [θ1, θ2, ..., θM ]T (A.360)

β = [β1, β2, ..., βM ]T (A.361)

and
θβ = [β1θ1, β2θ2, ..., βMθM ]T (A.362)

The correlation matrix is now

R•
x = E[x(n)x(n)T ] =

Es

N
ββT +

Es′
N

θβθT
β +

Eu

N
ααT + σ2

vI (A.363)

considering α and θ and β orthogonal (Note that β is non zero-mean).
This will be more accurate the larger the number of recurrences M are.

Under this approximations the largest eigenvalue equals again λ1 =
E[β2

i ]Es + σ2
v with eigenvector β, the second largest eigenvalue is λ2 =

Es′σ
2
τE[β2

i ] + σ2
v with eigenvector θβ . The third is λ3 = Euσ2

α + σ2
v with

eigenvector α and again the rest are any orthogonal combination to those
with eigenvalue λ = σ2

v . So the third eigenvector remains a estimate of the
dominant shape variability we can propose a delay estimate which is the
elementwise ratio between the second and the first eigenvalues.

θ̂ = θβ .
1
β

(A.364)

Solution A.10
Formulation: From inspection of figure 7.37 a) one can also hypothesize that
the derivative of a eigenvector ϕk is somehow related to other eigenvectors
with much lower eigenvalue.

Assuming a model for the ECG signal ensemble as the one in 7.96 in the
book, where each realization have different phase φi and eventually different
occurrence time of the envelope τi, we can model the ensemble as the product
of a low-pass envelop multiplied by a cosine function

xi(n) = b(t− τi)|t=nTs
cos(ωmn + φi) + vi(n), n = 0, ..., N − 1 (A.365)

Obtain the eigenvectors and eigenvalues for a ensemble that can be rep-
resented by this model.

Explain with this result the shape of the first four eigenvalues in figure
7.37 a).

Solution
By developing the cosine according to the trigonometric functions

cos(ωmn + φi) = cos(φi) cos(ωmn)− sin(φi) sin(ωmn), (A.366)
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approximating the envelope , for small τi by

b(t− τi)|t=nTs
= b(t)|t=nTs

− τi b′(t)
∣
∣
t=nTs

(A.367)

and denoting,

s1 = [b(0) cos(ωm0), . . . , b(N − 1) cos(ωm(N − 1))]T (A.368)

s2 = [b(0) sin(ωm0), . . . , b(N − 1) sin(ωm(N − 1))]T (A.369)

d1 = [b′(0) cos(ωm0), . . . , b′(N − 1) cos(ωm(N − 1))]T (A.370)

d2 = [b′(0) sin(ωm0), . . . , b(N − 1) sin(ωm(N − 1))]T (A.371)

we can write

xi = s1 cos(φi)− s2 sin(φi)− τi cos(φi)d1 + τi sin(φi)d2 + vi. (A.372)

and the Rx, denoting E[cos2(φi)] = a2, E[sin2(φi)] = (1 − a2) and E[τ2
i ] =

σ2
τ , becomes

Rx = a2s1s
T
1 + (1− a2)s2s

T
2 + σ2

τa
2d1d

T
1 + σ2

τ (1− a2)d2d
T
2 + σ2

vI. (A.373)

where we have made use of the fact that s1 is orthogonal to s2 , sT
1 s2 = 0

because one is the Hilbert transform of the other, E[τi] = 0, and d1 is
orthogonal to d2, dT

1 d2 = 0, again because one is the Hilbert transform of
the other.

Now, since in addition s1,2, and d1,2 are mutually orthogonal (prove of
this by the Parseval theorem in each case) , it is very easy to see, as was
done in previous exercise, that the eigenvalues and eigenvectors are

eigenvalue eigenvector
ϕ1 = 1√

Es
s1 λ1 = a2Es + σ2

v

ϕ2 = 1√
Es

s2 λ2 = (1− a2)Es + σ2
v

ϕ3 = 1√
Ed

d1 λ3 = σ2
τa

2Ed + σ2
v

ϕ4 = 1√
Ed

d2 λ4 = σ2
τ (1− a2)Ed + σ2

v

ϕk k = 5, . . . , N λk = σ2
v

where Es = sT
1 s1 = sT

2 s2 and Ed = dT
1 d1 = dT

2 d2

We see that the first eigenvalue is the one which have a dominant a2 =
E[cos2(φi)]. In case it is true that the φi variable is uniformely distributed
in [0, π] the two first eigenvalues are equal, and the two next ones also are.
In figure 7.37 a) we see that λ1 is about twice the value of λ2 meaning that
the modulating cosine in the model we assume, is not evenly distributed,
but rather concentrated into some phase range that makes, neglecting the
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noise variance σ2
v , a2/(1−a2) = 0.465/0.247 = 1.883 which implies a2 = 0.65

rather than 0.5 which would had imply even phase distribution.
Also note that the third and fourth eigenvalues have about the same

ratio among them, as the first and second, as predicted in this model. The
ratio between the third and the first is 0.465/0.080 = 5.81 which implies
a σ2

τEd/Es = 1/5.81 and for equal energy at the signal and its derivative
(Es = Ed), στ = 0.41 sampling periods which represent a small jitter of the
envelope of the beat with respecto to the segmentation mark. Probably the
energy of the envelope derivative is lower than that of the envelope itself as
a consecuence of being low-pass, so the real jitter will be bigger that the 0.4
samples we obtain.

Note that the third and four eigenvectors are the derivative of the enve-
lope of the first and second, respectively, and this with the same modulation.
This roughly can be appreciated in figure 7.37 a) making a confirmation that
the model we propose is adequate to represent the ensemble of beats (mostly
at the QRS area).


