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Quantification of Restitution Dispersion From the
Dynamic Changes of the T -Wave Peak to End,

Measured at the Surface ECG
Ana Mincholé*, Esther Pueyo, José Felix Rodrı́guez, Ernesto Zacur, Manuel Doblaré,

and Pablo Laguna

Abstract—Action potential duration restitution (APDR) curves
present spatial variations due to the electrophysiological hetero-
geneities present in the heart. Enhanced spatial APDR dispersion
in ventricle has been suggested as an arrhythmic risk marker.
In this study, we propose a method to noninvasively quantify
dispersion of APDR slopes at tissue level by making only use of the
surface electrocardiogram (ECG). The proposed estimate accounts
for rate normalized differences in the steady-state T -wave peak
to T -wave end interval (Tpe). A methodology is developed for its
computation, which includes compensation for the Tpe memory
lag after heart-rate (HR) changes. The capability of the proposed
estimate to reflect APDR dispersion is assessed using a combi-
nation of ECG signal processing, and computational modeling
and simulation. Specifically, ECG recordings of control subjects
undergoing a tilt test trial are used to measure that estimate, while
its capability to provide a quantification of APDR dispersion at
tissue level is assessed by using a 2-D ventricular tissue simulation.
From this simulation, APDR dispersion, denoted as ΔαSIM , is
calculated, and pseudo-ECGs are derived. Estimates of APDR
dispersion measured from the pseudo-ECGs show to correlate
with ΔαSIM , being the mean relative error below 5%. A compar-
ison of the ECG estimates obtained from tilt test recordings and the
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ΔαSIM values measured in silico simulations at tissue level show
that differences between them are below 20%, which is within
physiological variability limits. Our results provide evidence that
the proposed estimate is a noninvasive measurement of APDR dis-
persion in ventricle. Additional results from this study confirm that
Tpe adapts to HR changes much faster than the QT interval.

Index Terms—Rate adaptation, repolarization dispersion, restitu-
tion dispersion, T -wave peak to T -wave end.

I. INTRODUCTION

H EART-RATE (HR) dependence of action potential du-
ration (APD), also called restitution kinetics, is thought

to be critical in activation instability and, therefore, provides
relevant information for ventricular arrhythmic risk stratifica-
tion [1], [2]. The dynamic APD restitution (APDR) curve, mea-
sured using the so-called dynamic restitution protocol, quan-
tifies the relationship between the APD and the RR interval
(inverse of HR) at steady-state when pacing at different RR val-
ues [3], [4]. Despite the large number of studies in the literature
on the role of steep APDR curves in the development of ven-
tricular arrhythmias [4], [5], it is unlikely that the conditions of
constant rapid pacing used to experimentally characterize that
relationship apply to the clinical situation. Heterogeneities in
the ventricle lead to non uniform restitution properties, which
makes APDR curves present spatial variations [6]. Dispersion
is a measure of that spatial variation. Recent studies have sug-
gested that dispersion in the APDR curves may act as a potent
arrhythmogenic substrate [7], [8], and increments in that disper-
sion have been associated with greater propensity to suffer from
ventricular tachycardia/fibrillation [9].

The main limitation on the usability of APDR dispersion as
a risk index is that its quantification requires invasive proce-
dures [10]. In this study we propose a method to indirectly
estimate dispersion of restitution slopes by making only use
of the surface electrocardiogram (ECG). We propose an ECG
measure that quantifies dispersion in the dynamic APDR slopes
by characterizing the relationship between the distance from
T -wave peak to T -wave end (Tpe ) and the RR interval under
different stationary conditions.

Tpe interval is generally accepted to reflect differences in
the time for completion of repolarization at different regions
in the ventricle. Some studies have proposed that Tpe is an in-
dex of transmural dispersion of repolarization [11], while others
have claimed that Tpe does not correlate only with transmural
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dispersion of repolarization but it also includes other hetero-
geneities, such as apicobasal ones [12], [13].

Each value of the APDR curve represents a stationary state
corresponding to a specific HR value, and, therefore, the ECG
measurement proposed to estimate restitution dispersion should
in principle be computed using ECG segments of stable HR
regimes. Since those type of segments are difficult to get in
clinical practice, we propose a methodology that overcomes
that restriction by modeling the dependence of the Tpe interval
on a history of previous RR intervals and compensating for
the Tpe memory lag. This model has been previously used to
characterize rate adaptation of the QT interval [14], which has
been known to adapt, similarly as does the APD, in two phases:
a fast initial one and a subsequent slow accommodation [3],
[15], [16]. Previous studies characterizing Tpe rate dependence
are controversial, with Tpe shown to be independent of HR by
some authors [17] and markedly HR dependent by others [18].
In this study we characterize Tpe rate adaptation, and compare
it with QT rate adaptation.

Our proposed ECG-based estimate of APDR slope dispersion,
is evaluated on a database of ECG recordings from healthy
subjects undergoing a tilt test trial. In this trial, step-like HR
changes are generated, which are used in this study to measure
dynamic changes of the Tpe , and compute the proposed estimate.

The capability of the proposed ECG measurement to provide
estimates of APDR slope dispersion at tissue level has been
assessed by simulating electrical propagation in a 2-D tissue
representing a slice across the human left ventricular wall, and
computing pseudo-ECGs. An electrophysiologically detailed
human ventricular cell model [19] is used to generate action
potentials. Pacings at different RR intervals are simulated to
compute dynamic APDR curves, and eventually APDR slope
dispersion.

A comparison of the proposed ECG estimate evaluated from
the simulated pseudo-ECGs and from the tilt test ECG record-
ings shows that simulated data is in good agreement with clin-
ical/experimental data. Additionally, using the 2-D simulated
data we confirm that the proposed ECG estimate is a measure
of APDR slope dispersion at tissue level.

The manuscript is outlined as follows. Section II presents the
database and the method used to estimate APDR slope disper-
sion from the surface ECG and describes the 2-D tissue model-
ing and simulation. Section III contains the results that show the
capability of the proposed ECG measurement to provide esti-
mates of the APDR slope dispersion. Sections IV and V present
the discussion and the main limitations of the study. Section VI
summarizes the conclusions.

II. MATERIALS AND METHODS

This section mainly includes the quantification of APDR dis-
persion from ECG-based estimates; and the introduction of a
2-D modeling and simulation to assess the proposed estimates.
Section II-A introduces the data and ECG signal processing de-
lineation procedures. In Section II-B, the relationship between
ventricular APDR slope dispersion, denoted by Δα, and its

surface ECG estimate, denoted by ̂Δα
ECGs

, is presented for

Fig. 1. Outline of the methods used in this study. Crossed arrow shows a
desirable but unaccessible connection. Tasks 1, 2, and 3 represent the different
comparison tasks to be done in Section III (see Section III-A– D for details).

the case of stable RR segments (see Fig. 1, left). Hereinafter,
“the hat” (̂) refers to estimates from the ECG. The difficulty of
getting stable RR segments made us propose a methodology to
compensate for the Tpe memory lag after HR changes (see Sec-
tion II-C), and use it in the derivation of the ECG estimate for
APDR slope dispersion for the case of unstable RR segments,

denoted by ̂Δα
ECGc

. In Section II-D, the 2-D ventricular tis-
sue model used to evaluate the extent to which ECG estimates
reflect the underlying restitution dispersion is described. Simu-
lated APDR dispersion from the 2-D model, denoted by ΔαSIM ,
and its corresponding estimate measured from the pseudo-ECG,
̂Δα

pECG
, are computed (see Fig. 1, right).

A. Population and ECG Delineation

Fifteen volunteers (11 males, 4 females) from 25 to 33 years
old, without any previous history of cardiovascular disease, have
undergone a head-up tilt test trial according to the following
protocol: 4 min in the supine position, 5 min in the standing
position tilted head-up to an angle of 70◦, and 4 min back to
the supine position. The protocol generates two step-like RR
changes with stabilized RR intervals after each of them. 12-
lead ECGs are recorded during the whole test at a sampling
frequency of 1000 Hz.

ECG delineation is performed using a wavelet-based delin-
eator [20]. In each subject, the lead with the highest SNR, esti-
mated as the maximum T -wave amplitude over the rms value of
the high-frequency noise (above 25 Hz) of the interval between
the ST segment to the end of the P-wave, is selected. In our
database, leads V2, V3, or V4 have always been the leads with
highest SNR. RR,QT , and Tpe intervals are computed from
the ECG delineation marks in the selected lead, after visually
examining and removing the erroneous delineation marks.
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Fig. 2. Representation of the Tpe interval in terms of APDs and delay of
activation times (ΔAT).

B. Quantification of Restitution Dispersion Using Stable RR
Segments of the Surface ECG

We propose a method to indirectly compute dispersion in
dynamic APDR slopes within the ventricle, by making only use
of the surface ECG (see Fig. 1, bottom-left).

Tpe interval reflects differences in the time for completion of
repolarization by different cells spanning the ventricular wall.
Therefore, and based on [8] and [11], the Tpe interval can be
expressed in terms of APDs as follows:

Tpe = APDlast − APDmin − ΔAT (1)

where APDmin corresponds to the cell with the minimum APD
among those which are currently repolarizing at the T -wave
peak instant (time instant when the maximum repolarization
gradient sum occurs) and APDlast is the APD of the last cell to
repolarize. ΔAT represents the activation time delay between
both cells with APDmin and APDlast , as shown in Fig. 2. Note
that in this work Δ is considered as a difference operator, which
is applied in this case to activation times at two spatial sites. This
ΔAT delay hardly changes with RR for RR intervals above 600
ms [19], [21]. Therefore, changes in the Tpe under variations of
the RR interval can be obtained as

∂Tpe

∂RR
=

∂APDlast

∂RR
− ∂APDmin

∂RR
(2)

where ∂ΔAT/∂RR has been neglected, under the premise that
RR intervals above 600 ms are considered.

If we restrict (2) to the dynamic protocol, where each value
of the APDR curve represents a steady-state APD value (see
Fig. 3), and the regions with APDmin and APDlast remain
fixed when varying RR, then

∂T dyn
pe

∂RR
=

∂APDdyn
last

∂RR
− ∂APDdyn

min

∂RR
(3)

where T dyn
pe and APDdyn refer to the steady values of Tpe and

APD for each RR interval. Hereinafter, the superindex “dyn”
refers to the dynamic protocol. In case of having only pairs of
steady-state values, [RR, T dyn

pe ], the derivatives in (3) may be
approximated by increments Δ

∂T dyn
pe

∂RR
≈

ΔT dyn
pe

ΔRR
(4)

Fig. 3. Dynamic restitution curves (APDR) for two regions corresponding to
APDm in (dashed line) and APDlast (solid line). Slopes αm in and αlast are
estimated for a change in the RR interval.

where ΔT dyn
pe and ΔRR represent the variations in Tpe and RR,

respectively, between two stable ECG segments at different RR
intervals.

If we let αlast and αmin denote the slopes of the dynamic
restitution curves at the regions corresponding to APDlast and
APDmin , respectively:

αi =
∂APDdyn

i

∂RR
where i = {last,min} (5)

the spatial difference Δα = (αlast − αmin) (see Fig. 3), which
measures dispersion of restitution slopes, can be estimated from
the ECG by introducing (5) into (3) and (4), resulting in

̂Δα
ECGs

=
ΔT dyn

pe

ΔRR
(6)

where the superindex “ECGs” indicates that quantification of
restitution dispersion is done by using stable ECG segments, as
required in the dynamic protocol, at two different RR intervals.
Δ at left-hand side of (6) refers to a difference of restitution
slopes occurring at two regions, while both Δ at right-hand side
refer to beat interval differences associated with two RR levels.

Note that in cases of, e.g., ventricular wedges, where Tpe in-
cludes only transmural heterogeneities, APDlast and APDmin
would correspond to APDs at the midmyocardium and epi-

cardium, respectively, and therefore, ̂Δα
ECGs

would represent
an estimation of transmural dispersion of restitution slopes.

C. Quantification of Restitution Dispersion Using Unstable RR
Segments of the Surface ECG

Stable RR segments, needed to measure the rate related in-
crement ΔT dyn

pe in (6), are difficult to get in the clinical practice.
In order to overcome this limitation, we propose a methodology
to compensate for the Tpe memory lag after RR changes.

The model shown in Fig. 4, previously proposed to quantify
QT rate adaptation [14], is used to characterize the Tpe depen-
dence on RR. The input xRR(n) and output yTp e

(n) denote
the RR and Tpe series of each recording after interpolation and
resampling to a sampling frequency of fs = 1 Hz.

Impulse response h = [h(1), . . . , h(N)]T includes informa-
tion about the memory of the system, that is, a characterization
of the influence of a history of previous RR intervals on each
Tpe measurement. Therefore, zRR(n) represents a surrogate of
xRR(n) with the memory effect of Tpe compensated for. The
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Fig. 4. Block diagram describing the [RR, Tpe ] relationship consisting of a
time invariant FIR filter (impulse response h) and a nonlinear function gk (., a)
described by the parameter vector a. v(n) accounts for the output error.

length N of vector h was set to 150 samples that correspond to
150 s, which widely exceeds the Tpe memory lag for the data
population used in this study. The function gk (.,a), dependent
on the parameter vector a = [a(0), a(1)]T , represents the rela-
tionship between the RR interval and the Tpe interval once the
memory effect has been compensated for (i.e. under stationary
conditions). Ten different biparametric regression models that
span from a linear to a hyperbolic relationship, as described
in [14], are considered for gk (.,a), and the one that best fits the
data of each subject is identified.

The estimated output ŷTp e
(n) is defined as

ŷTp e
(n) = gk (zRR(n),a) (7)

where, in vector notation, zRR , is the convolution between the
input vector xRR and the impulse response (zRR = xRR ∗ h).

The optimum values of the FIR filter response h, vector a,
and function gk are searched for, by minimizing the difference
between the estimated output ŷTp e

(n) (see (7)) and the Tpe

interval series yTp e
(n), for each subject independently using

the whole recording. The estimator used for the optimization is
a regularized least-square estimator

{h∗,a∗, k∗}= arg min
{h,a,k}

(

∥

∥yTp e
− ŷTp e

∥

∥

2 + β2 ‖Dh‖2
)

(8)
where D is a regularization matrix that penalizes the fact that
h deviates from having an exponential decay [16], and β is the
regularization parameter whose value is obtained by using the
“L-curve” criterion [22]. In the cost function, yTp e

and ŷTp e

are the signals expressed in vector notation. With the com-
puted value for β, the optimum values, h∗ and a∗ in (8), are
determined by using a “quasi-Newton” optimization technique
described in [23], subject to two constraints: the sum of the h
components is 1 (

∑N
i=1 h(i) = 1), to ensure normalized filter

gain, and all the components of h are nonnegative (h(i) ≥ 0),
to give a physiological plausible interpretation. Regarding k∗ in
(8), in order to account for the inter-subject variability in the
[RR, Tpe ] relationship, the regression function gk (.,a) is deter-
mined as the one that minimizes the mean square error for each
subject independently.

After h and gk (.,a) have been optimized, we can make use
of zRR(n) as a surrogate of the running RR series that would
generate a truly stationary period in the running repolarization
interval Tpe . Then, the i th pair [zRR(i), Tpe(i)] represents the
surrogate for the RR interval and the Tpe interval measured in
an stable ECG segment. Therefore, the estimate of restitution
dispersion derived in (6) can be replaced with the following

equation, obtained by differentiating (7) with respect to zRR

̂Δα
ECGc

=
∂Tpe

∂zRR

∣

∣

∣

∣

zR R = z̄R R

=
∂gk (zRR ,a)

∂zRR

∣

∣

∣

∣

zR R = z̄R R

. (9)

The above expression has the advantage of avoiding the need
for stationary ECG segments. The superindex “ECGc” indicates
that the quantification of restitution dispersion from the ECG
is done by compensating for the Tpe memory lag using the
model described in Fig. 4. This estimate is a robust alternative

to ̂Δα
ECGs

(see Fig. 1, bottom-left). In (9), the derivative is
evaluated at the mean zRR value, z̄RR , of the complete recording.

Additionally, Tpe rate dependence is characterized using the
model of Fig. 4. The time required for Tpe to complete 90%
of its rate adaptation, denoted by t90 , is computed by setting
a threshold of 0.1 to the cumulative sum of the filter impulse
response, c(n)

c(n) =
N

∑

i=n

h(i), leading to

t90 =
1
fs

arg maxn (c(n) > 0.1) . (10)

An analogous procedure is used to calculate t70 , t50 and t25
by replacing the threshold 0.1 in (10), with 0.3, 0.5, and 0.75,
respectively. The adaptation rate is quantified as r(n) = [1 −
c(n)] · 100, which represents the percentage of the total Tpe

adaptation reached at time instant n.

D. Computational Modeling and Simulation

Computational modeling and simulation is used in this study
to assess how the proposed estimates evaluated from the ECG,
̂Δα

ECGs
and ̂Δα

ECGc
, represent dispersion of the APDR slopes

at tissue level (see Fig. 1, right).
Propagation of the electrical activity in a left ventricular 2-D

tissue slice is simulated using the human ten Tusscher action
potential model [19], with numerical integration performed as
described in [24]. The ten Tusscher model [19] describes the
principal ionic currents through the cardiac cell membrane with
high degree of electrophysiological detail for the three types of
cells in the ventricular wall: endocardial, midmyocardial and
epicardial cells. The 2-D tissue slice used in this study is 7.5
cm long by 1 cm wide, representing the base to apex and the
endocardial to epicardial distances, respectively, as shown in
Fig. 5. Conductivity of the tissue along the fiber direction is set
to σL = 0.0013 mS with a membrane capacitance of 1 μF/cm2 ,
obtaining a maximum conduction velocity of 71 cm/s. Perpen-
dicular to the fiber direction, the conductivity is 60% lower,
σT = 0.00052 mS, resulting in a conduction velocity of 42
cm/s, which is comparable to the average velocity of 44 cm/s
recorded in vivo and across the arterially perfused transmural
wedge preparation [25]. A transmural linear variation of the
helix fiber angle from +60◦ at the endocardium to –60◦ at the
epicardium is assumed based on [26].

As illustrated in Fig. 5, two areas in the subendocardium
are stimulated simultaneously: 1 cm at the top of the base
and 0.5 cm at the bottom of the apex, based on the activation
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Fig. 5. Two-dimensional tissue slice used in the simulation, with indication of
the default cell type distribution across the ventricular wall, and sensor positions
used for pseudo-ECG computation.

sequence reported for an isolated human heart in [27]. Trans-
mural heterogeneities are included in the 2-D tissue preparation
by using two cell types: midmyocardial and epicardial cells. In
order to match the complete activation sequence of [27] and to
account for the influence of Purkinje fibers, endocardial cells
in the simulated preparation are replaced with midmyocardial
cells, known to have longer APDs. This is justified by the fact
that Purkinje cells have longer APDs than midmyocardial cells
and much longer than endocardial cells. The coupling between
Purkinje and endocardium makes endocardial cells enlarge their
action potentials [25], leading to APDs values similar to those
simulated in our preparation. The APD in the different regions
across the 2-D tissue slice are in agreement with the range re-
ported in [28], where left ventricular wedge preparations from
nonfailing human hearts were optically mapped.

The distribution of cell types in the simulated tissue are 80%
of midmyocardial cells and 20% of epicardial cells [29]. To
represent possible heterogeneities in human hearts and measure
a range of plausible restitution dispersion values, the effect of
varying the percentages of cell types within the ventricular wall
is evaluated by considering additional distributions of 65%/35%
and 90%/10% of midmyocardial/epicardial cells. For each cell
type distribution, APDR curves are computed by pacing the
2-D tissue preparation at different RR intervals, following the
so-called dynamic restitution protocol [4]. Dispersion of APDR
slopes at tissue level is denoted by ΔαSIM and is computed from
the results of the 2-D simulation as follows:

ΔαSIM =
∂APDdyn

last

∂RR
− ∂APDdyn

min

∂RR
(11)

Fig. 6. Isochronic representation (in milliseconds) of ventricular activation:
(a) experiment results reproduced from [27]; (b) 2-D tissue simulations when
pacing at RR intervals of 450, 1000, and 1450 ms.

where APDdyn
min and APDdyn

last are defined as described in Sec-
tion II-B. Estimations of ΔαSIM are computed from pseudo-
ECGs using (6). The pseudo-ECGs, each one measuring the
extracellular potential at one of the sensor positions shown in
Fig. 5 (Fig. 1, bottom-right), are computed as in [30]. The cor-
responding estimations are:

̂Δα
pECG

=
∂T dyn

pe

∂RR
(12)

where T dyn
pe represents the Tpe interval measured from one of

the pseudo-ECGs using the dynamic protocol.

III. RESULTS

This section presents the different comparison tasks shown in
Fig. 1. In Section III-A, the 2-D ventricular model is evaluated,
with APDR estimates measured from pseudo-ECGs checked to
be within the physiological range measured from ECG record-
ings (see task 1 in Fig. 1). In Section III-B, the capability of the

proposed estimate measured from the pseudo-ECG (̂Δα
pECG

)
to quantify APDR dispersion at tissue level is assessed (see
task 2 in Fig. 1). In Section III-C, ECG estimates evaluated in
tilt test recordings and APDR dispersion ΔαSIM are compared
(see task 3 in Fig. 1). Additionally, Section III-D provides a
characterization of Tpe rate adaptation.

A. Evaluation of the 2-D Simulations: Comparison Between
Pseudo-ECGs and Clinical ECGs

The human ventricular model used in this study has been
shown to reproduce experimentally observed data on APD resti-
tution in single cells from the endo, epi, and midmyocardial
regions of the ventricle [31]. Also, conduction velocity restitu-
tion measured in a 1-D cable of cells has been validated using
experimental data [31].

The 2-D tissue preparation built in this study yields an acti-
vation sequence that is in good agreement with the experimen-
tal results reported in [27], as illustrated in Fig. 6. Simulated
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Fig. 7. (Top panel) Simulated sequence of isochronic voltage representation
during steady-state pacing at 1000 ms. The position of the two cells correspond-
ing to APDm in for the peak of the T -wave and APDlast for the end of the
T -wave, are shown with a gray point. (Bottom panel) Derived pseudo-ECG
from pecg3.

activation sequences are shown for three different pacing RR
intervals, 450, 1000, and 1450 ms, leading to the observation
that activation times have similar patterns in the three cases.
Fig. 7 shows a simulated sequence of isochronic voltage repre-
sentation during steady-state pacing at 1000 ms, with indication
of the timing corresponding to the T -wave peak and T -wave
end in the pseudo-ECG from pecg3, and of the regions where
APDmin and APDlast are computed. Since our 2-D prepara-
tion includes only transmural heterogeneities, the time instant
corresponding to the peak of the T -wave coincides with the
time at which complete repolarization of the epicardium occurs,
whereas T -wave end coincides with the total repolarization of
the tissue. The effect of varying the cell type distribution across
the ventricular wall on the isochronic voltage representation at
the T -wave peak instant is shown in Fig. 8, for pacing RR
intervals of 450, 1000, and 1450 ms. In all isochronic voltage
representations, for different pacing rates and cell type distribu-
tions, the epicardium is completely repolarized at the T -wave
peak instant.

Note that in the simulations shown in Fig. 8, APDmin remains
fixed at different RR levels as needed to apply (3).

An indirect validation of the simulated restitution proper-
ties in the 2-D tissue is performed by first comparing steady-
state T dyn

pe values computed at different RR intervals in tilt
test ECGs and in simulated pseudo-ECGs. Fig. 9 shows three
regions corresponding to simulations using cell type distribu-
tions of 65%/35%, 80%/20% and 90%/10%. Each region repre-
sents the range of steady-state [RR, T dyn

pe ] curves computed for
pseudo-ECGs at eight different sensor positions. The steady-
state [zRR , Tpe ] curves obtained from the tilt test recordings
are superimposed in the same graphic. Note that when the
percentages of epi- and midmyocardial cells are more similar
(65%/35%), the difference between APDmin and APDlast is
higher and, therefore, the Tpe interval is longer than the ones for
80%/20% and 90%/10% cell type distributions. Simulated val-
ues of Tpe at different RR intervals for 65%/35% and 80%/20%
(default) cell type distributions are found to be within the range

Fig. 8. Isochronic voltage representation at T -wave peak time instant using
three different cell type distributions (mid/epi) and pacing RR intervals of 450,
1000, and 1450 ms.

Fig. 9. Steady-state T dyn
pe as a function of RR from tilt test recordings (in

squares) and from simulations. For the simulations, the regions correspond
to cell type distributions of 65%/35%, 80%/20%, and 90%/10%, and each
region represents the influence of computing steady-state [RR, T dyn

pe ] curves
for pseudo-ECGs at different sensor positions.

of values measured from the tilt test recordings. However, sim-
ulated Tpe values for the 90%/10% percentage are outside the
range of the tilt test recordings.

After confirming the good agreement in the repolarization
[RR, T dyn

pe ] values between pseudo-ECGs and clinical ECGs,
the restitution dispersion estimates are also compared. Fig. 10
shows a comparison of pseudo-ECG-based estimates of APDR

dispersion, ̂Δα
pECG

, in (12), at sensor positions pecg3 and

pecg5, and ECG-based estimates, ̂Δα
ECGc

, in (9), obtained
from the tilt test recordings. Both the average difference be-

tween ̂Δα
pECG

(computed in pecg3 and pecg5) and ̂Δα
ECGc

,
and the average percentage of the difference are shown in
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Fig. 10. APDR slope dispersion estimates from the tilt test recordings

(̂Δα
ECG c

) and from the pseudo-ECGs (̂Δα
pECG

) derived from two sen-
sor positions (pecg3 and pecg5), and three cell type distributions (mid/epi:
65%/35%, 80%/20%, and 90%/10%).

TABLE I
AVERAGE VALUE ACROSS SUBJECTS OF THE DIFFERENCE BETWEEN THE

ESTIMATES MEASURED FROM THE SIMULATED PSEUDO-ECGS IN PECG3 AND

PECG5 (̂Δα
pECG

), AND FROM THE TILT TEST RECORDINGS ̂Δα
ECG c

DIFFERENT PERCENTAGES OF CELL TYPES HAVE BEEN USED TO DERIVE THE

PSEUDO-ECGS

Fig. 11. APDR slope dispersion, ΔαSIM , for the cell type distribution
80%/20%, and the proposed estimate measured from the pseudo-ECG in pecg3,
pecg4, and pecg5.

Table I. Differences are below 20% in mean, which are within
physiological variability limits.

B. Assessment of APDR Dispersion Quantified From the
Pseudo-ECG

APDR slope dispersion at tissue level, denoted by ΔαSIM ,
in (11), has been computed for each of the three cell type dis-

tributions. ΔαSIM is used to assess whether ̂Δα
pECG

, com-
puted from pseudo-ECGs, is a good estimate of APDR slope
dispersion. Fig. 11 shows the comparison between ΔαSIM and
̂Δα

pECG
computed at sensor positions pecg3, pecg4, and pecg5

for the default cell type distribution 80%/20%. The error be-

Fig. 12. APDR slope dispersion, ΔαSIM , computed as a function of RR for

three cell type distributions. For each tilt test recording, ̂Δα
ECG s

values are
shown in circles at the mean of the corresponding RR interval range.

Fig. 13. APDR dispersion, ΔαSIM , for different cell type distributions as

a function of RR. For each tilt test recording, ̂Δα
ECG c

values are shown
in circles at the mean of the surrogate RR interval range together with the
derivative of the optimal gk (., a) function over the corresponding RR range.

tween ΔαSIM and ̂Δα
pECG

from pecg3 and pecg5 relative to
the slope range is found to be 4% in average, while from pecg4,
is 6%.

C. Agreement Between Simulated APDR Dispersion and Esti-
mates From Clinical ECGs

Three stationary ECG segments during the tilt test protocol,
corresponding to the end of each stage at supine, standing and

back supine positions, are used to compute ̂Δα
ECGs

. Estimates
computed at the mean of the corresponding RR range, are shown
in Fig. 12, where they are compared to values of ΔαSIM , repre-
senting simulated APDR slope dispersion at tissue level. With-

out assuming stationary ECG segments, ̂Δα
ECGs

is replaced

with ̂Δα
ECGc

, in which the Tpe memory lag is compensated

for. A comparison between ̂Δα
ECGc

(in circles) and ΔαSIM is
shown in Fig. 13. The dashed lines depicted in Fig. 13 represent
the derivatives of the optimal gk (.,a) function in the zRR range
for each recording. These derivatives evaluated in the mean zRR

value are our estimates ̂Δα
ECGc

. According to the results shown
in Figs. 12 and 13, there is a good agreement between simulated



MINCHOLÉ et al.: QUANTIFICATION OF RESTITUTION DISPERSION FROM DYNAMIC CHANGES 1179

TABLE II
AVERAGE VALUE ACROSS SUBJECTS OF THE DIFFERENCES BETWEEN

SIMULATED DISPERSION OF RESTITUTION SLOPES ΔαSIM AT TISSUE LEVEL

AND THEIR ECG ESTIMATES ̂Δα
ECG s

AND ̂Δα
ECG c

Fig. 14. Rate adaptation of the Tpe and QT interval in a tilt test recording
showing two abrupt RR changes.

APDR slope dispersion and the ECG estimates ̂Δα
ECGs

and
̂Δα

ECGc
, particulary for ̂Δα

ECGc
, in which the effects of Tpe

rate adaptation are compensated for.
Quantification of the results shown in Figs. 12 and 13 is

presented in Table II, where average values of the individual
differences between simulated ΔαSIM and the two ECG esti-
mates, ̂Δα

ECGs
and ̂Δα

ECGc
, are computed. Expressions of

those differences as percentages are also included, being 30%

in average for ̂Δα
ECGs

, and 20% for ̂Δα
ECGc

.
As expected, results for the cell type distribution 90%/10%

show higher differences due to the fact that Tpe values from the
pseudo-ECG are not within the range of our clinical data.

D. Tpe Rate Dependence

Tpe interval is found to have a very fast adaptation to HR
changes as compared to the QT interval. Fig. 14 shows an
example of a tilt test recording with two sudden RR changes,
to which the Tpe interval adapts in a shorter time than the QT
interval.

In Fig. 15, left panel, the median, first and third quartile of
the Tpe adaptation rate, r(n) (see Section II-C), across the 15
recordings are shown and compared to those of the QT interval.
In Fig. 15, right panel, an example of the rate adaptation profile
h(n) and its cumulative sum c(n) are shown for Tpe and QT
intervals.

The optimal regression functions gk (.,a) that characterize the
[zRR , Tpe ] relationship are found to be linear, [gk (zRR(n),a)
= a0 + a1 · zRR(n)], in 33% of the recordings, hyperbolic,

Fig. 15. (Left panel) Median, first and third quartile of the adaptation rates,
r(n), of Tpe and QT intervals. (Right panel) Example of the adaptation profile,
h(n), and its cumulative sum, c(n), for the Tpe and QT intervals of a subject
undergoing a tilt test protocol.

TABLE III
MEAN ± STD ACROSS SUBJECTS OF THE TIME FOR 90% (t90 ), 70% (t70 ), 50%

(t50 ) AND 25% (t25 ) OF THE COMPLETE RATE ADAPTATION

[gk (zRR(n),a) = a0 + a1
zR R

(n)], in 20%, and hyperbolic tan-
gent, [gk (zRR(n),a)=a0 + a1 · tanh(zRR(n))], in 20%.

Table III shows the mean across subjects of the time for 90%
(t90), 70% (t70), 50% (t50), and 25% (t25) of the whole Tpe rate
adaptation. Results are compared to those corresponding to the
QT interval.

IV. DISCUSSION

APDR dispersion is considered as an important risk marker in
the development of ventricular arrhythmias [7]–[9] and is mea-
sured at tissue level. In this study, APDR dispersion, measured
at tissue level, has been quantified from the surface ECG, using
a novel methodology. To our best knowledge, this is the first
time that APDR dispersion is quantified noninvasively by mea-
suring changes in the steady-state Tpe with respect to changes in
RR interval. First, a 2-D tissue ventricular model has been built
and indirectly validated, and the proposed estimate measured
at pseudo-ECGs is shown to properly quantify APDR disper-
sion at tissue level. Then, estimates measured at the acquired
ECG recordings are found to be in agreement with the simu-
lated APDR dispersion. Additionally, results from the Tpe rate
adaptation study show that Tpe adapts faster to changes in HR
than the QT interval.

A. Evaluation of the 2-D Ventricular Model

We have evaluated the 2-D ventricular tissue model used in
this study. First, the underlying model of the 2-D simulation
has been reported to reproduce experimentally observed data
on APD restitution in single cells from epi, endo, and midmy-
ocardial regions correctly [19], [31]. Characteristics of the 2-D
tissue model built in this work, such as dimensions, conduction
velocities in the fiber direction [19], and perpendicular to it [25],
transmural variation of the fiber angle [26], and heterogeneity
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of cell types across the ventricular wall [29], are in agreement
with experimental studies. The simulated activation sequence
is layered and agrees with the one of an isolated human heart
section reported in [27].

Experimental studies in canine wedge preparation [32] show
that in case of having transmural heterogeneities only, the time
instant of the T -wave peak corresponds to the complete repo-
larization of the epicardium. This agrees with the results of our
2-D simulations, which include only transmural heterogeneities,
where the peak of the T -wave in pseudo-ECGs coincides with
the total repolarization of the epicardium in the central part of
the tissue (see the isochronic voltage representation in Fig. 7).
This has been observed for pacing at different RR intervals and
also for different cell type distributions (see Fig. 8).

The APD in the different cell regions of the 2-D tissue slice
are within the range of APDs of the subendocardium, midmy-
ocardium, and subepicardium reported in [28].

Steady-state T dyn
pe at different RR levels obtained from simu-

lated pseudo-ECGs are in agreement with those measured from
ECG control recordings (see Fig. 9). Restitution properties have
also been evaluated by comparing the simulated estimations

of APDR slope dispersion ̂Δα
pECG

, derived from the pseudo-
ECGs, with the values obtained from the tilt test recordings.
Results in Table I and Fig. 10 show that simulated values in
pecg3 and pecg5 are within the range measured in ECG record-
ings. Sensor positions pecg3 and pecg5, located in the middle

part of the tissue, are used to derive ̂Δα
pECG

due to their simi-
larity to the precordial leads V2, V3, and V4, used to compute
the estimates in the tilt test recordings.

B. Assessment of APDR Dispersion Quantified From the
Pseudo-ECG

As Fig. 11 shows, ̂Δα
pECG

, measured from the pseudo-ECG
provides a quantification of APDR slope dispersion ΔαSIM

at tissue level, being the mean error relative to the slope range
below 6%. This result shows that APDR dispersion at tissue level
is properly quantified using the proposed noninvasive estimates.

C. Agreement Between Simulated APDR Dispersion and Esti-
mates From Clinical ECG Data

Two APDR slope dispersion estimates from the surface ECG
were proposed: one computed from stationary ECG segments,
̂Δα

ECGs
; and the other compensating for the Tpe hysteresis on

RR, ̂Δα
ECGc

.

In some cases, the estimates ̂Δα
ECGs

differ considerable
from the ΔαSIM values. Reviewing RR trends from those
recordings, non stable RR periods are observed. Averaged dif-

ferences between ̂Δα
ECGs

and ΔαSIM , are of 30% of the value
in mean. If we do not assume stable ECG segments and com-

pensate for the Tpe memory effect using ̂Δα
ECGc

, results im-

prove considerably. Averaged differences between ̂Δα
ECGc

and
ΔαSIM , which also account for inter subject variability, are of
about 20%. If we take into account the individual differences, the

averaged difference between ΔαSIM and ̂Δα
ECGc

is –0.0052,

half of the one between ΔαSIM and ̂Δα
ECGs

(–0.0117). Be-
sides the good agreement between ΔαSIM and the correspond-
ing ECG estimates, a similar behaviour with respect to the RR
values is observed. Also, our results are in accordance with the
slope values reported in [18] for healthy subjects.

The estimate ̂Δα
ECGc

shows promising results to extend this
method to evaluate arrhythmic pathologies related to restitution
dispersion.

D. Tpe Rate Adaptation

There are clinical studies which suggest Tpe to be practically
independent of HR [17], while other studies claim that it is
markedly rate dependent [18]. An argument in favor of Tpe to
be rate dependent is that Tpe interval accounts for differences
of APDs in different cell regions and APDs are known to be
rate related [15]. In this study, Tpe rate adaptation has been
characterized, showing that it has a short memory lag.

Tpe takes about 25 s in mean to complete 90% of its rate
adaptation and only 11 s to complete 70% of the whole adap-
tation. This is in contrast to QT rate adaptation, which has a
pronounced memory effect, with about 74 s to complete 90% of
its rate adaptation. However, this t90 value of 74 s in mean for
the QT adaptation is lower than the t90 reported in [33], which
is around 120 s. This may be due, among other reasons, to the
younger age of the control subjects of the tilt test database used
in this study. While Tpe dependence on a previous history of
RR intervals presents a fast decay in one phase, in the case of
the QT interval, the decay is performed in two phases, a fast one
and a slow one, in concordance with observations from previous
studies [15].

APD in ventricular myocytes (epi, mid, and endocardial cells)
are known to have a slow adaptation [15], which is performed in
two phases: a fast initial one and a subsequent slow one. In [34],
APD has been shown to require around 2 min in midmyocar-
dial cells, and 3 min in epicardial cells, to reach a new steady
state after a step HR change. However, while the fast phases of
APD rate adaptation are different in both cell types, with mid-
myocardial cells presenting faster decay than epicardial cells,
they do have similar slow phases. Therefore, measures such as
Tpe , which accounts for contributions of different cell types,
would not have slow phase (it has been compensated) and the
fast phase would include the maximum difference among the
fast phases of the different cells in the tissue.

V. LIMITATIONS OF THE STUDY

The 2-D simulation does not incorporate a 3-D geometry
of a left ventricle wall to compute APDR dispersion. Also,
heterogeneities other than transmural ones, e.g., apex to base,
were not included, which could shed light on the understanding
of the Tpe . Those considerations could have led to different sites
associated with APDmin and APDlast , as described after (1).
However, they would not imply any change in our methodology.
Also, it is worth mentioning that the dispersion quantified in our
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study is that accounted for by the Tpe interval, which does not
necessarily correspond to the maximum dispersion in the tissue.

Healthy subjects have been used to evaluate the proposed
methodology to noninvasively quantify restitution dispersion.
The next step will be to apply the methodology to estimate
restitution dispersion in patients who experienced VT or VF
and compare it with control subjects.

Tilt test recordings were obtained from subjects aged 25 to
33 years old with no previous history of cardiovascular disease.
However, the data used for the development of the human ven-
tricular action potential model used in this study are not always
specific of young healthy hearts.

When characterizing Tpe rate adaptation, differences in HR
accelerations and decelerations have not been accounted for. In
the case of the QT interval or the APD, rate adaptation has
been shown to be longer after HR decelerations than after HR
accelerations [15], [34].

VI. CONCLUSION

APDR dispersion has been suggested to play an important role
in the development of ventricular arrhythmias. In this study, a
method to estimate dispersion of APDR slope curves by making
only use of the surface ECG was developed. The proposed ECG-
based estimate was evaluated on tilt test recordings of healthy
subjects, and showed very good agreement with dispersion of
APDR slopes at tissue level, computed using an electrophysio-
logically detailed human ventricular model. The proposed esti-
mate accounts for the Tpe memory lag after HR changes, which
was shown to be faster than that of the QT interval.
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