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Summary
Introduction: This article is part of the  
Focus Theme of Methods of Information in 
Medicine on “Biosignal Interpretation: Ad-
vanced Methods for Studying Cardiovascular 
and Respiratory Systems”.
Objectives: This work aims at providing an 
efficient method to estimate the parameters 
of a non linear model including memory, pre-
viously proposed to characterize rate adap-
tation of repolarization indices. 
Methods: The physiological restrictions on 
the model parameters have been included in 
the cost function in such a way that uncon-
strained optimization techniques such as de-
scent optimization methods can be used for 
parameter estimation. The proposed method 

has been evaluated on electrocardiogram 
(ECG) recordings of healthy subjects per-
forming a tilt test, where rate adaptation of 
QT and Tpeak-to-Tend (Tpe ) intervals has 
been characterized.
Results: The proposed strategy results in an 
efficient methodology to characterize rate 
adaptation of repolarization features, im-
proving the convergence time with respect to 
previous strategies. Moreover, Tpe interval 
adapts faster to changes in heart rate than 
the QT interval.
Conclusions: In this work an efficient esti-
mation of the parameters of a model aimed 
at characterizing rate adaptation of repolar-
ization features has been proposed. The Tpe 
interval has been shown to be rate related 
and with a shorter memory lag than the QT 
interval.
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1. Introduction
The QT and Tpeak-to-Tend (Tpe ) intervals 
are commonly used to describe overall re-
polarization duration and its spatial disper-
sion from the electrocardiogram (ECG). 
Prolongations of these intervals have been 
related to increased arrhythmic risk under 
a variety of clinical conditions [1].

The QT interval is known to be in-
fluenced by changes in heart rate (HR) and 
the use of HR correction is crucial in the 
estimation of QT prolongation. However, 
the rate dependence of the Tpe interval is 
still an issue. Previous studies characteriz-
ing Tpe rate dependence are controversial, 
with Tpe shown to be independent of HR by 

some authors [2] and markedly HR de-
pendent by others [3, 4]. 

In this work, a model previously pro-
posed to estimate QT rate adaptation [5] 
was used to estimate both QT and Tpe rate 
adaptations. In [5], the DiRect method, 
which is a derivative free optimizer, was 
used to solve the model in the QT case. The 
physiological restrictions on the model 
 parameters and the computational time 
required for the estimation led us to pro-
pose an efficient estimation method that 
uses a quasi-Newton optimization tech-
nique. 

The proposed method was evaluated in 
ECG recordings presenting changes in the 
RR interval in which Tpe rate adaptation 
was characterized and compared to QT 
adaptation.

2. Methods
2.1 Model Formulation

The model illustrated in ▶ Figure 1 de-
scribes the relationship between the RR in-
terval series (input) and the Tpe series 
yTpe[n] (output), sampled to 1 Hz. The 
problem consists in the identification of 
two blocks, a FIR filter and a nonlinear 
function, which relate xRR[n] and yTpe[n] 
(analogously xRR[n] and yQT [n]).

The first block corresponds to a time in-
variant Nth-order FIR filter with impulse 
response:

h = (h[1], . . . , h[N])T

whose output is denoted by zRR[n]. The 
 impulse response h includes information 
about the memory of the system, that is, a 
characterization of the influence of pre-
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vious RR intervals on each Tpe measure-
ment. The order N of the filter was set to 
150 samples after sampling to 1 Hz corre-
sponding to 150 seconds, expected to ex-
ceed the Tpe and QT memory lag for the 
population used in this study.

The second block is a function gk (. , a), 
which is parameterized by the vector  
a = [a0 , a1]T . gk (. , a) represents the rela-
tionship between the RR interval and the 
Tpe interval once the memory effect has 
been compensated for, and in this study it 
was particularized and optimized for each 
subject using one of the regression func-
tions gk described below. 

The output of the model y ˆTpe[n] is de-
fined as:

 y ˆTpe[n] = gk (zRR [n], a) (1)

In vector notation, zRR , is the convolution 
between the input vector xRR and the im-
pulse response h, and can be expressed as 
zRR = xRR · h = XRR h, where XRR is the 
 Toeplitz matrix of xRR :

 

which is a (M − N + 1) × N matrix, where 
M is the length of the signal xRR .

Different biparametric regression func-
tions that span from a linear to a hyper-
bolic relationship, as described in [5], were 
considered for gk (·, a), and the one that best 
fitted the data of each subject was identi -
fied. Three examples are:
 
Linear:    (2) 

Hyperbolic:    (3) 

Parabolic:       (4) 

The optimum values of the FIR filter re-
sponse h, function gk and vector a, were 
searched for by minimizing a least square 
estimator between the estimated output  

y ˆTpe[n] (▶Equation 1) and yTpe[n], for each 
subject independently using its whole re-
cording. However, as described in [5], this 
optimization problem is an “ill-posed” 
problem, where a regularization term in-
cluding a priori information of the solution 
should be added. In this a Tikhonov regu-
larization approach was used [6]. Rate de-
pendence of repolarization features was 
modeled as an exponential decay. Devi-
ations of h from having an exponential 
decay were penalized by considering the 
following regularization matrix D (5):

 

Note that in case of h having an exponen-
tial decay expressed as h [ j ] = e –λ j = τ j, the 
equality ||D h|| = 0 holds.

The value of τ was estimated as the best 
exponential decay of h that leads to the 
minimum mean square error between 
yTpe[n] and y ˆTpe[n] using the linear regres-
sion model g1.

The estimator thus turns into a regular-
ized least square estimator:

{h*, a*, k*} = arg min {h, a, k }( Jk(h, a))        (5)
with  Jk(h, a), the cost function to be mini-
mized for each regression model, defined 
as:

Jk(h, a) = 
||yTpe – gk(xRR · h, a)||2 + β 2||Dh||2.        (6)

In the above expression β2 is a regulari -
zation parameter that controls the  
weight given to the regularization energy 
||D h||2 relative to the residual energy  
||yTpe – y ˆTpe ||2. In this study the value of  

β was obtained by using the “L-curve” 
 criterion [7].

Regarding k* in ▶Equation 5, the opti-
mum regression function gk (· , a) was de-
termined as the one that minimizes the 
mean square error for each subject inde-
pendently.

Additionally, in the above described 
problem, the optimal estimation of h was 
subject to two constraints: the sum of the h 
 
 components has to be   to   en- 
 
sure normalized filter gain, and all the 
components of h have to be non-negative 
(h[i ] ≥ 0) to give a physiological plausible 
interpretation.

2.2 Optimization Including 
 Restrictions

In this work we reparameterized Jk (h, a) in 
order to incorporate the two restrictions 
and we used a “quasi-Newton” optimiza -
tion technique to minimize the new cost 
function.

In order to minimize the cost function 
in ▶Equation 6, subject to the previously 
described constraints, we defined 
 
  , and optimized over h ˜ 
 
 
 without any constraints. The new cost 
function was:

 

over which unconstrained optimization 
techniques can be used. h ˜ 2 is defined as  
h ˜ 2 = [h ˜[1]2, . . . , h ˜[N]2]. The function  
J ̃ k (h ˜ , a) was optimized over h ˜ and over a for 
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Figure 1 Block diagram describing the relationship between the Tpe interval and the RR interval, 
which consists of a time invariant FIR filter, with impulse response h, and a nonlinear function described 
by vector a. v[n] accounts for the modeling error.
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Table 1 Example of the derivatives of three regression functions gk (zRR , a), with respect to zRR and a. 
 
  diag is the diagonal of the matrix  . 1 represents a N-length vector of 
 
 
 ones.  All mathematical expressions are element-wise.

each regression function gk .  The estimated 
y ˆ Tpe can be expressed as gk (zRR , a), which 
depends on h by the relationship zRR =  
xRR · h. In order to differen tiate J ̃k with re-
spect to the first variable  vector h ˜   the chain 
rule was applied (▶Figure 2), where the 
first term corresponds to the estimation 
error and the second one to the regulari -
zation error.  

In ▶Figure 2 the derivative  , also 
 
 called Jacobian matrix, is defined as the 
matrix of the derivatives of a vector-valued 
function with respect to another vector. It 
represents the effect on h of a perturba- 
tion ∂h ˜ of the vector h  ̃ : (▶Figure 3), 

Therefore, the derivative  was computed 
 
 as can be seen in ▶Figure 4). Also in 

 ▶Figure 2 there is the factor . 

To compute it, first note that J ̃k can  
be   expressed   as  in ▶Figure 5.  Therefore,

 
       (7)

Another factor in ▶Figure 2 is   . 
 
 Taking into account that gk depends on  
zRR , and zRR = XRRh:

  
(8)

  is a matrix since ¶ gk (zRR , a) 
 
 and ¶ zRR are vectors. Besides, a pertur-
bation of the i-th element of the vector  
zRR produces an effect only on the i-th el-
ement of the vector gk (zRR , a), and then 
 
   is a diagonal matrix.

For the three regression model examples 
shown in ▶Equations 2 – 4, the diagonals 
of are shown in ▶ Table 1.

Figure 2 Application of the chain rule to differentiate J ˜ with respect to h ˜

Figure 3  
Jacobian matrix re-
lates perturbations  
of h ˜ perturbations  
of h

Figure 4 Explicit expression of the Jacobian matrix in terms of the components h ˜ [i]

Figure 5 Explicit expression of J ˜ k

Model gk diag
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Finally, the derivative   in 
 
 ▶Figure 2 can be calculated as: 

         (9)

Eventually,  was computed by introduc– 
 
ing ▶Equations 7–9 into ▶Figure 2.

In order to differentiate the cost func-
tion J ̃ with respect to the second variable 
vector a, the chain rule was also applied:

 

The first term in the above expression was 
already calculated in ▶Equation 7, while 
the second term is a Nx2 matrix where the 
 
 first column corresponds to   
 
 
 and the second column to  , both  
 
shown in ▶ Table 1.

2.3. Optimization Technique

In this work, a quasi-Newton optimization 
technique, the BFGS (Broyden-Fletcher-
Goldfarb-Shanno), was used to minimize 
the cost function J ̃k (h ˜ , a) [8]. BFGS quasi-
Newton method estimates the Hessian (or 
the Hessian inverse) matrix preserving 
symmetry and positive definiteness. In 
each step, the estimation of the Hessian 
matrix is updated using the gradient infor-
mation [8]. In order to compute the step 
size along each descent direction, obtained 
by the quasi-Newton method, a parabolic 
and a golden ratio line searches were used 
[9].

2.4 Study Population and 
 Characterization of Repolarization 
Adaptation

ECG recordings of fifteen volunteers 
sampled at 1000 Hz were obtained during a 
head-up tilt test trial and used to character-
ize Tpe and QT rate adaptation. The tilt test 

protocol generated two step-like RR 
changes with stabilized RR intervals after 
each of them (▶ Figure 6, top panel).

ECG delineation was performed using a 
wavelet-based delineator [10]. RR, QT and 
Tpe intervals were computed from the ECG 
delineation marks in leads V2 and V4.

The time required for Tpe and QT to 
complete 90% of their rate adaptation, de-
noted by t90, was computed by setting a 
threshold of 0.1 to the cumulative sum of 
the filter impulse response:
 
 

3. Results and Discussion
An example of the reconstruction of the 
yQT [n] and yTpe[n] series, after estimating 
the corresponding h[n], the regression 
model k and the coefficient vector a are 
shown in ▶ Figure 6. The reconstructed  
y ˆ Tpe[n] and y ˆ QT [n], shown in black solid 
lines, begin after 150 seconds correspond-
ing to the length of the filter h[n]. The esti-
mated regression functions in this example 
are different for the QT (linear model) and 
for the Tpe series (parabolic model).

In ▶ Figure 7, the median, first and 
third quartile of the Tpe rate adaptation, 
 
  , across the 15 recordings are shown 
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Figure 6 Top panel: xRR series obtained from a subject of the study population. Middle and bottom 
panels: on the left, an example of how the reconstruction y ˆQT (black solid line) of the QT interval series 
yQT (gray dots), is obtained by xRR through the estimations of h and gk( . , a). In this example, the opti-
mum regression model for the QT interval is the linear one (k = 1). On the right, analogously for the Tpe , 
the reconstruction y ˆTpe (black solid line) is shown. The optimum model regression in this case is the para-
bolic function (k = 3). In dashed gray line, the linear function is also depicted for comparison purposes.
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 and compared to those of the QT interval. 
t90 values are 23 s, in mean, for Tpe to com-
plete 90% of the rate adaptation and 74 s 
for QT which is within clinical ranges [5]. 
The characterization of Tpe rate adaptation 
shows that Tpe is rate related and it has a 
shorter memory lag than the QT interval. 

The cost function from ▶Equation 6 
with the  
 
 constraints  = 1 and h[i] ≥ 0, is a 
 
 convex function in a convex domain. 
Therefore, the problem has a unique sol-
ution. When comparing the proposed 
methodology with the one used in [5], 
which solved the model using a derivative 
free optimizer such as DiRect method, we 
obtained a ten times faster convergence for 

the present method (obtaining the same re-
sults within the floating point precision). 
The algorithm proposed is faster since the 
restrictions are included in the cost func-
tion, resulting in an unconstrained opti-
mization problem. Furthermore, the gradi-
ent was computed explicitly.

4. Conclusions

In this work an estimation strategy for the 
parameters of a model aimed at character-
izing rate adaptation of repolarization fea-
tures has been proposed. Physiological re-
strictions have been included into the cost 
function, which allowed the use of descent 
unconstrained optimization methods with 
a fast convergence and efficiency. The 

evaluation of the method on a tilt test data-
base shows results on rate adaptation times 
that are within clinical ranges.
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Figure 7 Median, first and third quartile of the rate adaptation  , of Tpe and QT intervals.


