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1. Introduction

Interest in emotion recognition has burgeoned in recent years, aiming to provide a useful tool in the field of 
emotion regulation. In that sense, a subject’s emotional response is mediated by individual influences depending 
on which emotions the subject has and how he/she experiences and expresses them (Gross 1998). Many clinical 
features of depression, stress, anxiety and mood disorders may be construed as maladaptive attempts to regulate 
unwanted emotions (Campbell-Sills and Barlow 2007). A system for emotion recognition could help people to 
manage their own emotions, providing a tool to record their feelings and consequently, focusing their attention 
on modulating their emotional responses.

A complex mixture of cognitive, affective, behavioral, and physiological factors contributes to individual 
differences in health and disease. All these factors produce wide variation in outcomes of heart rate variability 
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Abstract
Objective: Interest in emotion recognition has increased in recent years as a useful tool for diagnosing 
psycho-neural illnesses. In this study, the auto-mutual and the cross-mutual information function, 
AMIF and CMIF respectively, are used for human emotion recognition. Approach: The AMIF 
technique was applied to heart rate variability (HRV) signals to study complex interdependencies, and 
the CMIF technique was considered to quantify the complex coupling between HRV and respiratory 
signals. Both algorithms were adapted to short-term RR time series. Traditional band pass filtering 
was applied to the RR series at low frequency (LF) and high frequency (HF) bands, and a respiration-
based filter bandwidth was also investigated (HFSCHF). Both the AMIF and the CMIF algorithms 
were calculated with regard to different time scales as specific complexity measures. The ability of 
the parameters derived from the AMIF and the CMIF to discriminate emotions was evaluated on a 
database of video-induced emotion elicitation. Five elicited states i.e. relax (neutral), joy (positive 
valence), as well as fear, sadness and anger (negative valences) were considered. Main results: The 
results revealed that the AMIF applied to the RR time series filtered in the HFSCHF band was able to 
discriminate between the following: relax and joy and fear, joy and each negative valence conditions, 
and finally fear and sadness and anger, all with a statistical significance level p -value � 0.05, sensitivity, 
specificity and accuracy higher than 70% and area under the receiver operating characteristic curve 
index AUC �0.70. Furthermore, the parameters derived from the AMIF and the CMIF allowed the low 
signal complexity presented during fear to be characterized in front of any of the studied elicited states. 
Significance: Based on these results, human emotion manifested in the HRV and respiratory signal 
responses could be characterized by means of the information-content complexity.
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(HRV), blood pressure and autonomic balance which have important implications for both physical and mental 
health (Thayer and Hansen 2009).

Human emotion recognition has been studied by means of HRV spectral analysis (Cohen et al 2000, Demaree 
and Everhart 2004, Bornasa et al 2005, Geisler et al 2010, Rantanen et al 2010, Quintana et al 2012, Mikuckas et al 
2014, Valderas et al 2019). Generally, the power spectra of HRV is divided into two main components: low fre-
quency (LF) component [0.04, 0.15] Hz, and high frequency (HF) component [0.15, 0.4] Hz (Task Force of ESC 
and NASPE 1996). This spectral HRV analysis can describe the regulatory mechanisms of the heart rate which 
are influenced by neural inputs from sympathetic and parasympathetic divisions of the autonomic nervous sys-
tem (ANS), respiration, thermoregulation and hormonal systems, among others Task Force of ESC and NASPE 
(1996). The sympathetic modulation of cardiac activity is encompassed in LF band and the parasympathetic 
activity affects both LF and HF band power (Task Force of ESC and NASPE 1996). Furthermore, respiration 
has a dominant influence in the HF component of the HRV, since heart rate is increased during inspiration and 
reduced during expiration, phenomenon described as respiratory sinus arrhythmia (RSA) (Yasuma and Hayano 
2004).

As before mentioned, HRV analysis based on linear methods (such spectral analysis) is a usual strategy for 
ANS analysis, although non-linear HRV analysis has also been demonstrated as a useful complementary tool 
(Hoyer et al 2002). Traditional time and frequency domain measures of HRV assess the amplitude of variations 
between subsequent intervals and the amplitude distributions in the power spectra, respectively. However, none 
of them provide information about the complex communication involved in the control of the cardiovascular 
system that generates the HRV (Palacios et al 2007). Non-linear techniques such as the dominant Lyapunov 
exponents, the detrended fluctuation analysis, the approximate entropy, the sample entropy, the fuzzy measure 
entropy, the cross sample entropy, the cross fuzzy measure entropy, the permutation entropy, permutation min-
entropy, the pointwise correlation dimension, the lagged Poincaré plot or the quadratic coupling have been used 
to detect emotional stimuli and all of them have shown better results than linear techniques (Boettger et al 2008, 
Valenza et al 2012a, 2012b, 2012c, 2012d, 2014, Dimitriev et al 2016, Goshvarpour et al 2016, Xia et al 2018, Zhao 
et al 2019). Some of these techniques have also been used to study non-linear relationships between HRV and 
respiration signals (Valenza et al 2012b, 2012c, 2012d, Kontaxis et al 2019, Zhao et al 2019). Table 1 reports a sum-
mary of different non-linear techniques applied to RR series during diverse emotional states.

This complementary information can be assessed by non-linear methods such as the auto-mutual informa-
tion function (AMIF) and the cross-mutual information function (CMIF), which have been demonstrated to 
be independent of signal amplitudes and able to describe the predictability and regularity of the signals (Hoyer 
et al 2002, 2006). Both functions, the AMIF and the CMIF, have been proposed as predictors of cardiac mortality 
(Hoyer et al 2002). The AMIF has been studied as an indicator of the increased cardiac mortality in depressed 
patients (Boettger et al 2008) and in multiple organ dysfunction syndrome patients (Hoyer et al 2006), and the 
CMIF has been applied to electroencephalographic signals for stress assessment (Alonso et al 2015).

In the present work, both the non-linear techniques, the AMIF and the CMIF are proposed for human emo-
tion recognition. The AMIF technique is applied to HRV signals to study complex communication within the 
ANS, while the CMIF technique is considered to quantify the complex coupling between HRV and respiratory 
signals. Both algorithms are, in this work, adapted to short-term time series modifying the number of histogram 
bins involved in the methodology. Traditional RR band filtering is considered (i.e. LF and HF band), and also a 
redefined HF band (HFSCHF), centered at the respiratory frequency (FR) and whose width is determined based 
on the spectrum correlation HF (SCHF) method, are investigated (Valderas et al 2019). The aim of including the 
HFSCHF band is the analysis of RSA influences on HRV, mainly when FR is above 0.40 Hz or FR lies within the LF 
band (Bailón et al 2007, Valderas et al 2019). The ability of the parameters derived from the AMIF and the CMIF 
to discriminate elicited states is evaluated on a database of video-induced emotion elicitation, described in Val-
deras et al (2019).

In Valderas et al (2019), the discrimination between different emotional states was addressed using frequency 
domain HRV indices (linear features). However, it was not possible to discriminate between relax and all negative 
valences, as well as between fear and anger, and sadness and anger. Here, we aim to study the discrimination capa-
bility of the non-linear AMIF and CMIF techniques of emotions complementing the linear-feature information. 
We propose the use of these non-linear techniques for human emotion recognition hypothesizing that ANS 
response to different emotions will impinge differential regularity patterns in HRV and will change the complex 
interaction between respiration and heart rate variability.

2. Methods and materials

2.1. Data acquisition
A database of 25 healthy subjects was simultaneously recorded including electrocardiogram (ECG) and 
respiration signals during induced emotion experiments at University of Zaragoza Valderas et al (2019). The 
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limb ECG leads (I, II and III) were sampled at 1 kHz and the respiration signal, r(t) at 125 Hz, with a MP100 
BIOPAC Systems. The distribution of the subjects was: four men and five women for the age range 18–35 years, 
four men and four women for the age range 36–50 years and four men and four women over 50 years. All subjects 
were University students or employees with an estimated BMI of 22.9 kg m−2. Previous to the inclusion in the 
study, the adequacy of each user was evaluated with a general health questionnaire.

The experiment consisted on eliciting each subject by four emotions (joy, fear, anger and sadness) using 
videos (two videos per emotion). All the experiment extended over 2 consecutive days and two sessions were 
recorded each day. The experiment was split into two days, with the aim to have more than one sample per day 
for each emotion; therefore the recording is more representative of the emotion and not particularly biased for 
the specific mood of the day that was recorded. During sessions 1 and 4, the subject was stimulated with videos of 
joy (J) and fear (F), and during sessions 2 and 3 with videos of anger (A) and sadness (S). Therefore, each of the 
25 subjects was elicited with two videos of the same emotion, resulting in a total of 50 recordings per emotion. All 
videos were presented in randomized order.

To ensure that the physiological parameters returned to the baseline condition, each video was preceded and 
followed by a relaxing video considered as baseline, which were excerpts from nature images with classical music. 
All sessions were recorded at the same time of the day and the order of the participant was maintained during all 
sessions to mitigate the circadian variations of HRV parameters. All videos were five minutes long, except a video 

corresponding to fear, which lasted three minutes. The video characteristics are presented in table 2.
All subjects in this experiment reported an agreement between the theoretical elicitation and the emotion felt. 

Additionally, the database was validated by 16 subjects, different from the ones participating in the experiment, 
using the positive and negative affect schedule—expanded form (PANAS-X) (Watson and Clark et al 1999). 
According to the analysis of the PANAS-X scale: joy emotion was identified as a positive valence of joviality, and 
fear, sadness and anger were verified as negative valences of fear, sadness and hostility, respectively.

Table 1. Bibliographic summary of non-linear techniques applied to HRV series in different emotional states.

Reference Technique Emotional state Results

Valenza et al (2012a) DLEs Neutral and arousal Mean ApEn decrease and DLEs

ApEn elicitation became negative during

arousal elicitation

Boettger et al (2008) AMIF Depression Increased total area under the

AMIF curve are associated

with major depression

Zhao et al (2019) SEn Depression Increased CSEn and CFMEn are

FMEn associated with depression severity

CSEn

CFMEn

Xia et al (2018) PE Neutral, happiness, Increased PE and PME during

PME fear, sadness,

anger, and disgust

happiness, sadness, anger, and 

disgust

PME is more sensitive than PE for

discriminating non-neutral from 

neutral

emotional states

Dimitriev et al (2016) DLEs Anxiety Decreased DLEs, ApEn, SEn, PD2 

and

ApEn increased α1 during anxiety state

SEn

PD2

DFA

Goshvarpour et al (2016) LPP Peacefulness, Maximum changes in LLP measures

happiness, fear, during happiness, and minimum

sadness changes during fear

The nomenclature used are the following:

Dominant Lyapunov exponents (DLEs), approximate entropy (ApEn).

Sample entropy (SEn), Fuzzy measure entropy (FMEn).

Cross sample entropy (CSEn), cross Fuzzy measure entropy (CFMEn).

Permutation entropy (PE), permutation min-entropy (PME).

Pointwise correlation dimension (PD2), detrended fluctuation analysis (DFA).

Lagged Poincaré plot (LLP).

Physiol. Meas. 40 (2019) 084001 (15pp)
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Additional information of this database can be found in Valderas et al (2019). Institutional Ethical Review 
Boards approved all experimental procedures involving human beings, and subjects gave their written consent. 
The experiments were conducted following the protocol approved by the Aragón Research Agency under con-
tract: #PM055, 2005.

2.2. Signal preprocessing
The RR interval was defined as the time between two consecutive R wave peaks, detected from the ECG lead with 
the best signal-to-noise ratio using a wavelet-based detector (Martínez et al 2004). The presence of ectopic beats 
and misdetections was detected and corrected (Mateo and Laguna et al 2003). Evenly sampled RR time series, 
RR(t), were obtained by linear interpolation at 4 Hz.

Then, the RR(t) was filtered in: (1) the LF band of [0.04, 0.15] Hz (RRLF(t)), (2) the HF band of [0.15, 0.40] 
Hz (RRHF(t)) and (3) the HFSCHF band (Valderas et al 2019) based on the SCHF method, (RRSCHF(t)). In the 
SCHF method, the HF band was redefined to be centered at the FR and its limits were calculated by means of the 
cross-correlation function between the power spectrum of HRV and respiration, being subject-dependent. The 
maximum value of correlation determined the lower (HFl) and upper limit (HFu) of the HFSCHF band.

The respiratory signal (r(t)) was filtered by a band pass filter from 0.04 Hz to 0.8 Hz, and downsampled at 4 Hz.
Then, a transformation of all time series was carried out by ranking data in order to have the best statistics in 

the entropy estimation and robustness against noise (Pompe 1998).

2.3. Auto-mutual information function
The AMIF is a non-linear equivalent of the auto-correlation function, based on the Shannon entropy. The 
Shannon entropy of a time series x(t) is calculated by the discrete probability distribution p (xi(t)) of x(t) leading 
Hx(t) as shown in equation (1) (Hoyer et al 2002):

Hx(t) = −
I∑

i=1

p(xi(t))log2p(xi(t)) (1)

where I is the number of bins needed for estimating the amplitude histogram of x(t), an approximation to the 
probability distribution function of the signal.

Then, the AMIF of x(t) is given by Hx(t), by Hx(t+τ), obtained by shifting x(t) a time lag τ  as x(t + τ), and their 
bivariate probability distribution leading to Hx(t)x(t+τ) as shown in equation (2) (Hoyer et al 2002):

AMIFxx(τ) = Hx(t) + Hx(t+τ) − Hx(t)x(t+τ). (2)

Therefore, this function describes the amount of common information between the original time series x(t) 
and the time shifted time series x(t  +  τ ). In the case of statistically independent time series, the AMIFxx  is zero, 
otherwise positive. The AMIF is normalized to its maximum amplitude (in τ = 0) representing the entire infor-
mation of a time series. The decay of this function over a time lag τ  represents the loss of information with respect 
to this prediction time, and in the case of non-linear HRV analysis, it is assumed to quantify the complexity of 
autonomic communication (Hoyer et al 2006). In the case of a random and unpredictable time series, the AMIF 
decays to 0 for all prediction times τ  apart from τ = 0. On the contrary, in the case of a predictable time series the 
AMIF remains at 1 for all τ  (Palacios et al 2007).

Table 2. Specific video length and content.

Video length (min) Content

Day 1: session 1

Joy 5 Excerpts from laughing monologues

Fear 3 Excerpt from the scary movie ‘Misery’

Day 1: session 2

Sadness 5 Documentary film on war histories

Anger 5 Excerpt of the documentary film on

Columbine High School massacre in 1999

Day 2: session 3

Sadness 5 Excerpt from the film ‘the Passion of the

Christ’
Anger 5 Documentary on domestic violence

Day 2: session 4

Joy 5 Excerpts from laughing monologues

Fear 5 Excerpt from the scary movie ‘Alien’

Physiol. Meas. 40 (2019) 084001 (15pp)
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2.4. AMIF-based measures
In order to describe HRV complexity during emotion elicitation, the evolution of the information function over 
the time scale τ  should be taken into consideration. The AMIF (figure 1) applied to the RR(t) time series was 
characterized by the following parameters: BD is the beat decay that corresponds with the AMIF decay from 
τ = 0 s to τB = 0.6 s, which represents a standard mean beat period (Palacios et al 2007). Also, ATRR is the total 
area under the curve that has been proposed to characterize the morphology, predictability and regularity of the 
signal (Boettger et al 2008).

The AMIF applied to the filtered time series RRLF(t), RRHF(t) and RRSCHF(t) was characterized by the fol-
lowing parameters: PDδ is the peak decay that shows the information decay at the maximum peak defined in the 
interval [τa, τb]; PDmδ is the mean peak decay within a time range [τa, τb] that indicates the mean information 
decrease between two time lags τa and τb; and ATδ is the total area under the curve in the same time range [τa, τb], 
where δ = {LF, HF, SCHF}.

Since the information flow of oscillators has its peak starting at half the period τ = (1/(2f ), 1/f , 3/(2f ), ...), 
the lower and upper time scale boundaries [τa, τb] within the AMIF were chosen at τ = 1/(2f ), where f  is the  
frequency band boundaries used in the band pass filters (Hoyer et al 2006) as: (1) the traditional LF range of  
[0.04, 0.15] Hz corresponds to a LF prediction time range of τLF  =  [τa = 1/(2 ∗ 0.15), τb  =  1/(2*0.04)]  =   
[3.33, 12.5] s; (2) the traditional HF range corresponds to a HF prediction time range of [0.15, 0.40] Hz as 
τHF  =  [τa  =  1/(2*0.40), τb  =  1/(2*0.15)]  =  [1.25, 3.33] s and (3) the SCHF band [HFl, HFu] corresponds to a 
SCHF prediction time range of τSCHF   =  [τa  =  1/(2HFu), τb  =  1/(2HFl)] s. In table 3, the values for lower- and 
upper-time scale boundaries corresponding to the SCHF prediction time range of τSCHF  in terms of median and 

interquartile ranges, as first and third quartile, (Median (Q1|Q3)) are specified.

2.5. Cross-mutual information function
The CMIF is a non-linear equivalent of the cross-correlation function, based on the Shannon entropy similarly 
to the AMIF, but quantifying the coupling between two signals x(t) and y (t). This function describes the amount 
of common information between a time series x(t) and a time shifted time series y (t + τ). Then, the CMIF of x(t) 
and y (t  +  τ ) is given by Hx(t), by Hy(t+τ), and their bivariate probability distribution leading to Hx(t)y(t+τ) as 
shown in equation (3) (Hoyer et al 2002):

CMIFxy(τ) = Hx(t) + Hy(t+τ) − Hx(t)y(t+τ). (3)

Figure 1. The normalized auto-mutual information function (AMIF) as function of the time scale τ . The AMIF value at τ = 0 
represents the entire information of a time series. Beat decay (BD) indicates the AMIF decay over a standard heart beat period (τB). 
Mean peak decay (PDm) indicates the mean information decrease between τa and τb. Peak decay (PD) indicates the information 
decay at the maximum peak (τp) defined in the interval [τa, τb].

Table 3. Median (Q1|Q3) values for lower- (τa) and upper-time (τb) scale boundaries corresponding to the SCHF prediction time range 
for relax, joy, fear, sadness and anger.

Elicitation τa τb

Relax 1.25 (1.19|1.43) 2.38 (1.85|2.78)

Joy 1.22 (0.98|1.28) 2.00 (1.85|2.27)

Fear 1.25 (1.14|1.39) 2.08 (1.92|2.50)

Sadness 1.25 (1.11|1.39) 2.08 (1.85|2.50)

Anger 1.25 (1.16|1.39) 2.08 (1.85|2.38)

Physiol. Meas. 40 (2019) 084001 (15pp)
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In contrast to the AMIF, the CMIF is not normalized for its analysis and it does not present a symmetric 
distribution around zero. Therefore, left and right sides of the CMIF around zero were analysed. The non-linear 
analysis of the coupled signals using the CMIF was as described for the AMIF, i.e. the CMIF at τ = 0 represents 
the common maximum information of both time series and the decay of this function over a prediction time 
describes the loss of information over this τ  (Hoyer et al 2002).

2.6. CMIF-based measures
In order to quantify and extract the amount of mutual information between the synchronized registered time 
series of HRV and respiration during emotion elicitation, the coupling between RR(t) and r(t), and between 
RRSCHF(t) and r(t) was investigated. Only the RR(t) and the RRSCHF(t) series have been taken into consideration 
because respiratory information is not consistently contained in the LF or HF bands for all subjects.

The following parameters were calculated from the CMIF of the synchronized cardiac and respiratory sig-
nals: CMIF0 defined as the CMIF value at τ = 0 that represents the amount of common information between 
both time series without time lag; CMIFmax defined as the maximum CMIF value that shows the maximum cou-
pling between the signals; and τmax defined as the time lag between CMIFmax and CMIF0, that indicates the time 
lag between the amount of common information of the time series and the maximum coupling between the sig-
nals. For this analysis, the CMIF parameters were defined as follow: CMIF0γ, CMIFmaxγ and τmaxγ in the coupling 
between each γ = {RR, SCHF} and r(t). In figure 2, it is presented a CMIF function.

2.7. Selection of the number of bins
The discrete probability distribution p(xi(t)) corresponds to a partitioning of the amplitude range of each signal 
in a histogram, and I  =  2N represents the maximum possible information that can be obtained (I is the number 
of bins of the histogram and N is the number of bits).

In order to adapt the algorithms of the AMIF and the CMIF to short-term time series, 2N for N  =  {3, 4, 5, 6, 
7, 8, 9} bits were considered in the calculation methodology. The number of parameters able to statistically dis-
criminate between relax and emotions and between pairs of emotions were assessed to determine the adequate 
number of histogram bins I.

2.8. Statistical analysis
Normality distribution of all parameters was evaluated by Lillie test. Then, the T-test or the Wilcoxon test when 
necessary, depending on normality test results, was applied to evaluate differences for the followed paired 
conditions: relax and each emotion and also each emotion was compared with each other.

The significance statistical level was p -value �0.05, since this threshold provides a reliable value for statisti-
cal discrimination (Rice 1989). Additionally, the area under the receiver operating characteristic curve (AUC) 
was studied to analyse the capability of the parameters to discriminate the studied elicitations and AUC �0.70 
was used to determine statistically significant differences for each studied parameter. Furthermore, leave-one-
out cross-validation method was used (Ney et al 1997) to assess sensitivity, specificity and accuracy values for 
each parameter in two-class emotion classification. These statistical parameters were required to be �70% to 
determine statistically significant differences for each studied parameter. These thresholds have been selected 
as optimal cut-points values due to sensitivity and specificity being the closest to the value of the area under the 
ROC curve (Unal et al 2017).

The number of bins I was selected as the value which yielded the highest number of parameters with statisti-
cally significant differences (p -value �0.001) between relax and each emotion and between pairs of emotions.

Figure 2. The CMIF of the coupling between RR(t) and r(t) as function of the time scale τ  .The CMIF value at τ   =  0 (CMIF0) 
represents the amount of common information of the time series without time lag and the maximum coupling between the signals 
is represented by CMIFmax.

Physiol. Meas. 40 (2019) 084001 (15pp)
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3. Results

3.1. Selection of the number of bins
The following analyses have been performed to evaluate the adequate I for the AMIF and the CMIF calculation 
for emotion recognition using short-time HRV signals.

In figure 3, it is shown the percentage of the number of parameters that present statistically significant dif-
ferences for each proposed I, when comparing relax with each emotions or between each pairs of emotions. The 
value I  =  25 was selected, since it presents the highest number of parameters with statistically significant differ-
ences, p -value � 0.001 and sensitivity, specificity and accuracy �70% and AUC index �0.70 for both non-linear 
techniques.

3.2. AMIF-based measures
Those AMIF-based parameters that revealed statistically significant differences between relax and the different 
emotions or between pairs of emotions are presented in figure 4. In this figure, boxplots are shown in terms of 
median and interquartile ranges as first and third quartile: ATγ  (figure 4(a) for γ   =  {RR, LF, HF, SCHF}; BD 
(figure 4(b) analysed on RR(t); and PDmδ (figure 4(c) for δ  =  {LF, HF, SCHF}.

In table 4, p -value, AUC and accuracy values are remarked in bold type for those AMIF-based parameters that 
revealed statistically significant differences between the emotional states studied. The presented emotion condi-
tions were those which revealed statistically significant differences.

3.3. CMIF-based measures
All parameters derived from the CMIF have been evaluated, however, only those that revealed statistically 
significant differences for their ability to discriminate between pair of emotions are shown in figure 5. In this 
figure, boxplots are shown in terms of median and interquartile ranges as first and third quartile: CMIF0γ 
(figure 5(a); CMIFmaxγ (figure 5(b) and τmaxγ (figure 5(c) for the coupling between each signal γ   =  {RR, 
SCHF} and r(t).

In table 5, p -value, AUC and accuracy values are remarked in bold type for those CMIF-based parameters that 
revealed statistically significant differences between the emotional states studied. The presented elicited condi-
tions were those which revealed statistically significant differences.

4. Discussion

The AMIF and the CMIF techniques have been proposed to study the non-linear relationships between HRV 
and respiration for human emotion recognition. Both non-linear techniques may provide complementary 
information to that captured by linear techniques for emotion recognition.

The adequate number of bins I was estimated to adapt the AMIF and the CMIF algorithms to short-time sig-
nals for emotion recognition, since the values of I applied to long-term HRV may not be suitable for short-term. 

Figure 3. Percentage of number of parameters derived from the AMIF and the CMIF function of each proposed bin number I 
presenting statistically significant differences: (p -value �0.05, p -value �0.01 and p -value �0.001 when comparing relax and each 
emotion and between pairs of emotions. All these counted parameters also presented a sensitivity, specificity and accuracy �70% 
and AUC index �0.70).

Physiol. Meas. 40 (2019) 084001 (15pp)
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Figure 4. Boxplots of the parameters derived from the AMIF: (a) ATγ  for γ   =  {RR, LF, HF, SCHF}; (b) BD analysed on RR(t); and 
(c) PDmδ for δ  =  {LF, HF, SCHF}. Only compared elicitations with some statistically significant differences are presented: relax and 
joy (R-J), relax and fear (R-F), joy and fear (J-F), joy and sadness (J-S), joy and anger (J-A), fear and sadness (F-S) and fear and anger 
(F-A). Statistical significance is denoted by * for p -value �0.05, ** for p -value �0.01 and *** for p -value � 0.001, all showed sensitivity, 
specificity and accuracy values �70% and AUC index �0.70. The number of the analysed subjects is indicated in parentheses.

Physiol. Meas. 40 (2019) 084001 (15pp)
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The value of I determines the histogram partitioning. The greater the I value is, the histogram represents more 
faithfully the probability density function. Nevertheless, each partitioning of the histogram needs to contain 
a minimum number of samples in order to capture the regularity and complexity signal contain more appro-
priately. Therefore, a compromise between the greatest number of partitioning of the histogram for faithfully 
describing the signal, and the adequate number of samples contained in each partitioning, should be taken into 
consideration.

In Hoyer et al (2002), the AMIF and the CMIF histogram were constructed by using 25 bins, when studying 
short-term RR signals according to Task Force guidelines (Task Force of ESC and NASPE 1996, Sassi et al 2015), 
in a group of patients after acute myocardial infarction and a control group. However, 23 bins were proposed 
in Hoyer et al (2006) for the AMIF histogram computation for short and long-term signals, to analyse the risk 
stratification of patients with multiple organ dysfunction syndrome, cardiac arrest patients and a control group. 
In this work, the highest percentage of number of parameters that presents statistically significant differences 
(p -value � 0.001) between each pair of elicited states was obtained for I  =  25 bins (see figure 3).

Table 6 displays the parameters which statistically discriminate between each pair of elicitations. The pair of 
elicited conditions which did not show statistically significant differences by means of any of the parameters con-
sidered in this work were: relax and sadness (R-S), relax and anger (R-A) and sadness and anger (S-A). It should 

Table 4. Values of p -value, AUC and accuracy for the parameters derived from AMIF which statistically discriminate between some pair of 
elicitations: relax and joy (R-J), relax and fear (R-F), joy and fear (J-F), joy and sadness (J-S), joy and anger (J-A), fear and sadness (F-S) and 
fear and anger (F-A). The number of the analysed subjects for each parameter and pair of elicitations is indicated in parentheses.

Parameters R-J R-F J-F J-S J-A F-S F-A

ATRR (35) (43) (35) (25) (29) (31) (35)

p -value n.s. �0.001 �0.001 n.s. n.s. �0.001 �0.001a

AUC 0.62 0.81 0.72 0.63 0.55 0.73 0.72

Accuracy (%) 61 77 71 64 60 73 73

ATLF (35) (43) (35) (25) (29) (31) (35)

p -value �0.001 �0.001 �0.05 �0.001 �0.05 �0.01 �0.05

AUC 0.76 0.82 0.64 0.71 0.62 0.73 0.67

Accuracy (%) 73 78 66 70 62 70 64

ATHF (35) (43) (35) (25) (29) (31) (35)

p -value n.s. �0.001 �0.001 n.s. n.s. �0.001 �0.05

AUC 0.63 0.71 0.77 0.58 0.53 0.67 0.70

Accuracy (%) 64 70 71 62 57 65 70

ATSCHF (12) (33) (13) (9) (11) (22) (26)

p -value �0.001 �0.001 �0.001 �0.05 �0.001 �0.01 �0.05

AUC 0.83 0.75 0.95 0.88 0.85 0.66 0.68

Accuracy (%) 75 74 92 78 77 66 71

BD (35) (43) (35) (25) (29) (31) (35)

p -value �0.01 �0.001 �0.01 �0.01 n.s. �0.01 �0.001

AUC 0.65 0.78 0.68 0.67 0.62 0.72 0.71

Accuracy (%) 67 77 67 66 60 73 73

PDmLF (35) (43) (35) (25) (29) (31) (35)

p -value �0.001 �0.001 �0.01 �0.01 n.s. �0.01 �0.05

AUC 0.76 0.81 0.63 0.71 0.61 0.70 0.67

Accuracy (%) 73 77 69 70 60 70 63

PDmHF (35) (43) (35) (25) (29) (31) (35)

p -value �0.01 �0.001a �0.001 n.s. n.s. �0.01 �0.01

AUC 0.70 0.71 0.81 0.64 0.59 0.68 0.72

Accuracy (%) 71 72 80 66 64 68 70

PDmSCHF (12) (33) (13) (9) (11) (22) (26)

p -value �0.05 �0.001 �0.001 n.s. n.s. �0.01 �0.01

AUC 0.72 0.81 0.99 0.79 0.64 0.74 0.70

Accuracy (%) 75 77 96 78 68 70 70

n.s. stands for non-significant.
a Sensitivity or specificity � 70%.

Note that parameters with p �0.05, AUC index �0.70, sensitivity, specificity, accuracy values �70% are remarked in bold type.
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be noted that no statistically significant differences between relax and emotions or between pairs of emotions 
were found by any parameter derived from analysis of the coupling between the signals RR(t) and r(t). As it was 
found by analysing the AMIF technique, the pair of elicitation conditions which did not show statistically signifi-
cant differences in the CMIF by means of any of the parameters considered was: relax and sadness (R-S), relax 
and anger (R-A), joy and sadness (J-S) and sadness and anger (S-A).

Regarding the ability of the AMIF parameters to discriminate emotions, the total areas (figure 4(a), ATSCHF was 
the only parameter capable of statistically distinguishing joy and anger among all the studied parameters derived 
from the AMIF. This result shows the importance of redefining the boundary of the HF band for a correct evalu-
ation of physiological changes of the ANS (Goren et al 2006, Valderas et al 2019). Fear revealed a greater median 
value than any other emotion. Note that an enlargement of the area under the AMIF curve indicates a better pre-
dictability of future heart beats, and therefore, a lower complexity (Boettger et al 2008).

Evaluating the beat decay BD (figure 4(b), fear presented smaller median values than any other compared 
elicitation. Furthermore, this parameter was able to statistically distinguish between fear and relax, sadness and 
anger. However, the remaining pair of compared elicited states did not show such a clear pattern as fear. Addition-
ally, PDmδ (figure 4(c) presented a similar tendency as the BD for fear with a smaller median value than any other 
elicitation state. The BD and PDmδ presented results with complementary information, and statistically signifi-
cant values, and also adequate sensitivity, specificity, accuracy and AUC index.

The CMIF has been proposed to reveal non-linear cardiorespiratory interdependencies (Hoyer et al 2002), 
which might be altered during emotion elicitation. For example, a significant increase in the CMIF of elec-
troencephalographic signals has been also observed in the presence of stress (Alonso et al 2015). In our study, 
the parameter CMIF0SCHF (figure 5(a) and the parameter CMIFmaxSCHF (figure 5(b) provide similar informa-
tion, although the slight differences in the calculation of both parameter revealed that CMIFmaxSCHF is able to  
discriminate with an equal or better p -value, sensitivity, specificity, accuracy and AUC index than CMIF0SCHF in all 

Table 5. Values of p -value, AUC and accuracy for the parameters derived from CMIF which statistically discriminate between some pair of 
elicitations: relax and joy (R-J), relax and fear (R-F), joy and fear (J-F), joy and anger (J-A), fear and sadness (F-S) and fear and anger (F-A). 
The number of the analysed subjects for each parameter and pair of elicitations is indicated in parentheses.

Parameters R-J R-F J-F J-A F-S F-A

CMIF0RR (35) (43) (35) (29) (31) (35)

p -value n.s. �0.001a �0.01 n.s. �0.01 �0.05

AUC 0.61 0.75 0.65 0.53 0.65 0.65

Accuracy (%) 61 78 70 53 66 64

CMIF0SCHF (12) (33) (13) (11) (22) (26)

p -value �0.05 �0.001 �0.001 n.s. �0.05 �0.05

AUC 0.70 0.73 0.85 0.69 0.72 0.70

Accuracy (%) 71 73 85 64 70 70

CMIFmaxRR (35) (43) (35) (29) (31) (35)

p -value n.s. �0.001a �0.05 n.s. �0.01 n.s.

AUC 0.62 0.72 0.60 0.64 0.63 0.66

Accuracy (%) 64 76 70 66 68 63

CMIFmaxSCHF (12) (33) (13) (11) (22) (26)

p -value �0.001 �0.001 �0.001 �0.01 �0.01 �0.01

AUC 0.88 0.74 0.95 0.79 0.77 0.68

Accuracy (%) 83 71 85 77 75 69

τmaxRR (35) (43) (35) (29) (31) (35)

p -value n.s. n.s. n.s. n.s. n.s. n.s.

AUC 0.62 0.53 0.66 0.56 0.53 0.55

Accuracy (%) 66 55 67 57 56 57

τmaxSCHF (12) (33) (13) (11) (22) (26)

p -value n.s. �0.01 �0.05 n.s. �0.05 n.s.

AUC 0.62 0.68 0.75 0.66 0.62 0.51

Accuracy (%) 63 65 77 68 61 60

n.s. stands for non-significant.
a Sensitivity or specificity � 70%.

Note that parameters with p �0.05, AUC index �0.70, sensitivity, specificity, accuracy values �70% are remarked in bold type.

Physiol. Meas. 40 (2019) 084001 (15pp)
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Figure 5. Boxplots of the parameters derived from the CMIF: (a) CMIF0γ, (b) CMIFmaxγ and (c) τmaxγ, for the coupling between 
each of the signals γ   =  {RR, SCHF} and r(t) and all emotion conditions studied with statistically significant differences: relax and 
joy (R-J), relax and fear (R-F), joy and fear (J-F), joy and anger (J-A), fear and sadness (F-S) and fear and anger (F-A). Statistical 
significance is denoted by: * for p -value �0.05, ** for p -value �0.01 and ***  for p -value �0.001, all with sensitivity, specificity and 
accuracy �70% and AUC index �0.70. In each x-axis the number of the analysed subjects is indicated in parentheses.

Physiol. Meas. 40 (2019) 084001 (15pp)
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compared elicited states, except for fear and anger. Moreover, evaluating CMIF0SCHF and CMIFmaxSCHF, it is possible 
to extract a similar pattern for fear presenting a greater median value than any other elicited state.

The time lag between CMIF0 and CMIFmax in the SCHF band was the only parameter able to distinguish 
between joy and fear, and it suggested less non-linear correlation between HRV and respiration during joy. A 
complexity reduction is observed during fear elicitation as reflected by a lower value of parameter τmaxSCHF.

Furthermore, joy or fear versus sadness can be discriminated by parameters obtained from RRLF(t) signals 
and joy or fear versus anger from RRHF(t) signals. Predominant autonomic rhythms can be assessed by the com-
plex information loss over their respective prediction time horizon (Hoyer et al 2002). In this sense, those param-
eters studied in the LF band reflect the complexity of vagal and sympathetic mechanisms, and those parameters 
studied in the HF band reflect the complexity of vagal and respiratory rhythms (Hoyer et al 2002).

Comparing the results obtained from the AMIF and the CMIF techniques, it is worth noting that filtering 
the HRV signals into a redefined HF band presents better discrimination power for parameters derived from 
the AMIF than from the CMIF ones. Furthermore, applying the CMIF into the RR time series filtered into the 
redefined HF band provided relevant complexity information to discriminate between HRV and respiratory 
mechanisms in the case of fear.

A complexity reduction is observed during fear elicitation as reflected by smaller BD, PDmδ and τmaxSCHF values 
together with a greater total area, CMIF0SCHF and CMIFmaxSCHF.

In Bolea et al (2014), a physiological explanation of non-linear HRV parameters was reported. In this work, 
non-linear HRV indices during ANS pharmacological blockade and body position changes were studied in order 
to assess their relation with sympathetic and parasympathetic activities. Parasympathetic blockade caused a sig-
nificant decrease in complexity values, while sympathetic blockade produced a significant increase in the non-
linear parameters. We hypothesize that the decrease in complexity observed during fear elicitation reflects vagal 
activity, while more random RR series during joy might reflect sympathetic activity.

The results derived from this work have been compared with a previous work on the same emotion data-
base, where a linear-based methodology was applied (Valderas et al 2019) (table 7). In both cases the HF band 
was analysed after redefining it considering the HRV-respiration interaction (Valderas et al 2019). All the elic-
ited states able to be discriminated with linear techniques, remain discriminated with the non-linear features  
(table 7). In addition, during fear elicitation, heart rate presents a better predictability, implying lower complex-
ity, as compared to other elicited states, resulting in extra discriminating power between fear and relax or anger 
(table 7) non accessible from linear features. These results may indicate that the non-linear indexes are suitable 
for discrimination between different emotions.

Furthermore, other non-linear HRV parameters as the correlation dimension, the approximate entropy and 
the sample entropy have been investigated in the same emotional database. However, these parameters did not 
present the ability to separate the emotional states in this analysed database. In table 1, there are summarized the 
non-linear techniques used to detect emotional stimuli based on HRV analysis. In Valenza et al (2012a), the emo-
tional states were conceptualized in two dimensions by the terms of valence and arousal. The dominant Lyapunov 
exponent and the approximate entropy techniques showed differences between the neutral and the arousal elici-

Table 6. Parameters derived from the AMIF and the CMIF which statistically discriminate between the studied elicitations.

Compared elicited states R-J R-F J-F J-S J-A F-S F-A

Parameters derived from the 

AMIF

ATRR — Yes Yes — — Yes —
ATLF Yes Yes — Yes — Yes —
ATHF — Yes Yes — — — Yes

ATSCHF Yes Yes Yes Yes Yes — —
BD — Yes — — — Yes Yes

PDmLF Yes Yes — Yes — Yes —
PDmHF Yes — Yes — — — Yes

PDmSCHF Yes Yes Yes — — Yes Yes

Parameters derived from the 

CMIF

CMIF0SCHF Yes Yes Yes — — Yes Yes

CMIFmaxSCHF Yes Yes Yes — Yes Yes —
τmaxSCHF — — Yes — — — —

The nomenclature used for the elicited states are the following:

relax (R), joy (J), fear (F), sadness (S) and anger (A).

Physiol. Meas. 40 (2019) 084001 (15pp)
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tation. These results are in concordance with the ones obtained in this study by means of the AMIF and the CMIF 
techniques, since statistically significant differences between the neutral state of relax and the two high arousal 
elicitations of joy and fear were found. Furthermore, it was found in Valenza et al (2012a) that the dominant 
Lyapunov exponent became negative, and the mean approximate entropy decreased during arousal elicitation. 
In accordance with the dominant Lyapunov exponent and the approximate Entropy, during fear elicitation the 
non-linear HRV parameters obtained in the present study revealed a reduced complexity level. In Boettger et al 
(2008), an increment of the total area under the AMIF curve was observed revealing an indication of decreased 
complexity of cardiac regulation in depressed patients. However, in Zhao et al (2019), a consistent increasing 
trend among most entropy measures for different depression levels was found. This suggested a reduced regular-
ity and predictability of the depressed patients. The depression state is considered by means of the circumplex 
model of affect as having negative valence with low arousal, as can be sadness (Valenza et al 2012a). Considering 
the parameter ATRR in the comparison between fear and sadness (emotional states with the same negative valence 
but different arousal), it could be observed that sadness presents a lower median value, being an indicator of 
decreased complexity as reported in Boettger et al (2008), and being in agreement with the results obtained by 
Zhao et al (2019). In Xia et al (2018), a significantly increase of the entropy measures was found during the emo-
tional states of happiness, sadness, anger, and disgust. These results are in concordance with the ones obtained in 
this study for fear, which revealed increased regularity and a reduced unpredictability. In Dimitriev et al (2016), 
significant decreases in the entropy, the dominant Lyapunov exponent, and the pointwise correlation dimen-
sion, and an increase in the short-term fractal-like scaling exponent of the detrended fluctuation analysis were 
found during anxiety situations, compared with the rest period. These results suggest that an increase of anxiety 
was related to the decrease in the complexity. The anxiety state can be considered by means of the circumplex 
model of affect (Valenza et al 2012a) as having negative valence with high arousal, similar to fear. Both the state 
of anxiety studied in Dimitriev et al (2016) and the emotional state of fear, studied in this work, presented the 
same tendency in level of complexity. In Goshvarpour et al (2016), maximum changes in the lagged Poincaré 
Plot measures were found during the happiness stimuli, and minimum changes were obtained during the fear 
inducements. These results are in agreement with the ones obtained by means the CMIF technique applied in the 
present study, were differences between joy and fear could be found.

There are also some limitations to note regarding this study. First, the sample size database used is small. 
Nonetheless, the results obtained advocated in support of using the proposed approaches, although a bigger 
sample size database could probably yield better statistics. Second, likewise, long-time emotional monitoring 
could probably provide additional information that cannot be detected in short-time series analyses. Although, 
short-term emotional analyses are more suitable for outpatient patient monitoring and applications where the 
result is urgently needed. Third, there are emotions that could not be expressed by the subject all the time the vid-
eos last, but they have been treated as if the subject expresses that emotion all the time.

Despite these limitations, the parameters derived from the AMIF and the CMIF techniques which presented 
statistically significant differences for emotion discrimination seem to be good candidates to be implemented on 
a biomedical equipment, providing a tool for mental illness diagnoses. In addition, analysing the role of mutual 
information-based HRV measures to explore a multi-variable approach combining with other non-linear 
parameters could open a door to extract new suitable parameters for emotion recognition.

Table 7. Discriminating possibility in comparing between elicited states with linear and non-linear techniques.

Compared elicited states Linear techniques (Valderas et al 2019) Non-linear techniques (this work)

R-J Yes Yes

R-F No Yes

R-S No No

R-A No No

J-F Yes Yes

J-S Yes Yes

J-A Yes Yes

F-S Yes Yes

F-A No Yes

S-A No No

The nomenclature used for the elicited states are the following:

relax (R), joy (J), fear (F), sadness (S) and anger (A).

Physiol. Meas. 40 (2019) 084001 (15pp)
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5. Conclusions

The results of this study suggested that the non-linear AMIF and the CMIF techniques characterized the negative 
valence of fear, by reflecting a lower complexity than the other emotions. Parameters derived from the AMIF 
allowed extending the description of the complexity of vagal and sympathetic autonomic rhythms. Parameters 
derived from the CMIF at the respiration-based bandwidth provided relevant information related to non-linear 
mechanisms between vagal and respiratory activity, especially for fear.

Furthermore, filtering the HRV signals into a redefined HF band provided a better discrimination for param-
eters derived from the AMIF between relax and joy, relax and fear, joy and all remaining emotion conditions as 
well as fear and all remaining emotion conditions.

The non-linear AMIF and CMIF techniques provided complementary information to other linear and  
non-linear methods.
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