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The time delay estimation problem associated with an ensemble of misaligned, repetitive signals is 
revisited. Each observed signal is assumed to be composed of an unknown, deterministic signal corrupted 
by Gaussian, white noise. This paper shows that maximum likelihood (ML) time delay estimation can 
be viewed as the maximization of an eigenvalue ratio, where the eigenvalues are obtained from the 
ensemble correlation matrix. A suboptimal, one-step time delay estimate is proposed for initialization 
of the ML estimator, based on one of the eigenvectors of the inter-signal correlation matrix. With 
this approach, the ML estimates can be determined without the need for an intermediate estimate of 
the underlying, unknown signal. Based on respiratory flow signals, simulations show that the variance 
of the time delay estimation error for the eigenvalue-based method is almost the same as that of 
the ML estimator. Initializing the maximization with the one-step estimates, rather than using the ML 
estimator alone, the computation time is reduced by a factor of 5M when using brute force maximization 
(M denoting the number of signals in the ensemble), and a factor of about 1.5 when using particle swarm 
maximization. It is concluded that eigenanalysis of the ensemble correlation matrix not only provides 
valuable insight on how signal energy, jitter, and noise influence the estimation process, but it also leads 
to a one-step estimator which can make the way for a substantial reduction in computation time.

© 2018 Elsevier Inc. All rights reserved.
1. Introduction

Time delay estimation represents a classical problem in biomed-
ical signal processing, relevant for many applications such as high-
resolution ECG, event-related brain potentials, conduction estima-
tion in electromyography, and respiratory flow signals. In these 
applications, ensemble averaging, or some of its many variants [2], 
is applied to achieve noise reduction. To avoid distortion in the 
averaging process, prior alignment of the ensemble with similar-
shaped signals is required. Another application is to sort spikes 
originating from the extracellular activity of different neurons; 

* Corresponding author.
E-mail addresses: laguna@unizar.es (P. Laguna), a.gardemartinez@utwente.nl

(A. Garde), beatriz.giraldo@upc.edu (B.F. Giraldo), olivier.meste@unice.fr (O. Meste), 
raimon.jane@upc.edu (R. Jané), leif.sornmo@bme.lth.se (L. Sörnmo).
https://doi.org/10.1016/j.dsp.2018.01.007
1051-2004/© 2018 Elsevier Inc. All rights reserved.
time alignment is then an important preprocessing step which 
ensures that spikes with similar shape are assigned to the same 
cluster [3,4]. Applications of high-resolution time alignment in-
clude the estimation of muscle fiber conduction velocity [5], the 
analysis of PR interval variability in the ECG observed during ex-
ercise and recovery [6], and the analysis of QT interval adaptation 
associated with changes in heart rate [7].

Despite the long-standing interest in time alignment, very few 
methods have been proposed which are inherently designed to 
jointly align the delayed signals of an ensemble. Rather, meth-
ods for pairwise time alignment of signals are employed as the 
basic operation, performed either in the time [8,3,9,10], fre-
quency [11–14], or scale domain [15]. The classical method for 
joint alignment of an ensemble is the Woody method [16], where 
the time delays are estimated by computing the crosscorrelation 
between each delayed signal and a reference signal (“the matched 
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filter”), and finding the location of the maximum. The initial ref-
erence signal is taken as the ensemble average of the unaligned 
signals, then updated iteratively as new time delay estimates be-
come available; this iterative procedure is terminated when the es-
timates no longer change. Although often used, the Woody method 
is empirical in nature as it does not ensure optimality in any sense.

Several papers have addressed the limitations of the Woody 
method by expanding it to handle colored noise [17], multicompo-
nent signals [18,9,19], and nonlinear time scales [20,21], whereas 
the problem of joint optimal time delay estimation remains largely 
unaddressed. However, Cabasson and Meste [22] derived the joint 
maximum likelihood (ML) estimator of the time delays, assuming 
that each observed signal is composed of an unknown, determinis-
tic signal with unknown time delay and additive, Gaussian, white 
noise. Based on the structure of the log-likelihood function, the au-
thors proposed an iterative procedure being identical to the Woody 
method, except that the intermediate ensemble average does not 
involve the signal subject to time delay estimation. Simulation re-
sults showed that, for small ensemble sizes (< 25 signals), the 
resulting time delay estimates exhibited lower error variance than 
did those of the Woody method, whereas the error variances were 
virtually the same for larger sizes. However, the method in [22]
does not guarantee optimality for the given model assumptions as 
the log-likelihood function is not subject to global maximization 
with respect to the time delays. Later, in [23], it was considered 
the joint time delay ML estimation for cases with colored time de-
lay distribution, deriving expressions that reduce to those in [22]
when no correlation exits.

This paper introduces a novel approach to time alignment in 
which the eigenvalues of the intra-signal sample correlation ma-
trix of an ensemble with delayed signals are explored. The method 
is based on the observation that a misaligned ensemble is associ-
ated with eigenvalues which depend on the misalignment variance. 
The ratio of the largest eigenvalue and the sum of the remaining 
eigenvalues is maximized when the ensemble is optimally aligned, 
and therefore the maximization of this ratio is proposed as a time 
delay estimator. In contrast to the iterative solution of the ML es-
timator [22], the eigenvalue-based estimator operates without the 
need for an intermediate estimate of the deterministic signal. It is 
shown that the ML estimator can be implemented by maximiz-
ing the first eigenvalue of this matrix, yielding results identical 
to those of the eigenvalue ratio estimator. The eigenvalue-based 
approach paves the way for a fast one-step estimator based on 
the second eigenvector of the inter-signal correlation matrix, well-
suited for initializing the maximization required in the ML or the 
eigenvalue-based estimators. By pursuing eigenanalysis of the en-
semble, new insight is provided on how signal energy, jitter, and 
noise influence the estimation process.

The present paper is organized as follows. Section 2 presents 
the basic idea of time alignment, provides an interpretation of 
the alignment criterion, and describes the maximization procedure. 
Section 3 details the simulation setup considered for performance 
evaluation. Section 4 presents the data used to test the method on 
a real scenario, followed by sections with results and discussion.

2. Methods

2.1. Signal model and correlation matrix formulation

In time alignment of repetitive biomedical signals, each one of 
the M observed signal xi(n) of the ensemble is often modeled by 
[1,2]

xi(n) = s(n − θi) + vi(n), n = 0, . . . , N − 1; i = 1, . . . , M, (1)

where s(n) is an unknown, deterministic signal with energy Es , 
θi is a random, zero-mean, symmetrically-distributed, integer-
valued time delay with variance σ 2
θ , and vi(n) is zero-mean, Gaus-

sian, white noise with variance σ 2
v ; θi and vi(n) are assumed to 

be uncorrelated. The relevance of these assumptions for biomedical 
signals is discussed in Section 6. The compact support subinterval 
of s(n − θi), n = no, . . . , ne , is assumed to be contained in the in-
terval [0, N − 1]:
s(n − θi) �= 0,n ∈ [0 + �max, N − �max], (2)

for θi under consideration. The margin �max is introduced to guar-
antee compact support in [0, N − 1] also after time alignment. The 
signal ensemble is represented by the column matrix

X = [
x1 · · · xM

]
, (3)

where the i-th column contains the samples xi(n),

xi =
⎡
⎢⎣

xi(0)
...

xi(N − 1)

⎤
⎥⎦ . (4)

The time delays of the ensemble are contained in the vector θ =[
θ1 · · · θM

]T .
In the present study, the time delay estimation problem is stud-

ied in terms of the correlation matrix Rx . We will first show how 
the eigenvalues are related to the ML time delay estimator and the 
delay statistics. Then, guided by the results, we propose an effi-
cient implementation of the ML estimator, θ̌ML, and an alternative 
estimator, θ̂ER, based on an eigenvalue ratio (ER), together with a 
one-step (OS) estimator, θ̂OS, used for initialization of θ̌ML and θ̂ER.

We start by observing that for perfectly aligned signals, i.e., 
xi(n) = s(n) + vi(n), the N × N intra-signal correlation matrix is 
given by

Rx � E
[

xi xT
i

]
= ssT + σ 2

v I, (5)

where s = [
s(0) · · · s(N − 1)

]T is easily shown to be propor-
tional to the first eigenvector of Rx . The eigenvalues are given by

λi =
{

Es + σ 2
v , i = 1;

σ 2
v , i = 2, . . . , N,

(6)

where Es = sT s is the signal energy. The eigenvector ψ1 is propor-
tional to s, i.e., ψ1 = 1/

√
Ess, whereas the remaining eigenvectors 

are chosen arbitrarily as long as they are orthogonal to ψ1.
An estimate of Rx is obtained by

R̂x = 1

M
XXT . (7)

When the ensemble is misaligned with small time delays θi , 
an approximation of xi(t) can be obtained by making use of the 
continuous-time counterpart to the model in (1),

xi(t) = s(t − θi) + vi(t). (8)

For small θi , the observed signal can be approximated by

xi(t) ≈ s(t) − θi s
′(t) + 1

2
θ2

i s′′(t) + vi(t), (9)

where s′(t) and s′′(t) denote the first and second derivative of 
s(t), respectively. A second-order approximation of xi(t) is consid-
ered since the first-order terms will cancel when computing the 
expectations in Rx , leaving only the second-order terms in the ap-
proximation of Rx . For the second-order approximation of Rx to be 
complete, the terms resulting from the product of s(t) with the 
second-order terms in xi(t) in (9) are also required, see below.
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The intra-signal correlation matrix of the sampled counterpart 
of xi(t) in (9) can be expressed as

Rx ≈
(

ssT + σ 2
θ

2
(ss′′T + s′′sT )

)
+ σ 2

θ s′s′T + σ 2
v I, (10)

where s′ and s′′ are defined from s′(n) and s′′(n), respectively, in 
the same way as s is defined from s(n). It can be shown that the 
eigenvalues of Rx are (see Appendix A)

λi ≈

⎧⎪⎨
⎪⎩

Es − σ 2
θ Es′ + σ 2

v , i = 1;
σ 2

θ Es′ + σ 2
v , i = 2;

σ 2
v , i = 3, . . . , N,

(11)

where Es′ = s′T s′ . Then, recalling that σθ is the variance of the 
time delay, it is evident from (11) that maximization of λ1 with 
respect to θ is equivalent to minimization of σ 2

θ , thus reducing 
misalignment.

The eigenvectors ψ1 and ψ2 are approximately proportional to 
(see Appendix A)

ψ1 ∝ s + σ 2
θ

2
s′′,

ψ2 ∝ s′. (12)

For small θi , and thus a small σ 2
θ , ψ1 is approximately proportional 

to s. The remaining eigenvectors can be chosen arbitrarily as long 
as they are orthogonal to ψ1 and ψ2.

With this formulation, Rx is characterized in terms of σθ . 
Moreover, since s(n − θi) is always contained in [0, N − 1], Es =∑N−1

n=0 s2
i (n − θi) is independent of θi and

tr{Rx} =
N−1∑
n=0

E[x2
i (n)] =

N−1∑
n=0

(E[s2
i (n − θi)] + E[v2

i (n)])

= Es + Nσ 2
v (13)

is invariant to θi , emphasizing that λi in (11) are approximate as 
their sum does not match the trace. Note also that λi in (6) are 
exact, since no approximation was used to derive them.

2.2. Maximum likelihood estimation

This subsection shows that maximization of the most signif-
icant eigenvalue of the inter-signal sample correlation matrix is 
approximately the same as the well-known ML estimator of θ [22]. 
This insight is essential for the development of a related estimator 
in Section 2.3. The ML estimator [22] is defined by

θ̂ML = arg max
θ

�	(θ), (14)

where the log-likelihood function �	(θ) equals (see Appendix B)

�	(θ) =
∑

n

M∑
i=1

M∑
k>i

xk(n + θk)xi(n + θi). (15)

Note that θ in (14)–(15) denotes an optimization variable, not the 
delay parameter itself. Detailed analysis of this expression, together 
with the expression which defines the inter-signal sample correla-
tion estimator [25], shows that �	(θ) is proportional to the sum 
of all elements of the upper triangular part of the M × M inter-
signal sample correlation matrix.

R̂•
x = 1

XT X. (16)

N

Departing from this observation and from the second-order ap-
proximation of xi(t) in (9) we will show that maximization of 
the most significant eigenvalue of R̂•

x is approximately the same 
as θ̂ML. When sampling xi(t) and compiling all the observed sam-
ples at time n in a vector, the M observations are compactly mod-
eled by

x(n) ≈ s(n)1 − s′(n)θ + 1

2
s′′(n)θ2 + v(n), (17)

where

x(n) =
⎡
⎢⎣

x1(n)
...

xM(n)

⎤
⎥⎦ , (18)

v(n) defined analogously, θ2 = θ 
 θ = [
θ2

1 · · · θ2
M

]T
, and 1 is 

the all-one M × 1 vector. The related correlation matrix, deter-
mined by noting that the expectations are evaluated over “n” 
rather than over “i”, is given by

R•
x = E

[
x(n)xT (n)

]
≈ 1

N

(
Es11T − Es′

2
(1θ2T + θ21T )

)
+ Es′

N
θθ T + σ 2

v I, (19)

where use is made of the fact that E[1θ T ] = 0M,M and E[θ2θ T ] =
0M,M; 0M,M denotes the M × M all-zero matrix. Use is also made 
of E[s2(n)] = ∑N−1

n=0 s2(n)/N = Es/N , and similarly E[(s′(n))2] =
Es′/N , E[s(n)s′′(n)] = Ess′′/N = −Es′/N and E[s(n)s′(n)] =
E[s′′(n)s′(n)] = 0. Fourth order terms are discarded as already done 
before. The eigenvalues of R•

x are given by (see Appendix A)

λ•
i ≈

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Es M
N − σ 2

θ Es′ M
N + σ 2

v , i = 1;
σ 2

θ Es′ M
N + σ 2

v , i = 2;
σ 2

v , i = 3, . . . , M.

(20)

The eigenvectors ψ•
1 and ψ•

2 are approximately proportional to 
(see Appendix A)

ψ•
1 ∝ 1 − Es′

2Es
θ2,

ψ•
2 ∝ θ . (21)

Since the approximations in (9) imply that θi << 1, and, conse-
quently, θ2

i << 1, the eigenvector approximations in (21) can be 
further approximated by ψ•

1 ≈ 1/
√

M and ψ•
2 ≈ βθ , where β is a 

proportionality factor.
Making use of the eigenvector equation, R•

xψ
•
i = λ•

i ψ
•
i , particu-

larized for i = 1, pre-multiplying both sides by ψ•T
1 and using the 

eigenvector approximation, we can write

1T R•
x1 ≈ λ•

1M, (22)

which leads to that λ•
1 M is approximately equal to the sum of all 

elements in R•
x . Making use of the symmetry of R̂•

x , (22) becomes

1T R̂•
x1 = 2�	(0)

N
+ tr{R̂•

x} ≈ λ•
1M, (23)

where 0 is the all-zero M × 1 vector. Analogous to earlier reason-
ing, tr{R̂•

x} = Es M/N + Mσ 2
v is invariant to θ . Therefore, correcting 

the misaligned ensemble by a variable delay θ , as in (14), and 
maximizing �	(θ) with respect to θ , to obtain θ̂ML, is approxi-
mately equal to the maximization of the λ•(θ), obtained from the 
1
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aligned-corrected ensemble, so that the suboptimal ML estimator 
can be implemented by

θ̌ML � arg max
θ

λ•
1(θ), (24)

where ‘ˇ ’ denotes that the estimator is suboptimal, and λ•
1(0) = λ•

1
in (20). Note that the approximations to derive λ•

1(θ), i.e. (20) and 
(22), are now evaluated, not around the delays in the ensemble 
as in (9), but around the residual delays after alignment by the 
variable θ , and become more accurate the smaller these residual 
delays are, making the estimates in (14) and (24) equal at the po-
sition of the objective functions maximum. Analogously, σθ in (20), 
when associated with λ•

1(θ), is the variance of the residual delays. 
Since the maximum of λ•

1(θ) will always occur at θ around the 
original delay, implying small residuals, the approximate expres-
sions in (9), (21), and (22) remain largely accurate even for large 
delays, reinforcing the validity of θ̌ML as surrogate of θ̂ML.

The resulting estimates are determined up to a constant off-
set θb , for all θi . This results from the fact that an ensemble with 
signal cycles offset by θb while still preserving the compact sup-
port condition in [0, N − 1], will lead to the same eigenvectors 
λi(θ) and λ•

i (θ). The maximization of λ•
i (θ) yields estimates which 

are determined up to a constant since the maximum is not a point 
at the M dimension delay space, but a hyperdiagonal line. This is 
easily proven by replacing θi in (8) by θi + θb , yielding

xi(t) ≈ s(t − θb) − θi s
′(t − θb) + 1

2
θ2

i s′′(t − θb) + vi(t), (25)

which results in exactly the same eigenvalues, provided that the 
compact support condition is fulfilled. In practice, the delay offset 
is irrelevant since the interest is in the overall signal morphology 
irrespective of an offset. When the offset is relevant it can be easily 
corrected for by subtracting its mean.

2.3. Eigenvalue-based estimation

By inspecting the eigenvalue structure in (20), it is evident that 
not only λ•

1(θ) reaches its maximum when the variance of the 
residual delay estimate, σ 2

θ is minimum (recall that −Es′ is al-
ways negative), but also λ•

2(θ) reaches its minimum when σ 2
θ is 

minimum. Based on this observation, we propose a ratio of the 
eigenvalues of R̂•

x as an objective function which, when maximized 
with respect to θ , defines a new estimator, reinforcing the σ 2

θ min-
imization of the ML estimator,

�•(θ) = λ•
1(θ)

M∑
i=2

λ•
i (θ)

= Es − σ 2
θ Es′ + σ 2

v N/M

σ 2
θ Es′ + σ 2

v N(M − 1)/M
≈ Es − σ 2

θ Es′

σ 2
θ Es′ + Nσ 2

v
.

(26)

By maximizing �•(θ), we hypothesize that a reinforced combined 
effect is obtained by jointly maximizing the numerator and min-
imizing the denominator, i.e., two joint operations reducing mis-
alignment. Note that �•(θ) depends on θ through σθ , whose max-
imization results in time delays with minimum σθ . With this es-
timator, the objective function in (26) can be interpreted in terms 
of signal energy, jitter, and noise.

Alternatively, the ratio of eigenvalues of R̂x

�(θ) = λ1(θ)

N∑
λi(θ)

= Es − σ 2
θ Es′ + σ 2

v

σ 2
θ Es′ + (N − 1)σ 2

v
≈ Es − σ 2

θ Es′

σ 2
θ Es′ + Nσ 2

v
, (27)
i=2
results in an expression which, after approximation, is identical to 
the ratio in (26) and can therefore be used interchangeably for 
small θ . Maximization, with respect to θ , of the eigenvalue ratio 
(ER) defines the time delay estimator:

θ̂ER � arg max
θ

�(θ). (28)

The observations made above, for θ̌ML, of time delay estimates 
offset, and approximations accuracy for large delays, also applies 
to θ̂ER.

Although both �•(θ) and �(θ) result in the same estimator, 
they are related to different correlation matrices with dimensions 
M × M and N × N , respectively. From an implementation view-
point, the matrix with lower dimension is preferred.

2.4. One-step estimator

The estimators θ̌ML in (24) and θ̂ER in (28) both require com-
putationally demanding maximization. Within the proposed eige-
nanalysis framework, a new one-step (OS) estimator is proposed. 
This estimator is suboptimal, but since it does not require maxi-
mization, it can be used for smart initialization of the maximiza-
tion required in θ̌ML and θ̂ER. The OS estimator avoids maximiza-
tion and can be derived by exploring the result that ψ•

2 in (21) is 
approximately proportional to θ , i.e., ψ•

2 ≈ βθ . The factor β can be 
determined by making use of ‖ψ•

2‖ = 1 and θ T θ = Mσ 2
θ , leading 

to that β = 1/

√
Mσ 2

θ . The OS estimator is defined by

θ̂OS �
1

β
ψ•

2 =
√

Mσ 2
θ ψ•

2

=
√

(λ•
2 − σ 2

v )N

Es′
ψ•

2, (29)

where the last equality comes from the introduction of λ•
2 in (20).

Before θ̂OS can be used, σ 2
v and Es′ have to be determined—

a problem whose solution depends on the application of interest. 
Since the noise is assumed to be stationary, making it possible to 
estimate σ 2

v by the ensemble variance, it is computed in intervals 
where the signal energy is negligible [26].

An estimate for Es′ is obtained by first computing the ensemble 
average, then filtering to extract the main components of s(n), and 
finally computing the energy Es′ from the differenced plus filtered 
signal. The sign uncertainty associated with ψ•

2 can be solved by 
taking the sign that maximizes λ•

1(±θ̂OS).

The OS estimator θ̂OS can either be used separately, or to ini-
tialize the maximization of the ML and ER estimators, leading to a 
considerably reduced grid search.

2.5. Maximization of objective functions

Maximization of the two objective functions is performed us-
ing bound constrained particle swarm optimization [27,28], imple-
mented in the MATLAB function particleswarm (version 2015b), us-
ing a Toshiba laptop with an Intel Core i7-2640M processor. Fig. 1
illustrates �(θ) for a small ensemble (M = 3) displayed for θ2 and 
θ3 at an SNR of 25 dB, when θ1 is held fixed.

2.6. Amplitude and shape variability

The signal model pursued in the present paper assumes that 
s(n) has fixed amplitude and shape. However, this assumption may 
not be fulfilled, since, for example, the amplitude of heartbeats can 
vary considerably over time due to respiration. While the analysis 
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Fig. 1. The objective function �(θ) displayed for θ2 and θ3 at an SNR of 25 dB, when θ1 is held fixed. Its maximum occurs for (θ2, θ3) = (0, 0) which are identical to the true 
time delays of the simulation. The simulation model and the SNR are defined in Section 3.

Fig. 2. (a) A respiratory flow cycle and (b) a simulated misaligned ensemble, using M = 20 and SNR = 25 dB.
of varying amplitude and shape on time delay estimation is out-
side the scope of the present paper, the implications of varying 
amplitude are briefly discussed in the following extended signal 
model:

xi(n) = ai s(n − θi) + vi(n), n = 0, . . . , N − 1, (30)

where ai is a random amplitude with mean ma = 1 and variance 
σ 2

a (� m2
a). The variables ai and θi are assumed to be uncorrelated.

The eigenvalues of the correlation matrix for the model in (30)
are given by

λi ≈

⎧⎪⎨
⎪⎩

(σ 2
a + 1)(Es − σ 2

θ Es′) + σ 2
v , i = 1;

(σ 2
a + 1)σ 2

θ Es′ + σ 2
v , i = 2;

σ 2
v , i = 3, . . . , N,

(31)

and the corresponding eigenvalue ratio is

�a(θ) = λ1(θ)

N∑
i=2

λi(θ)

≈ Es − σ 2
θ Es′

σ 2
θ Es′ + Nσ 2

v

σ 2
a + 1

. (32)

Analogously to (27), �a(θ) is maximized when the signals with 
varying amplitudes are aligned.

Shape variability may also be present in the ensemble, showing 
up in λ2, λ3 and higher-order eigenvalues of (31) (all being in the 
denominator of �a(θ) in (32)). Therefore, such variability does not 
influence the underlying design principle of the eigenvalue-based 
estimators. This observation assumes that the shape variability has 
lower energy than s(n), being the case in most biomedical applica-
tions. Thus, the eigenvalue ratio in (27) should be well-suited for 
time delay estimation in the presence of shape variability.

3. Simulation

The present simulation results are based on a real respiratory 
flow signal from a patient with chronic heart failure (CHF) and pe-
riodic breathing, extracted from a database acquired with a pneu-
motachograph at a sampling rate of 250 Hz [29]. A representative 
respiratory flow cycle of about 2.5 s is extracted. Zero-valued sam-
ples are inserted symmetrically before and after the extracted cycle 
to produce a transient signal s(n) extending over 6 s, thereby al-
lowing misalignments of up to 200 samples. Using this respiratory 
cycle, defining s(n), we simulate ensembles of misaligned signals 
by repetitively delaying s(n) to s(n − θi) and adding noise vi(n)

to form the observed signal xi(n). The integer-valued time delay 
θi is uniformly distributed over the interval [−δ, δ] implying a de-
lay PDF with variance σ 2

θ = δ2/3. The signal-to-noise ratio (SNR) 
is defined as 10 · log(Es/σ

2
v ). An ensemble of 20 misaligned sig-

nals is shown in Fig. 2(b). Note that the selected respiratory flow 
cycle in Fig. 2(a) has similar peak flow and duration for inspira-
tion and expiration, common in patients with chronic heart failure 
and periodic breathing [24]. This characteristic stands in contrast 
to normal subjects where peak flow and duration differ between 
inspiration and expiration.
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Table 1
The pseudo code algorithm for obtaining the estimated delays θ̂ .

X = [x1 · · · xM ], (matrix X creation)
R̂•

x = 1
N XT X, (autocorrelation matrix estimation, or R̂x = 1

M XXT if this is the preferred)

If one step initialization θ̂OS
R̂•

xψ
•
2 = λ•

2ψ•
2, (second eigenvector ψ•

2 and eigenvalue λ•
2 estimation)

θ̂OS =
√

(λ•
2−σ 2

v )N
Es′

ψ•
2, (one step delay θ̂OS estimation)

xi(n) ← xi(n + θ̂i,OS), i = 1, . . . , M (signal ensemble delay correction)

X = [x1 · · · xM ], (θ̂OS delay corrected initialized ensemble matrix X construction)
end
If θ̌ML or θ̂ER estimate

for θ ∈ “grid search” (grid required by the maximization rule, in this case particle swarm)
xi(θi , n) ← xi(n + θi), i = 1, . . . , M (signal ensemble delay correction)
X(θ) = [x1(θ) · · · xM (θ)], (ensemble matrix X reconstruction)
R̂•

x(θ) = 1
N XT (θ)X(θ) (autocorrelation matrix estimation)

R̂•
x(θ)ψ•

i = λ•
i (θ)ψ•

i i = 1, . . . , M (eigenvalue λ•
i (θ) estimation)

�•(θ) = λ•
1(θ)/ ∑M

i=2 λ•
i (θ) (objective function estimation)

end
If θ̌ML estimate

θ̌ML = arg max
θ∈grid search

λ•
1(θ) (θ̌ML estimation by maximization with particle swarm)

end
If θ̂ER estimate

θ̂ER = arg max
θ∈grid search

�•(θ) (θ̂ER estimation by maximization with particle swarm)

end
end
θ̂ ∈ {θ̂OS, ̂θER or θ̌ML} (final delay estimate).
The eigenvalue-based method involves only one parameter, 
namely, the maximum time shift �max defining the search interval 
[−�max, �max] for finding the maximum of the objective function. 
Here, �max = δ guarantees that any introduced delay in the sim-
ulation can be optimally estimated in the grid search. δ is set to 
80 samples, unless otherwise stated.

The performance of the ER estimator is compared to that of the 
ML and OS estimators as well as to that of the Woody estima-
tor [16], denoted θ̂W. Performance is quantified by the root mean 
square (RMS) of the error in the offset-corrected time delay es-
timates, denoted σe . This measure is determined from simulated 
ensembles of the model in (1) with M signals, and repeated using 
R different Monte Carlo runs, R = 100 unless otherwise stated

x j
i (n) = s(n − θ

j
i ) + v j

i (n),

n = 0, . . . , N − 1; i = 1, . . . , M; j = 1, . . . , R. (33)

To compute this error, the mean of θ̂ j
i in the ensemble is first sub-

tracted to avoid the undetermined offset mentioned in Secs. 2.2
and 2.3 otherwise affecting the performance measure σe defined 
as

σe =

√√√√√ 1

M R

R∑
j=1

M∑
i=1

(
θ

j
i −

(
θ̂

j
i − 1

M

M∑
i=1

θ̂
j

i

))2

. (34)

4. Real data

The proposed estimator is also tested on a real data ensemble 
using a respiratory flow signal, recorded from a chronic heart fail-
ure patient with periodic breathing [24], sampled at 250 Hz. The 
respiratory flow cycles are extracted from this signal, being differ-
ent from the one used in the simulation. In these patients, abnor-
mal evolution of the respiratory pattern (amplitude, morphology, 
etc.) can trigger alarms on exacerbation of the underlying patho-
logical process. For this purpose, respiratory cycle features such 
as amplitudes and slopes have been proposed for monitoring [24]. 
The features are computed from an ensemble average, ŝ, to reduce 
the influence of noise. Also, time alignment prior to ensemble av-
eraging is required to ensure that the low-pass filtering effect is 
minimized [2] when computing the average.

A signal ensemble from a patient composed of M = 20 cycles 
is subject to averaging, before and after alignment. The segmenta-
tion of the cycles is determined by the zero-crossing at the onset 
of each respiratory flow cycle [24] up to the next onset of the sub-
sequent cycle. The zero-crossings are determined from a low-pass 
filtered signal to reduce the influence of noise on the segmenta-
tion, minimizing instabilities around the zero-crossing location. To 
ensure that all cycles have the same length, they have been re-
stricted to the shortest cycle length of the ensemble, here 3 s. 
Assuming that the cycle-to-cycle variability in duration is relatively 
modest, it is reasonable to consider that the most part of the cycle 
is completely contained in the segmentation interval. The align-
ment is made by θ̂ER estimator, using δ = 0.2 s.

5. Results

The results presented in this section are computed using the al-
gorithmic steps described below and in the pseudo code at Table 1. 
The performance is evaluated as described in point 3.

1. Creation of the signal ensemble: from real or simulated sig-
nals.

2. Time delay estimation using θ̌ML in (24), θ̂ER in (28), or θ̂OS in 
(29).

3. Computation of performance results which for simulated data 
is expressed in terms of the error metric σe and for real data 
by presenting the ensemble average before and after align-
ment.

5.1. Performance of the ER and ML estimators

Fig. 3(a) shows that the two estimators have similar perfor-
mance in terms of σe for different SNRs, both deteriorating as the 
SNR decreases. Larger ensembles are associated with better perfor-
mance, particularly at low SNR. Fig. 3(b) presents σe as a function 
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Fig. 3. The time delay estimation error σe , computed, as a function of: (a) SNR for M = 10 (solid line), and M = 50 (dashed line), using θ̂ER (black line) and θ̌ML (red line); 
(b) M for SNR = 10 dB (solid line), SNR = 2 dB (dashed line), δ = 10, using θ̂ER (black line) and θ̌ML (red line); (c) SNR in dB for M = 10 (solid line), M = 20, (dotted line), 
and M = 50 (dashed line), δ = 80, using θ̂W (black line) and θ̂OS (red line); (d) M for SNR = 10 dB (solid line), SNR = 2 dB (dotted line), δ = 80, using θ̂W (black line), and 
θ̂OS (red line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 4. The objective functions �(θ̂ER) (black line) and λ•
1(θ̌ML) (red line) as a func-

tion of SNR for optimally aligned ensembles and M = 10. (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of 
this article.)

of M for SNR = 2 and 10 dB, showing that σe is largely indepen-
dent of M, except for small size of the ensemble and low SNR.

The objective functions �(θ̂ER) and λ•
1(θ̌ML), corresponding to 

optimally aligned ensembles, are shown in Fig. 4 as a function of 
SNR. The log-likelihood (objective) function of the ML estimator 
decreases as the SNR increases since σ 2

v in λ•
1(θ̌ML) is additive. 

On the other hand, �(θ̂ER) behaves in the opposite way since it 
increases as the SNR increases. This behavior is explained by the 
fact that �(θ̂ER) involves the term (N − 1)σ 2

v in the denominator, 
thereby resulting in an inverse relation to the noise that dominates 
over σ 2

v in the numerator, cf. (20).

5.2. Performance of the OS estimator

The performance of θ̂OS estimator is presented when used sep-
arately. From these results it can be evaluated the potential of this 
estimator to work either separately or in combination with the 
maximization estimator. The range of the reduction in the grid 
search size, when initialized by θ̂OS, can be inferred by evaluat-
ing the residual error of θ̂OS, which will become the minimum 
required grid search of the estimators involving maximization. The 
error σe of θ̂OS is presented as a function of SNR in Fig. 3(c), for 
different M . For comparison, σe of the Woody method θ̂W is in-
cluded [16]. It is obvious that the performance of θ̂OS is almost 
independent of the SNR, with better performance for smaller M . 
On the contrary, θ̂W performs less well for smaller ensemble sizes 
since the required, intermediate ensemble average is then noisier. 
Another observation from this figure is that σe increases for θ̂W

as the SNR decreases, again explained by an increasingly noisy in-
termediate ensemble average. For M = 50, σe of θ̂W is very close 
to that of θ̌ML in Fig. 3(a), demonstrating that the improvement 
achieved with θ̌ML becomes more pronounced for smaller M [22].

For low SNRs and small M , θ̂OS performs better than θ̂W, see 
Fig. 3(c). This result, combined with the result that the perfor-
mance of θ̂OS is almost independent of the SNR and the property 
that θ̂OS is a one-step estimator, makes θ̂OS a better candidate 
for initialization of the maximization required in the ER and ML 
estimators. By comparing the results in Fig. 3(c) with those in 
Figs. 3(a) and 3(b) for SNR = 2 and 10 dB, we note that the per-
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Fig. 5. (a) The time delay estimation error σe as a function of SNR for M = 20, 
R = 50, using θ̂OS for different values of δ as indicated on the plot, δ ∈ {40, 60, 80, 
100} (solid lines), δ = 15 (dotted line), and δ = 10 (dashed line). (b) The time de-
lay estimation error σe as a function of δ for M = 20 and SNR = 10 dB, using θ̂ER
(dashed blue line), θ̌ML (dotted red line), and θ̂OS (black solid line). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

formance of θ̂OS and θ̂W, as expected, is always lower than that of 
the θ̌ML or θ̂ER.

Fig. 3(d) shows σe as a function of M for SNR = 2 and 10 dB. 
The result in Fig. 3(c), showing that θ̂W performs less well for 
smaller M whereas the reverse occurs for θ̂OS, is again demon-
strated since the performance of θ̂OS deteriorates as M increases, 
while the performance of θ̂W improves as M increases. From 
Fig. 3(d) it is observed that this reverted behavior, favoring θ̂OS
over θ̂W for low M values, remains valid for larger M range the 
lower SNR becomes; up to M = 10 for SNR = 10 dB and up to 
M = 40 for SNR = 2 dB.

Fig. 5(a) presents the performance of θ̂OS as a function of SNR 
for different δ. This result has particular relevance since it quan-
tifies the impact of δ on the approximations associated with (9)
and (19). From Fig. 5(a), σe reduces, as expected, since δ becomes 
increasingly smaller. For a small δ (i.e., 10 or 15) and SNRs be-
low 10 dB, however, σe increases as δ decreases—a result which 
may be ascribed to the competing effects between time delays and 
noise in θ̂OS, cf. (29). Fig. 5(b) shows σe for θ̂OS as well as for θ̂ER
and θ̌ML as a function of δ, demonstrating that the performance of 
the latter two estimators are independent of δ.

5.3. Computational load

Fig. 5(a) demonstrates that initialization based on θ̂OS for the 
maximization required in θ̂ER and θ̌ML implies that the original 
Fig. 6. The computation time as a function of M , with δ set to 10 (dashed line), 20 
(dotted line), and 100 (solid line), R = 50, using (a) θ̂ER (black line) and θ̌ML (red 
line), and (b) θ̂OS (black line). The vertical scales of (a) and (b) differ as a conse-
quence of the maximization required in the ER-based methods. (For interpretation 
of the references to color in this figure legend, the reader is referred to the web 
version of this article.)

grid search can be constrained. For the most unfavorable case, 
when inspecting σe for large time delays, i.e., δ = 100, it is ob-
vious that the remaining estimation error is less than 10 sam-
ples. However, the remaining misalignment is to be handled by 
the maximization-based estimators. By using θ̂OS for initialization, 
the grid search can be constrained to a conservative value larger 
than 2σe , resulting in about 20 samples, which, in turn, translates 
to a remarkably smaller grid. Using δ = 100 to estimate the re-
duced grid size, the brute force search leads to a reduction factor 
in computation time of δM/(δ/5)M = 5M . The dependence of σe
on δ, obvious from Fig. 5(a), is a consequence of the fact that the 
larger the delay is in the model in (9) the less accurate is the ap-
proximation in θ̂OS, and therefore its performance, evaluated by σe , 
deteriorates.

Using instead particle swarm optimization, the saving factor 
has to be estimated experimentally. Fig. 6(a) presents the average 
computation time for θ̂ER and θ̌ML as a function of M for differ-
ent δ, averaged over SNRs ranging from 2 to 24 dB. Comparing 
the results in Fig. 6(a) for different δ, it is obvious that the sav-
ing factor is much smaller than that of brute force maximization. 
The factor may be estimated by comparing the computation time 
for δ = 100 and δ = 10 for M = 50, leading to a saving factor of 
approximately 1.5. For smaller M , the saving factor decreases and 
becomes increasingly insignificant.

Fig. 6(b) presents the computation time for θ̂OS as a function 
of M , being drastically faster than those of θ̂ER and θ̌ML since no 
maximization is performed. As expected, the computation time in-
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Fig. 7. Ensemble with real respiratory flow cycles. (a) Ensemble extracted from signal segmentation, (b) ensemble after time alignment using θ̂ER, and (c) the respiratory 
cycle, ŝ, estimated by averaging the original ensemble (black), and the aligned ensemble (red). (For interpretation of the references to color in this figure legend, the reader 
is referred to the web version of this article.)
creases with M . The computation time of the θ̂W has been omitted 
since it is not relevant in the present context.

5.4. Real data results

The patient data ensemble, described in Sec. 4, is presented in 
Fig. 7(a). In the ensemble, each respiratory cycle has, in addition 
to different time delay and noise, variability in shape, suggesting 
that the model in (30) involving amplitude variability, is more ade-
quate. With certain shape variability, the proposed estimators will 
still work as indicated by (32). Also, note that the ensemble sig-
nals do not start at zero since the segment onset is determine by 
the zero-crossings of the low-pass filtered signal. In Fig. 7(b), the 
same ensemble is plotted after alignment using the θ̂ ER estimator. 
It is obvious that the transitions from inspiration to expiration are 
closely grouped together after alignment and therefore its quantifi-
cation becomes more accurate. In Fig. 7(c) the ensemble average 
ŝ before and after aligned ensemble average are plotted, showing 
that the amplitude of the estimated respiratory cycle is higher af-
ter alignment (both inspiration and expiration) as is the transition 
slope between the states, both relevant features for diagnosis. The 
oscillations and large variability observed in the ensemble are due 
to that the patient suffers from CHF and periodic breathing. If the 
dynamics of the shape are of interest, they can be quantified by 
the ensemble variance, or by using smaller values of M in the av-
eraging, at the cost of less noise reduction.

6. Discussion

6.1. Eigenvalue-based estimator

The present paper proposes two time delay estimators based 
on eigenanalysis, embracing either maximization of an eigenvalue 
ratio (θ̂ER) or maximization of the first eigenvalue (θ̌ML). The es-
timators have identical performance. Of these two estimators, θ̌ML
is the simpler one to implement, although no significant difference 
exist between the two with respect to computation time. Inspec-
tion of the approximations in (26)–(27) suggests that maximization 
of the numerator together with minimization of the denominator, 
as in θ̂ER, would yield better performance than would maximiza-
tion of the numerator only, as in θ̌ML. However, recalling that 
tr{Rx} and tr{R•

x} are invariant to time delays, it is noted that the 
denominator in (26) equals tr{R•

x} −λ•
1 which implies that maxi-

mization of the numerator and minimization of the denominator 
are exactly the same, thus justifying the obtained results on iden-
tical performance of θ̂ER and θ̌ML. The objective functions �(θ̂ER)
and λ•
1(θ̌ML) have a reverted dependence with SNR for optimally 

aligned ensembles, see Fig. 4, as justified from inspection of (20)
and (26).

For large δ, Fig. 5(b) shows that the performance of θ̂ER and 
θ̌ML do not deteriorate, although the expressions in (26) and (27)
become less accurate as θ becomes larger. This result was already 
justified when introducing θ̌ML in (24) and same conclusions can 
be reach analyzing the fact that both estimators reduce to maxi-
mization of λ1. The first eigenvector of the correlation matrix may 
be regarded as the vector generating the first principal component 
of the signal ensemble [25], where the corresponding eigenvalue 
λ1 is known to increase when the morphological variability of the 
ensemble decreases. In the model in (8), the ensemble variabil-
ity is given by the noise variance, being invariant to time delays 
when the noise is stationary, plus the signal variance, reducing 
to zero for perfect alignment. Thus, this observation justifies that 
the maximization of λ1 always results in an optimal estimator ir-
respective of the degree of time delay dispersion. If higher-order 
approximation terms in (26) and (27) had been considered to han-
dle large θi , the resulting expression would have become much 
more complicated and more difficult to interpret. However, the 
previous observation shows that the maximization of the result-
ing expression will still result in an optimal estimator.

Eigenvalue-based estimation, based on either θ̂ER or θ̌ML, repre-
sents an alternative way of implementing the ML estimator, cf. (23)
and Fig. 3. These two estimators may benefit from efficient imple-
mentations of algorithms for eigenvalue decomposition, avoiding 
the triple summation in (15) and the need for an intermediate es-
timate of s(n) [22]. Fig. 3(b) shows that performance gets better as 
M increases for low of about 0 dB SNR as a result of better “learn-
ing” of the underlaying signal shape s(n), whereas this learning is 
negligible at an SNR of about 10 dB or higher.

6.2. Model assumptions

The signal-plus-noise model in (1) stems originally from the 
radar application where it is known as range estimation [1], but 
it has been found relevant in many biomedical applications where 
repetitive signals are of interest to analyze [2]. The present paper 
was inspired by the work we did in a recently published, clinically 
oriented study on respiratory flow cycle morphology in patients 
with chronic heart failure [24], where ensemble averaging of respi-
ratory flow signals, preceded by eigenvalue-based time alignment, 
was used to improve the signal-to-noise ratio.

The assumptions related to the model in (1) are 1) a signal 
s(n) with fixed amplitude and shape, 2) a random time delay θi
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with zero-mean and fixed variance, and 3) additive, stationary, 
Gaussian, white noise vi(n). Concerning respiratory flow signals, 
as well as most biomedical signals, assumption #1 on fixed ampli-
tude may be questioned since the amplitude can vary considerably 
over time, illustrated by Fig. 7, see also [24]. Nevertheless, the 
eigenvalue ratio �a(θ) in (32), derived for the varying-amplitude 
model in (30), is still maximized when signals with varying ampli-
tude are aligned. Alignment of signals with considerable variation 
in shape represents a more complicated situation, possibly calling 
for nonlinear time delay estimation techniques such as dynamic 
time warping [20,21]. However, the eigenvalue ratio �a(θ) is still 
maximized provided that the variability in shape has lower energy 
than s(n). For respiratory flow signals, as well as most biomedical 
signals, the variability in shape has usually lower energy than s(n).

Assumption #2 on a random time delay is justified since the 
segmentation of successive respiratory cycles is based on zero-
crossing times with poor accuracy with respect to the underlying 
trigger of the physiological event; similar considerations apply to 
other biomedical signals where instead extrema detection or other 
landmark features are used for segmentation. Consequently, time 
alignment is necessary to improve this accuracy. The zero-mean 
assumption for the delay θi is justified since any delay distribution 
including a offset will result in a delayed estimate of s(n), typically 
irrelevant in biomedical signal analysis where the information is 
on the overall shape, as already discussed when introducing the 
maximization estimators. In situations like evoked potential where 
the latency of the peaks in the averaged signal with respect to 
the evoked trigger is relevant, this offset can be easily corrected 
by subtracting the estimates mean. Concerning the stationarity as-
sumption (#3), it is reasonable to assume that signals recorded 
during resting conditions have fixed noise variance. Signals with 
large artifacts and intermittent disturbances are typically excluded 
before time alignment, making an assumption of a time-varying 
noise variance unnecessary.

6.3. One-step estimator

By analyzing the eigenvector structure of the approximate inter-
signal correlation matrix R•

x in (19) for small time delays, the 
proposed one-step estimator θ̂OS, being proportional to ψ•

2, out-
performs the Woody method for low SNRs and small M , but not 
for high SNRs and large M , see Fig. 3. This M value can reach up 
to 40 cycles, see Fig. 3(d), when the SNR approaches 0 dB. The 
one-step estimator is of particular interest for initialization of the 
maximization-based estimators, leading to a reduction in compu-
tation time. This type of initialization is suitable to use in devices 
with constraints on power consumption, e.g., implantable devices, 
but less so in off-line applications. The use of θ̂OS is attractive since 
it draws on the framework of the inter-signal correlation matrix 
and eigenanalysis.

Since the computational saving factor is likely to depend on 
s(n), a “learning step” will be required to determine the extent 
with which the grid search should be constrained. The learning 
step should take its starting point from results analogous to those 
in Fig. 5(a). Also, an estimate of s(n) is required, e.g., obtained by 
ensemble averaging.

The computation of θ̂OS requires estimations of σ 2
v and Es′ as 

described in Section 2.4. Alternative methods to estimating σ 2
v is 

to use the higher-order eigenvalues, i.e., σ̂ 2
v = ∑N

i=i0
λi/(N − i0 +1), 

where i0 is chosen such that signal shape variability is avoided. For 
Es′ , an alternatively strategy can be obtained by observing that s
is essentially proportional to the first eigenvector of Rx in (12) so 
that an estimate of Es′ is obtained from Ê s′ ≈ (λ1 − σ 2

v )Eψ ′
1
.

From inspection of Fig. 5(a) a iterative estimation process can 
be suggested by recurrent application of θ̂OS, particularly for large 
SNR, leading to better estimates.
6.4. Implications of misalignment

It is well-known that increased time delay jitter attenuates 
higher frequencies of the ensemble average [2]. Assuming an en-
semble of M = 10 signals, an SNR of 15 dB, and a sampling rate of 
1000 Hz, the 3 dB cut-off frequency caused by σe is approximately 
150 Hz for eigenvalue-based alignment. For the OS estimator, the 
cut-off frequency drops to approximately below 90 Hz. Such a sub-
stantial drop in cut-off frequency has repercussions in applications 
such as high-frequency ECG analysis, where an ensemble of QRS 
complexes is averaged and bandpass filtered (150–250 Hz) [30,31]; 
thus, an SNR higher than 15 dB should be employed. Better perfor-
mance of θ̂ER not only has implications on ensemble averaging, but 
even more so on the estimation of ensemble variance where better 
accuracy is required of the time delay estimates [26].

The real data example presented in Fig. 7(c) illustrates the ef-
fects on the amplitude and the slope of a respiratory cycle, both 
more pronounced after alignment. These changes are the result of 
the increase in the cut-off frequency introduced by averaging af-
ter alignment [2]. This example is descriptive in nature, and does 
not pretend to be a clinical validation which is outside the scope 
of this study.

6.5. Maximization

In the present paper, particle swarm optimization [32] has been 
used, while other techniques were not investigated. Therefore, it 
may be possible that other techniques may offer faster conver-
gence or come with less computational cost. The computation time 
has been analyzed in relative terms since the computation time in 
absolute terms are platform-dependent. While the maximization 
here presented is restricted to integer values, if required, a finer 
temporal resolution than that provided by the sampling rate can 
be obtained by interpolation. Once the optimal value is reached, a 
grid can be easily computed around this value.

7. Conclusions

The present study introduces and evaluates novel methods for 
time delay estimation based on the eigenvalues of the sample 
correlation matrix of the signal ensemble. It is shown that the 
ML estimator can be implemented by maximizing either the first 
eigenvalue of this matrix, or, equivalently, a ratio defined by its 
eigenvalues. A one-step estimator is proposed based on the second 
eigenvector of the inter-signal correlation matrix. When using the 
one-step estimator for initialization, a reduction in computation 
time of the estimators involving maximization can be achieved.
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Appendix A

This appendix derives λ1 for a second-order approximation 
of Rx , see (10). First, we observe that s(t) and s′(t) are orthogo-
nal, i.e.,

∞∫
−∞

s(t)s′(t)dt = 1

2π

∞∫
−∞

S(�)(−j�)S∗(�)d�

= − 1

2π

∞∫
−∞

j�|S(�)|2d� = 0. (35)

With the same argument, s′(t) and s′′(t) are also orthogonal. The 
cross-energy between the signal s(t) and its second derivative s′′(t)
is always negative, and equal to minus the energy of the derivative, 
since

∞∫
−∞

s(t)s′′(t)dt = 1

2π

∞∫
−∞

S(�)(−�2)S∗(�)d�

= − 1

2π

∞∫
−∞

�2|S(�)|2d�

= −
∞∫

−∞
s′(t)s′(t)dt < 0, (36)

where S(�) denotes the Fourier transform of s(t); Nyquist sam-
pling is assumed.

Assuming that xi(t) in (9) is sampled at the Nyquist rate, or-
thogonality applies also to the sampled counterparts s , s′ , and s′′ , 
and Ess′′ = sT s′′ = −Es′ .

Using these observations, we can see that the first eigenvector 
of the correlation matrix in (10) should be a linear combination 
between s and s′′ of the form (s + αs′′), where α is a scale factor 
to be determined. When multiplying s and s′′ with the term being 
a combination of s and s′′ in Rx , we obtain(

ssT + σ 2
θ

2

(
ss′′T + s′′sT

))
s =

(
Es − σ 2

θ

2
Es′

)
︸ ︷︷ ︸

Css

s +
(

σ 2
θ

2
Es

)
︸ ︷︷ ︸

Css′′

s′′

(37)

and(
ssT + σ 2

θ

2

(
ss′′T + s′′sT

))
s′′

=
(

−Es′ + σ 2
θ

2
Es′′

)
︸ ︷︷ ︸

Cs′′s

s +
(

−σ 2
θ

2
Es′

)
︸ ︷︷ ︸

Cs′′s′′

s′′. (38)

Thus, the eigenvalue equation for λ1, for convenience expressed as

λ1 = λ1,s + σ 2
v , (39)

is given by Rx(s + αs′′) = (λ1,s + σ 2
v )(s + αs′′), yielding

Csss + Css′′s
′′ + α(Cs′′ss + Cs′′s′′ s

′′) = λ1,s(s + αs′′). (40)

To estimate the eigenvalue, the following equation system should 
be solved:
Css + αCs′′s = λ1,s,

Css′′ + αCs′′s′′ = αλ1,s. (41)

Solving for λ1,s the following quadratic equation results:

λ2
1,s − λ1,s(Cs′′s′′ + Css) + (CssCs′′s′′ − Css′′ Cs′′s) = 0, (42)

whose solutions are given by

λ1,s = Cs′′s′′ + Css ±√
(Cs′′s′′ + Css)2 − 4(CssCs′′s′′ − Css′′ Cs′′s)

2

= Cs′′s′′ + Css ±√
(Cs′′s′′ − Css)2 + 4Css′′ Cs′′s

2
. (43)

Substituting the C coefficients defined in (37) and (38), we obtain

λ1,s =
Es − σ 2

θ Es′ ±
√

E2
s + 4

(
−Es′ + σ 2

θ

2 Es′′
)

σ 2
θ

2 Es

2
. (44)

Approximating the square root, realizing that higher-order terms 
are always smaller than the lower-order terms for small σ 2

θ , and 
retaining the positive sign of the square root solution, we obtain

λ1,s ≈ Es − σ 2
θ

2
Es′ +

(
−Es′ + σ 2

θ

2
Es′′

)
σ 2

θ

2
. (45)

It is noted that the solution with negative sign is ignored since it 
corresponds to a much smaller eigenvalue. Neglecting the fourth-
order term, we obtain

λ1,s ≈ Es − σ 2
θ Es′ , (46)

which, when substituted in (39), becomes the desired eigenvalue 
in (11), i.e.,

λ1 ≈ Es − σ 2
θ Es′ + σ 2

v . (47)

The α factor in the linear combination between s and s′′ , us-
ing the above approximations, results in α = σ 2

θ /2. Hence, the first 
eigenvector ψ1 is proportional to (s + (σ 2

θ /2)s′′) as expressed in 
(12).

Repeating the same derivation for R̂•
x in (19), ψ•

1 should be pro-
portional to the form (1 + α•θ2), and the equations corresponding 
to (37) and (38) become:

1

N

(
Es11T − Es′

2

(
1θ2T + θ21T

))
1

= M

N

(
Es − σ 2

θ

2
Es′

)
︸ ︷︷ ︸

Css

1 +
(

− M

2N
Es′

)
︸ ︷︷ ︸

Css′′

θ2 (48)

and

1

N

(
Es11T − Es′

2

(
1θ2T + θ21T

))
θ2

= M

N

(
σ 2

θ Es − 3σ 4
θ

2
Es′

)
︸ ︷︷ ︸

Cs′′s

1 +
(

− Mσ 2
θ

2N
Es′

)
︸ ︷︷ ︸

Cs′′s′′

θ2, (49)

yielding

λ•
1 ≈ Es M

N
− σ 2

θ Es′ M

N
+ σ 2

v (50)

which is the desired eigenvalue in (20). Deriving α• using the 
above approximations, we obtain that α• = −Es′/(2Es), leading to 
the eigenvectors in (21).
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Appendix B

This appendix derives the expression for θ̂ML. First, we observe 
that for the model in (1) the probability density function (PDF) of 
xi(n), given a sample n, a deterministic signal s(n), and a delay θi

is given by

p(xi(n); s(n), θi) = 1√
2πσ 2

v

exp

[
− 1

2σ 2
v

(xi(n) − s(n − θi))
2
]
.

(51)

Since the noise at different time instants are independent, the joint 
PDF of a signal xi is just the individual products, and similarly for 
the complete signal ensemble X in (3)

p(X; s, θ)

= 1

(2πσ 2
v )N M/2

exp

[
− 1

2σ 2
v

M∑
i=1

N−1∑
n=0

(xi(n) − s(n − θi))
2

]
.

(52)

The ML estimation of θ comes from that θ̂ML which maximizes the 
PDF, or equivalently its logarithm transformation. Operating this 
maximization, it results in minimization of the objective function J

J (X; s, θ) = 1

2σ 2
v

M∑
i=1

N−1∑
n=0

(xi(n) − s(n − θi))
2, (53)

and the estimated results will be those which satisfy

(ŝML, θ̂ML) = arg min
s,θ

J (X; s, θ) (54)

Since this function contains, in a interleaved way, ŝML and θ̂ML we 
solve the minimization first for ŝML at a particular θ resulting in

ŝML,θ = 1

M

M∑
i=1

xi(n + θi), (55)

and later, substituting this expression in (53), and minimizing for 
θ̂ML results in [22]

θ̂ML = arg max
θ

∑
n

M∑
i=1

M∑
k>i

xk(n + θk)xi(n + θi). (56)
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