
Ph.D. Thesis

Characterization of Cardiovascular
Remodeling Following Intrauterine Growth

Restriction

Caracterización del remodelamiento cardiovascular
subsecuente a la restricción de crecimiento intrauterino

Autor

Freddy Leonardo Bueno Palomeque

Supervisors

Ana Mincholé Lapuente
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ABSTRACT

Intrauterine growth restriction (IUGR) and preterm birth are linked to cardio-
vascular remodeling, which often manifests as a decrease in cardiac sphericity
index (base-to-apex length/basal diameter ratio). These changes induced by
IUGR are more pronounced in the left ventricle, can persist throughout life,
and are associated with an increased predisposition to heart disease in adult-
hood.

Various studies conducted across different age groups have demonstrated
the prevalence of these anatomical changes in cardiac muscle. In addition to
morphological remodeling, assessed through the ventricular sphericity index,
alterations in cardiac electrical function have been reported through the char-
acterization of the depolarization and repolarization loops and their angular
relationship as measured in a vectorcardiogram (VCG).

Variations in the duration of electrocardiogram (ECG) interval biomarkers
have shown increased depolarization and repolarization phases in individuals
with a history of fetal IUGR. However, additional studies present contradictory
trends in these variations. While the effects of IUGR on cardiac electrophysiol-
ogy are evident, the underlying relationship between morphological remodeling
and the angular variation of the dominant QRS and T-wave vectors remains
largely unexplored.

This study aimed to simulate the geometric changes induced by IUGR in
a realistic biventricular heart and torso model, and to evaluate their impact
on cardiac electrophysiology. This was carried out in three stages. In the
first stage, we started with a control computational model and generated eight
globular cardiac models (GA to GH) by reducing the apex-base length and
increasing the ventricular basal diameter. We calculated the dominant QRS
and T-wave vectors and angles from simulated pseudo-ECGs, comparing them
with clinical measurements.

In the second stage, the ECG of preadolescents with IUGR was charac-

iii



iv Abstract

terized by comparing biomarkers such as the duration of the QRS complex
(QRSd), the T-peak to T-end interval (Tpe), and the QT interval between a
control group and an IUGR group. We analyzed 12-lead ECG recordings from
33 subjects who had severe IUGR at birth and 60 control subjects, using spa-
tial principal component analysis (PCA) to emphasize the QRS complexes and
T waves.

Finally, in the third stage, to deepen the understanding of the effects in-
duced by geometric changes, we conducted computational electrophysiological
simulations based on eight different anatomical models derived from IUGR
clinical data (G1 to G8). These models incorporated additional key geometric
alterations such as ventricular wall thickness, and tissue volume. With these
models, we evaluated the impact of cardiac anatomical variation on the studied
biomarkers (QRSd, Tpe, and the QT interval) and compared them with clinical
results.

The in silico results from the first stage showed that the angles of the
loops for both the QRS complex and the T-wave measured in the globular
heart models exhibit a change consistent with those reported in clinical results,
strengthening the hypothesis that morphological changes induced by IUGR
could contribute to explaining the observed angular changes.

The clinical results from the second stage showed that for the IUGR group,
the QRSd and Tpe were significantly wider than in the control group, with no
pronounced change in the QT interval.

In the third stage, the simulations revealed a significant prolongation of
QRSd, consistent with clinical findings. A moderate increase in the Tpe was
also observed, aligning with clinical observations, while the prolongation of the
QT interval partially contradicted clinical results. These findings suggest that
while the simulated geometric changes replicate certain clinical observations,
other factors such as changes in electrical activation and/or ionic remodeling
might influence cardiac electrophysiology in IUGR cases.

This study highlights the impact of geometric and volumetric remodeling on
the effects of IUGR on cardiac electrophysiology. It also emphasizes the need
for further research on electrophysiological remodeling and its consequences for
cardiac function.

Keywords: Intrauterine growth restriction, cardiac remodeling, electro-
physiology, depolarization, repolarization, dominant vector, electrocardiogram,
vectorcardiogram, QRS duration interval, T-peak to T-end interval, QT inter-
val, biventricular model, globular model, apex-base length, basal diameter,
sphericity index, ventricular wall thickness.



RESUMEN Y CONCLUSIONES

La restricción del crecimiento intrauterino (IUGR, por sus siglas en inglés) y el
nacimiento prematuro están vinculados con el remodelamiento cardiovascular,
el cual se manifiesta frecuentemente como una disminución del ı́ndice de esfe-
ricidad card́ıaca (relación longitud base-ápex/diámetro basal). Estos cambios
inducidos por IUGR son más pronunciados en el ventŕıculo izquierdo, pueden
persistir a lo largo de la vida y están asociados con una mayor predisposición
a enfermedades card́ıacas en la adultez.

En diversos estudios realizados con diferentes grupos etarios, se ha evi-
denciado la prevalencia de estos cambios anatómicos en el músculo card́ıaco.
Además del remodelamiento morfológico del corazón, evaluado mediante el
ı́ndice de esfericidad ventricular, se han reportado alteraciones en la función
eléctrica card́ıaca a través de la caracterización de los bucles de despolarización
y repolarización y su relación angular, medidas en un vectorcardiogram (VCG).

Variaciones en los valores de los biomarcadores basados en intervalos tem-
porales en el ECG han mostrado un incremento en las etapas de despolarización
y repolarización en individuos con historial de IUGR durante la etapa fetal. No
obstante, investigaciones adicionales presentan tendencias contrapuestas en es-
tas variaciones. Aunque los efectos de IUGR sobre la electrofisioloǵıa card́ıaca
son evidentes, la relación subyacente entre el remodelamiento morfológico y la
variación angular de los vectores dominantes QRS y T no ha sido explorada
profundamente.

Este estudio tuvo como objetivo simular los cambios geométricos inducidos
por IUGR en un modelo realista de corazón biventricular y de torso, y evaluar
su impacto en la electrofisioloǵıa card́ıaca. Esto se llevó a cabo en tres eta-
pas. En la primera, partimos de un modelo computacional control y generamos
ocho modelos card́ıacos globulares (GA a GH) al reducir la longitud ápex-base y
ampliar el diámetro basal ventricular. Calculamos los vectores y ángulos dom-
inantes de QRS y onda T a partir de pseudo-ECG simulados, comparándolos
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con mediciones cĺınicas.

En la segunta etapa, se caracterizó el ECG de preadolescentes con IUGR
mediante la comparación de biomarcadores como la duración del complejo QRS
(QRSd), el intervalo de T-pico a T-fin (Tpe), y el intervalo QT entre un grupo
control y otro IUGR. Analizamos registros de ECG de 12 derivaciones de 33
sujetos que presentaron IUGR severo al nacer y 60 sujetos control, utilizando
el análisis de componentes principales (PCA) espaciales para enfatizar los com-
plejos QRS y ondas T.

Finalmente, en la tercera etapa, para profundizar en el análisis de los efec-
tos provocados por los cambios geométricos, realizamos simulaciones computa-
cionales electrofisiológicas sobre ocho distintos modelos anatómicos derivados
de datos cĺınicos de IUGR (G1 a G8). Estos modelos incluyeron alteraciones
geométricas adicionales como el grosor de la pared ventricular y el volumen
del tejido ventricular. Con estos modelos evaluamos el impacto de la variación
anatómica card́ıaca sobre los biomarcadores estudiados (QRSd, Tpe y el inter-
valo QT) y los contrastamos con los resultados clinicos.

Los resultados in silico de la primeta etapa, mostraron que los ángulos de
los bucles tanto del complejo QRS como de la onda T medidos en los mode-
los globulares de corazón presentan un cambio congruente con los resportados
en resultados cĺınicos, fortaleciento la hipótesis de que los cambios morfológi-
cos inducidos por IUGR podŕıan contibuir a explicar los cambios angulares
evidenciados.

Los resultados cĺınicos de la segunda etapa mostraron para el grupo IUGR,
un QRSd y Tpe significativamente mas anchos que el grupo control y un inter-
valo QT sin un cambio pronunciado.

En la etapa tres, los resultados de las simulaciones mostraron una pro-
longación significativa en la duración del complejo QRS, consistente con los
hallazgos cĺınicos. También se observó un incremento moderado en el intervalo
Tpe, alineado con las observaciones cĺınicas, mientras que la prolongación del
intervalo QT contradice parcialmente los resultados cĺınicos. Estos hallazgos
sugieren que, aunque los cambios geométricos simulados reproducen ciertas
observaciones cĺınicas, otros factores como alteraciones en la activación eléc-
trica y/o remodelamiento iónico podŕıan estar influyendo en la electrofisioloǵıa
card́ıaca en casos de IUGR.

Este estudio subraya el impacto del remodelamiento geométrico y volumétrico
en los efectos del IUGR sobre la electrofisioloǵıa card́ıaca. Resalta también la
necesidad de investigaciones futuras sobre el remodelamiento electrofisiológico
y sus consecuencias en la función card́ıaca.
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This chapter frames the thesis and introduces the fundamental principles
of anatomy, function, and electrophysiology, emphasizing their relevance to the
development of this study, from the ionic level to the organ level. Ventricu-
lar electrophysiological characteristics are thoroughly described. Furthermore,
the chapter explores the features of intrauterine growth restriction in cardiac
remodeling and its association with observed electrophysiological changes.
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Additionally, it discusses the electrocardiogram and vectorcardiogram as di-
agnostic tools, along with the primary biomarkers that can be detected through
these measurements.

1.1 Framework of the Thesis

1.1.1 Motivation

Cardiovascular diseases are among the leading causes of mortality worldwide,
accounting for over 3 million deaths annually in Europe in 2023 [1]. In the
United States, this figure reached 2 million annual deaths in 2019. In South
America, the statistics vary by country; however, the Pan American Health
Organization reported that in 2019, 28% of women and 43% of men were
unaware of their hypertensive condition, a major cardiovascular risk factor [2].

In the 1980s, the hypothesis of the fetal origin of adult onset diseases was
introduced, highlighting a potential relationship that brought significant con-
siderations for public health, particularly in underdeveloped/developing coun-
tries, where the percentage of low-birth-weight neonates is six times higher
than in developed nations [3]. During the current century, research on the
fetal programming hypothesis has demonstrated that maternal malnutrition
affects the fetal genome, causing permanent alterations in health [4]. In 2010,
evidence showed that maternal malnutrition impacts placental and fetal devel-
opment, leading to intrauterine growth restriction (IUGR), increased perinatal
mortality, low-birth-weight neonates, and a higher risk of developing metabolic
syndrome in adulthood [5].

Fetal growth in an unfavorable environment induces a state of malnutrition,
with Doppler analysis revealing abnormal blood flow patterns. A neonate is
considered small for gestational age (SGA) when birth weight is below the
10th percentile for gestational age or at least two standard deviations below
the normal population. The incidence of IUGR in newborns may range between
3% and 7% of the total population [6], and approximately 30 million newborns
are affected by IUGR globally each year. Overall, nearly 75% of all affected
newborns are born in Asia, around 20% in Africa, other 5% in South America
[3, 7], and a significant lower percentage in the rest of the Western world.

IUGR is currently recognized as a public health issue, as it represents one
of the leading causes of perinatal mortality and morbidity. Neonatal morbidity
includes asphyxia, meconium aspiration syndrome, persistent pulmonary hy-
pertension, hypothermia, hypoglycemia, polycythemia, jaundice, feeding diffi-
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culties, necrotizing enterocolitis, and sepsis. Long-term morbidity is associated
with neurological disorders, cardiovascular diseases, and metabolic syndrome.
Additionally, IUGR and preterm birth are linked to cardiovascular remodeling,
which can manifest as a reduced sphericity index (SpI) of the heart (base-to-
apex length/basal diameter).

Cardiac remodeling, characterized by structural and functional alterations
in the myocardium, is a key factor in the development of cardiovascular dis-
eases throughout life. Recent studies have shown that this phenomenon may
have a congenital origin, associated with conditions such as IUGR, due to mor-
phophysiological changes in cardiac mass, volume, and shape starting in the
fetal stage. Individuals exposed to IUGR exhibit alterations such as a more
spherical left ventricle (LV) and increased ventricular wall thickness, predis-
posing them to systolic and diastolic dysfunction at various life stages [8, 9].
Other electrophysiological abnormalities, such as prolonged depolarization and
repolarization intervals, are associated with a higher risk of ventricular ar-
rhythmias [10]. These findings underscore the importance of understanding
the impact of cardiac remodeling as a consequence of IUGR, both in the de-
velopment and persistence of cardiovascular pathologies into adulthood and in
its role in the progression of related chronic diseases.

The degree of geometric remodeling is more pronounced in those born most
prematurely. This was quantified using cardiac magnetic resonance imaging
in infants, showing a higher weight-indexed left ventricular mass and greater
end-diastolic volume in the IUGR cohort compared to term controls [11].
Additionally, variations in aortic wall thickness have been observed in term
neonates with IUGR. The intima-media thickness was significantly greater in
the IUGR group (810 µm in 25 neonates) compared to controls (743 µm in 25
neonates) [12].

Studies across different age groups have demonstrated the prevalence of
anatomical changes in the cardiac muscle. In children, cardiovascular eval-
uations, including echocardiography and blood pressure measurements, have
shown that cardiac changes persist from birth to six months of age [8]. In pre-
adolescent patients, evidence obtained through echocardiography and three-
dimensional heart shape analysis has indicated that cardiac remodeling per-
sists, yielding results similar to those observed during childhood [13]. Subse-
quent studies on adults have corroborated the findings from studies in chil-
dren and pre-adolescents. Using surface electrocardiography and generating
vectorcardiograms, significant differences were observed in the angles between
the dominant QRS depolarization vector and the T-wave repolarization vector
in the XY plane between control patients and those diagnosed with IUGR.
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This difference may play a key role in the cardiovascular risk of patients with
IUGR [14,15].

Experimental animal studies have explored the effects of fetal growth re-
striction, revealing morphophysiological cardiac alterations associated with
adult diseases [16]. Various experimental approaches have been employed to
alter the fetal environment, inducing conditions that mimic reduced efficiency
in nutrient and oxygen exchange. Regardless of the specific method used,
these models consistently result in common physiological consequences, many
of which closely resemble those observed in human pathologies, such as reduced
nephron number, impaired vascular function, and significant increases in blood
pressure [17,18].

Through computational simulations, it has become possible to integrate
anatomical and physiological information at the organ level and simulate the
propagation of action potentials, enabling the in silico representation of various
pathological conditions. The use of an electrophysiological heart model, based
on cellular and tissue-level frameworks and incorporated into realistic geome-
tries derived from medical imaging, allows for the exploration of heterogeneity
in action potentials, repolarization dispersion, and the mechanisms underlying
the complex functioning of cardiac muscle.

The ability of these models to integrate electrical information from the cellu-
lar level to tissue behavior enables the simulation of electrocardiograms (ECGs)
and the evaluation of biomarkers in the context of patients with IUGR. While
previous studies have demonstrated significant anatomical and physiological
impacts during neonatal and preadolescent stages, the relationship between
geometric changes and cardiac electrophysiology remains a critical area requir-
ing further investigation.

1.1.2 Thesis goals

The aim of this thesis is to characterize the electrophysiological parameters of
the heart in preadolescents born with IUGR and their association with anatom-
ical remodeling, through the analysis of ECG signals and biophysically-detailed
computational models. To achieve this, several in silico experiments were con-
ducted, simulating electrophysiological behaviour using realistic heart and torso
models. Additionally, ECG parameters were measured in a cohort of IUGR
and control subjects to evaluate depolarization and repolarization intervals,
which were also analyzed in silico.

The research conducted and presented in this thesis was divided into the
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following objectives:

• To develop a comprehensive computational framework for simulating
normal 12-lead ECG traces within physiological ranges, incorporating
a Purkinje-based conduction system tailored to each anatomical model.

• To derive anatomical models accounting for the anatomical changes ob-
served in IUGR-preadolescents.

• To create a simulation framework for an electrophysiological heart model
of an IUGR patient, enabling the characterization of ECG-based and
anatomical parameters associated with cardiovascular risk.

Regarding the first objective, the Purkinje fibers were implemented in the
model to simulate electrical stimulation, using a fractal projection method onto
the endocardial tissue. This Purkinje network originated from the His bundle,
incorporating varying diffusivity characteristics to reach the terminal nodes of
the Purkinje network. A torso model was integrated with the heart to calcu-
late the potentials that would be recorded using a virtual 12-lead ECG. The
propagation model used was monodomain. The developed electrophysiolog-
ical model and methodology enabled the creation of a finite element model
for reaction-diffusion analysis, allowing the simulation of various scenarios by
varying geometric parameters associated with cardiovascular remodeling.

To obtain normal T waves in agreement with clinical ranges, electrophys-
iological heterogeneities were introduced transmurally and along the apex-to-
base direction. The biventricular model was divided into three sections: the
apex section, mid-section, and base section. Each section was assigned a dif-
ferent GKs conductivity value to induce changes in the IKs current, enabling a
detailed representation of repolarization dispersion.

For the second objective, IUGR-specific anatomical models were developed
using a control ventricular model derived from medical imaging data. This
involved applying cardiac remodeling parameters associated with IUGR, such
as the sphericity index, apex-to-base length, and left ventricular thickness,
as reported in the literature, to generate the anatomical models. These gen-
erated models will hereafter be referred to as globular cardiac models. The
three-dimensional heart model differentiated the epicardium, myocardium, and
endocardium tissues, and the direction of muscle fibers was assigned to each
element of the tetrahedral mesh based on a rule-based method.

For the third objective, the impact of anatomical changes in the dominant
vectors of the QRS, T-wave and QRS to T-wave was evaluated. Given that
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inter-subject variability in the proportion of tissue division (endo, mid, and
epi) affects repolarization, the effect of these changes on the direction of the
dominant vectors of the QRS loop and the T-wave was analyzed.

Finally, we analyzed traditional ECG-based risk biomarkers, such as pro-
longed QRS complexes and T-wave durations, which were hypothesized to
result from increased left ventricular wall thickness as a consequence of IUGR.
To test this, the durations of the QRS complex, T-peak to T-end interval, QT
interval, and Tpe/QT ratio were analyzed. This analysis was also performed
on clinical data from a database of preadolescent control subjects and those
with severe IUGR. The numerical simulation results were then compared with
reported clinical findings to evaluate their statistical significance. Globular
models were generated by varying the sphericity index and increasing left ven-
tricular wall thickness, analyzing the impact of these changes on depolarization
and repolarization dynamics.

1.1.3 Thesis outline

This document outlines the work and methodology developed during the doc-
toral research conducted in the Biomedical Engineering program at the Univer-
sity of Zaragoza and presents the findings of the thesis. The research aimed at
characterizing the electrophysiological parameters of the heart of IUGR-born
preadolescents and their association with anatomical remodeling, through the
analysis of ECG signals and anatomically modified computational models. Pre-
vious studies have demonstrated anatomical and physiological impacts during
neonatal and preadolescent stages; however, the relationship between geometric
heart changes and cardiac electrophysiology requires further investigation. The
findings of this research could contribute to evaluating the impacts of cardiac
remodeling using ECG or vectorcardiogram (VCG) data and may also provide
information on the effects of variations in sphericity index and thickness of the
ventricular wall on ECG readings.

The structure of this Ph.D. thesis is organized into six chapters, detail-
ing the research context, the methodology for generating computational mod-
els, and the measurement of the ECG interval resulting in depolarization and
repolarization biomarkers related to cardiovascular risk. These analyzes are
performed on clinical ECG signals and synthetic ECGs generated in silico.

• Chapter 1: This chapter frames the thesis and introduces the biological
aspects of cardiac electrophysiology, including the anatomy and func-
tion of the heart, as well as the fundamental mechanisms underlying its
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electrical activity. It covers the phases of the cardiac action potential,
explaining the ionic events that occur during each phase, from rapid
depolarization to the resting state. Additionally, the heterogeneity of
ventricular tissue is discussed, highlighting the electrophysiological differ-
ences between the endocardium, mid-myocardium, and epicardium, with
a particular focus on the variability in action potential duration among
these layers. The chapter also includes a description of the ECG and
VCG, emphasizing the key characteristics of depolarization and repolar-
ization waves. After detailing the biological background, we incorporate
a discussion on some collateral effects of IUGR on cardiac muscle, ad-
dressing both anatomical and physiological impacts. Finally, we describe
the biomarkers identified in ECG and VCG associated with IUGR, as
reported in the state of the art.

• Chapter 2: This chapter addresses several computational models pro-
posed for simulating cardiac electrical activity, concluding with the char-
acterization of the bidomain and monodomain models. Subsequently, the
computational framework employed to solve a reaction-diffusion system
using the finite element method is described. The chapter also details
the biosignal processing tools used for applying linear transformations
in principal component analysis to enable precise identification of QRS
complexes and T-waves in virtual electrocardiographic signals. Finally,
the calculation of the VCG from the synthetic ECG is described using the
inverse Dower matrix, highlighting its importance for the interpretation
of cardiac electrical biomarkers.

• Chapter 3: This chapter describes the methodology used to evaluate the
relationship between morphological remodeling and the angular variation
of QRS and T-wave dominant vectors. This was achieved using compu-
tational models based on realistic heart and torso geometries, in which
IUGR-induced morphological changes were incorporated by reducing the
ventricular sphericity index. Starting from a control model, we developed
eight different globular heart models (GA a GH) by shortening the base-
to-apex length and increasing the basal ventricular diameter. The aim
of this chapter was to simulate the geometric cardiac changes resulting
from IUGR and compare them with reported clinical findings.

We computed QRS and T-wave dominant vectors and their angles from
simulated pseudo ECG and compared these with clinical measurements.
By additionally varying the position of the ventricles relative to the torso
and electrodes, we observed that electrode displacement could signifi-
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cantly impact the calculated angles and should be considered when in-
terpreting the results. The simulation-based findings suggest a connec-
tion between QRS-T angles and altered heart morphology, highlighting
a potential non-invasive approach for assessing cardiac remodeling.

The following publications presented the results obtained in this chapter:

– Bueno-Palomeque, F.L., Mountris, K.A., Mincholé, A., Ortigosa,
N., Bailón, R., Pueyo, E. and Laguna, P., “Changes in QRS and
T-wave Loops Subsequent to an Increase in Left Ventricle Globu-
larity as in Intrauterine Growth Restriction: a Simulation Study”,
2020 Computing in Cardiology, Rimini, Italy, 2020, pp. 1-4, doi:
10.22489/CinC.2020.438.

– Bueno-Palomeque, F.L., Mountris, K.A., Mincholé, A., Ortigosa,
N., Bailón, R., Pueyo, E. and Laguna, P., “Variación del ángulo
entre QRS y onda T del ECG en función del ı́ndice de esfericidad
ventricular en sujetos con crecimiento intrauterino retardado: un
estudio computacional.” Jornada de Jóvenes Investigadores del I3A
10 (2022).

– Bueno-Palomeque, F.L., Mountris, K.A., Ortigosa, N., Bailón, R.,
Bijnens, B., Crispi, F., Pueyo, E., Mincholé, A., and Laguna, P.,
“QRS-T Angles as Markers for Heart Sphericity in Subjects With In-
trauterine Growth Restriction: A Simulation Study,” in IEEE Jour-
nal of Biomedical and Health Informatics, vol. 27, no. 10, pp.
4707-4718, Oct. 2023, doi: 10.1109/JBHI.2023.3297550.

• Chapter 4: This chapter describes how increased globularity and wall
thickness resulting from IUGR in preadolescents affects the QRS width,
T-peak to T-end and QT intervals, all biomarkers associated with sus-
ceptibility to ventricular arrhythmia. The results revealed significant
differences in several biomarkers, providing evidence of electrophysiolog-
ical changes caused by cardiac remodeling in preadolescents. The IUGR
subjects showed significantly wider QRS (4 ms), longer Tpe intervals (2
ms), and higher ratio between Tpe and QT (3%) as compared to control
group.

The following publication summarized the results obtained in this chap-
ter:

– Bueno-Palomeque, F.L., Mountris, K.A., Ortigosa, N., Bailón, R.,
Bijnens, B., Crispi, F., Pueyo, E., Mincholé, A., and Laguna, P.,
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“QRS Width and T-Peak to T-End Interval Are Prolonged in Pread-
olescents with Severe Intrauterine Growth Restriction at Birth when
Compared to Controls,” 2023 Computing in Cardiology (CinC), At-
lanta, GA, USA, 2023, pp. 1-4, doi: 10.22489/CinC.2023.344.

• Chapter 5: This chapter describes the various electrophysiological in
silico simulations conducted using eight different globular models (G1
a G8) derived from a reference control model. These models reflected
the anatomical cardiac changes resulting from IUGR and assessed their
impact on depolarization and repolarization intervals.

Measurements on the in silico PCA transformed leads showed an increase
in QRS width, R amplitude, and in Tpe interval in the globular models,
consistent with clinical data measured in the chapter 4. Despite the
increase in QRS width, the QT interval increases but in a way not linearly
related to ventricular wall thickness change.

These findings suggest that cardiac remodeling primarily influences the
depolarization cycle, notably QRS width, while repolarization intervals
increases but not directly related to the left ventricular wall thickness in-
crease. The study contributes to a deeper understanding of the impact of
geometric and volumetric changes in IUGR-related cardiac remodeling,
also emphasizing the need for further research introducing electrophys-
iological remodeling, additional to the anatomical/geometrical one here
considered, and their impact on cardiac function.

The following publications presented the results obtained in this chapter:

– Bueno-Palomeque, F.L., Zacur, E., Pueyo, E., Crispi, F., Laguna, P.
and Mincholé, A., “Implications of IUGR-Related Geometric Heart
Changes on the ECG and Electrophysiology: an In silico Perspec-
tive.” 2024 Computing in Cardiology (CinC), Karlsruhe, Germany,
2024, pp. 1-4, doi: 10.22489/CinC.2024.462.

– Bueno-Palomeque, F.L., Zacur, E., Pueyo, E., Crispi, F., Laguna, P.
and Mincholé, A., “Electrophysiological Characterization of Pread-
olescents Born with Intrauterine Growth Restriction: Insights from
Clinical and Computational Data”, Journal of Physiology,
doi: 10.1113/JP288197.

• Chapter 6: This chapter summarizes the main findings of this research,
the conclusions drawn, and the limitations encountered during this study,
which was part of the doctoral program in biomedical engineering. The
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findings are discussed in the context of the current state of the art, and
guidelines for future work are proposed.
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1.2 Cardiac anatomy and function

The heart is the primary organ of the cardiovascular system, responsible for
continuously distributing blood throughout the body. In this process, the heart
supplies oxygen and nutrients while removing metabolic waste products gen-
erated by various biological processes.

The heart has four chambers: two upper chambers (atria) and two lower
chambers (ventricles). The right atrium receives blood from three vessels: the
superior vena cava, the inferior vena cava, and the coronary sinus. Blood
flows from the right atrium to the right ventricle (RV) through the tricuspid
(or right atrioventricular) valve. The RV contains internal ridges formed by
bundles of muscle fibers called trabeculae carneae, some of which are part
of the heart’s conduction system. The RV is separated from the LV by the
interventricular septum. Blood from the RV flows through the pulmonary
valve into the pulmonary trunk, which divides into the right and left pulmonary
arteries that carry blood to the lungs (Fig. 1.1) [19].

Figure 1.1: Longitudinal view of the heart, showing the chambers and the valve system for
their connection. Regions marked in red represent the chambers and the system responsible
for the conduction of oxygenated blood throughout the body. Blue regions correspond to
the circulation of deoxygenated blood to the lungs for reoxygenation. Adapted from https:
//smart.servier.com/

On the other side, the left atrium receives blood from the lungs via four
pulmonary veins. Blood flows from the left atrium to the LV through the

https://smart.servier.com/
https://smart.servier.com/
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bicuspid (or mitral) valve. The LV, which has the thickest wall of the four
chambers, forms the apex of the heart. Blood flows from this chamber through
the aortic valve into the ascending and descending aorta. When a heart cham-
ber contracts, it ejects a volume of blood into a ventricle or an artery. The
valves open and close in response to pressure changes that occur during the
cardiac cycle of contraction and relaxation. Valves are unidirectional, opening
to allow blood flow and closing to prevent backflow.

The heart rests on the diaphragm, with approximately two-thirds of its
mass located to the left of the body’s midline (the line that divides the body
into right and left sides). The heart has a conical shape; its apex is formed by
the LV and points anteriorly, inferiorly, and to the left. The base of the heart,
opposite to the apex, forms the posterior surface and is composed mainly of
the atria, predominantly the left atrium.

The heart is enclosed by a membrane called the pericardium, which holds
it in position while allowing freedom of movement for contraction. The peri-
cardium is divided into two layers: the fibrous pericardium, made of dense
connective tissue, which prevents excessive stretching of the heart; and the
serous pericardium, a deeper layer that forms a double membrane around the
heart (Fig. 1.2) [19].

Figure 1.2: Pericardium and heart wall with their divisions. Adapted from https://smart.
servier.com/

The heart wall, composed of three main layers, the epicardial tissue (epi),
mid-myocardial tissue (mid), and endocardial tissue (endo), plays a critical
role in its functionality. In particular, the myocardium, formed by special-
ized muscle tissue, enables the rhythmic and synchronized contractions of the

https://smart.servier.com/
https://smart.servier.com/


1

1.3 Cardiac electrophysiology 13

heart, driven by an intrinsic electrical conduction system. This anatomical ar-
chitecture, combined with the mechanical and electrical properties of the heart,
ensures efficient circulation while adapting to the body’s metabolic demands.

The endo tissue is the innermost layer of the heart, lining the cardiac cham-
bers and valves. It is primarily composed of endothelial tissue and serves as
a barrier that facilitates smooth blood flow without friction. At the center
of the heart wall lies the mid tissue, the muscular layer responsible for the
rhythmic contractions that pump blood. This layer is formed by specialized
muscle fibers that enable synchronized and efficient contractions. The myocar-
dial muscle fibers are wrapped and surrounded by connective tissue made up
of endomysium and perimysium. These cardiac muscle fibers are organized
into bundles that run diagonally around the heart, facilitating blood ejection.
Cardiac muscle is a striated, involuntary muscle. Finally, the epi tissue, the
outermost layer, is composed of connective tissue and a thin layer of mesothe-
lial cells. In addition to serving as a protective layer, the epicardium is part
of the pericardium, the membranous sac that surrounds the heart. The epi-
cardium contains blood vessels, lymphatic vessels, and nerves that supply the
myocardium. These three layers not only have distinct structures but also
function in coordination, which is essential for the proper performance of the
organ.

1.3 Cardiac electrophysiology

1.3.1 Conduction system

The electrical function of the heart is carried out by a specialized conduction
system that ensures the generation and propagation of electrical impulses nec-
essary for the synchronized contraction of the myocardium. This system begins
with the sinoatrial (SA) node, located in the right atrium, which serves as the
primary pacemaker by generating spontaneous action potential (AP) through
automatic cells. Electrical impulses propagate from the SA node to the atria,
inducing their contraction, and reach the atrioventricular (AV) node. Here, a
critical delay occurs to allow ventricular filling before contraction. From the
AV node, the electrical stimulus is transmitted to the bundle of His and then
to the Purkinje fibers, which distribute the AP rapidly and uniformly through-
out the ventricles (Fig. 1.3). This process is facilitated by low-resistance con-
nections in the intercalated discs, such as gap junctions, which enable rapid
cellular depolarization. The pattern of electrical activation, combined with
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the electrophysiological properties of the different myocardial layers, results in
coordinated movements that optimize the efficient pumping of blood into the
systemic and pulmonary circulation.

The Purkinje fibers are distinguished by their capacity to transmit electrical
impulses at velocities ranging from 1.5 to 4.0 meters per second [20]. This
rapid conduction is attributed to their large diameter and the abundance of
gap junctions in the intercalated discs. Due to this high conduction velocity
(CV) and the distribution of Purkinje fibers, excitation reaches the contractile
myocardium of both ventricles almost simultaneously.

Figure 1.3: This figure presents a longitudinal section of the heart, highlighting the cardiac
conduction system. Adapted from https://smart.servier.com/

The direction of the myocardial fibers is organized in a unique helical ar-
rangement that varies across the layers of the myocardial wall. In the endocar-
dial layer, the fibers are predominantly oriented longitudinally (+60 degrees),
while in the midmyocardial tissue, the fibers adopt a circumferential orienta-
tion. In the epicardial layer, the fibers revert to a longitudinal orientation but
in the opposite direction to the endo (-60 degrees) [21]. This helical pattern
allows for coordinated contraction and relaxation of the myocardium, facilitat-
ing a torsional motion that enhances the efficiency of blood ejection. During
systole, the counterclockwise rotation of the ventricular base and the clock-
wise rotation of the apex produce a “twisting” effect that improves ventricular
ejection. During diastole, this motion is reversed, favoring ventricular filling.
This arrangement not only optimizes the mechanical performance of the heart

https://smart.servier.com/
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but also evenly distributes stress and minimizes energy expenditure during the
cardiac cycle.

1.3.2 Electrophysiological properties of myocardial cells

The electrical potential difference between the inner and outer of a cell varies
depending on the cell type and its specialized properties of the cell membrane
that separates these two environments. The presence of dominant ions in the
intracellular and extracellular fluids makes it a conductive medium. Sodium
(Na`), potassium (K`), and chloride (Cl´) are fundamental in neural cells,
while calcium (Ca2`) is a more important element in cardiac muscle cells [22,
23]. Among the active characteristics of the membrane are integral proteins
that function as pumps, using energy to transport ions across the membrane
against a concentration gradient, an electrical gradient, or both. The sodium-
potassium pump moves sodium ions out of the intracellular space and bringing
potassium ions in. Other proteins function as channels, opening or closing
pathways through the membrane at different times. While the pump establishes
the concentration differences that allow certain events to occur, the channels
utilize this energy to create rapid voltage changes and small, intense loops of
current that form the signaling system through nerves to muscles [24].

Over a period of time, ion chanels, exchangers and ion pumps cause different
concentrations of ions to accumulate inside and outside a cell. A transmem-
brane voltage is generated because there is a difference in concentration across
the membrane. In a steady state, the transmembrane potential for a system
involving the four main ions species can be modeled using the equation:

Vm “
gK
gm

VK `
gNa

gm
VNa `

gCa

gm
VCa `

gCl

gm
VCl, (1.1)

where Vm is the membrane potential in mV, gi is the i-th ionic specie channel
conductivity, i P tK`, Na`, Ca2`, Cl´u, gm “

ř4
i“1 gi is the sum of all the

conductivities, and Vi the i-th ionic specie equilibrium potential given by the
Nernst equilibrium equation:

Vi “
R T

ziF
ln

ˆ

rηisout

rηisin

˙

, (1.2)

where R is the universal gas constant, T is the absolute temperature in (˝K),
F is the Faraday constant, zi is the valence of i-th specie ion, rηisout and rηisin

are the extracellular and intracellular concentrations, respectively, of i-th ions.
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The effects of the diffusion gradient and the potential gradient are nearly
equal and opposite when the intracellular potential is -90mV relative to the
extracellular potential, resulting in a steady state.

Membranes generate AP by changing their permeability to specific ions,
such as sodium and potassium. An AP lasts approximately 400 ms. In the
cardiac conduction system, an AP begins with a resting voltage near -90 mV,
followed by an excitation phase where membrane permeability changes, and the
voltage rapidly rises. After reaching a peak of about +20 mV, the potential is
maintained at a plateau close to 0 mV for approximately 300 ms, after which
it returns to its resting state. This sequence of five well-defined phases, that
ensure the synchronized contraction and relaxation of the myocardium, are
listed and represented in the Fig. 1.4.

Figure 1.4: Diagram of the ventricular cell AP and the ionic exchange involved in its gener-
ation. Adapted from https://smart.servier.com/.

• Phase 0 - Rapid Depolarization: This phase begins with the opening
of fast Na` channels, allowing a massive influx of sodium ions into the
cell. This positive flow generates an abrupt increase in the membrane
potential, reaching values near +20 mV. This rapid change is crucial for
activating the action potential and triggering myocardial contraction.

• Phase 1 - Initial Repolarization: Following depolarization, the fast Na`

https://smart.servier.com/
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channels inactivate, and transient potassium (Ito) channels open, allowing
a brief efflux of K` out of the cell. This generates a slight drop in
membrane potential, initiating the repolarization process.

• Phase 2 - Plateau: Sustained calcium (Ca2`) influx through L-type cal-
cium channels counteracts potassium efflux, maintaining a stable mem-
brane potential around 0 mV. This prolonged equilibrium ensures sus-
tained myocardial contraction, which is essential for the effective pump-
ing of blood from the cardiac chambers to the circulation.

• Phase 3 - Complete Repolarization: During this phase, L-type calcium
channels gradually inactivate, while delayed rectifier potassium channels
(IKr and IKs) become increasingly active, facilitating potassium efflux and
restoring the membrane potential to negative values. This process returns
the cell to its basal electrical state, concluding the action potential.

• Phase 4 - Resting State: In the final phase, the membrane potential
remains stable at approximately -90 mV, maintained by the sodium-
potassium pump (Na`/K` ATPase), which restores ionic gradients by ex-
pelling sodium and reintroducing potassium, and by the sodium-calcium
exchanger (Na`/Ca2`), which regulates intracellular calcium levels. This
resting state prepares the cardiac cell to initiate a new depolarization cy-
cle.

Quantifying the electrophysiological properties of the cardiac AP is cru-
cial for evaluating myocardial function and identifying potential abnormalities.
Among the key parameters is the action potential duration (APD), which rep-
resents the time elapsed from the onset of depolarization to the end of repolar-
ization, measured at different percentages of repolarization (APD50, APD90).
This parameter reflects the cell’s ability to sustain contraction and is influenced
by ion channel activity. Another critical metric is the effective refractory pe-
riod, corresponding to the interval during which a cell cannot be re-excited,
ensuring synchronization and preventing arrhythmias. The post-refractory re-
covery measures the time required for cells to fully regain excitability after
the effective refractory period, which is relevant for analyzing susceptibility to
disorganized rhythms. Lastly, the CV quantifies the speed at which electrical
impulses propagate through cardiac tissue, depending on cellular connectivity
and myocardial electrophysiological properties.



1

18 Chapter 1. Introduction

1.3.3 Spatial heterogeneities in depolarization and repolarization

Human ventricular tissue is highly heterogeneous, both functionally and struc-
turally, with significant differences between the endo, mid, and epi tissue. The
endo tissue, in direct contact with the bloodstream, contains fibers oriented
for efficient conduction and demonstrates a reduced response to rapid electri-
cal stimuli, adapting to its role in initiating ventricular contraction [25]. The
epi tissue, located on the heart’s outer surface, is composed of fibers with a
higher density of K` channels, enabling faster repolarization. The mid tissue,
situated between these two layers, has been reported a longer APD [26].

The APD varies significantly among these tissues due to differences in ion
channel expression and functionality. In the endo, the APD is typically longer
because of reduced activity of delayed rectifier K` channels, which slows repo-
larization. In contrast, the epi tissue exhibits a shorter APD due to a higher
density of Ito channels, which promotes earlier repolarization. The mid tissue,
characterized by a high concentration of M cells, shows a longer APD and de-
velop early afterdepolarizations in response to blockers of the rapidly activating
delayed rectifier potassium current (IKr), whereas epicardial and endocardial
cells are generally less likely to do so [26, 27]. This variation in APD across
ventricular layers creates a repolarization gradient that plays a important role
in coordinating ventricular contraction.

The heterogeneity of APD among ventricular layers has significant clini-
cal implications, particularly in arrhythmia susceptibility. The repolarization
gradient between the endo, mid, and epi can act as a trigger for reentry, a
common mechanism in ventricular arrhythmias [28, 29]. Additionally, under
pathological conditions such as ischemia or ventricular hypertrophy, this het-
erogeneity may be exacerbated, increasing the risk of severe arrhythmic events.
Understanding the role of these electrophysiological variations among ventric-
ular layers is essential not only for developing therapeutic strategies but also
for risk stratification. Computational models that accurately simulate cardiac
electrical activity across various health and disease states may help deepen our
understanding of this role.

1.4 Electrocardiogram and vectorcardiogram

The heart’s electrical activity and its variations over time propagate through
the body due to its conductive properties. As a result, measurements through
electrodes placed on the torso’s skin taken outside the cells will provide a
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superposition of contributions from the APs generated by the muscle fibers
propagated throughout the body. The recording of the heart’s electrical activ-
ity during the cardiac cycle is done through an ECG. The series of waveforms
recorded via electrodes placed on the body’s surface -along with their shape,
duration, and patterns- provide information that has become a fundamental
tool in diagnosing heart diseases. The importance of the ECG has been further
strengthened by the use of computational tools that allow for the analysis of
subtle variations in ECG signals and the ability to process large amounts of
data relatively quickly.

ECG signals are recorded from various locations on the body to provide a
three-dimensional representation of the heart’s electrical activity. The standard
12-lead ECG system consists of 12 leads derived from 10 electrodes, which
include six limb leads (I, II, III, aVR, aVL, aVF) and six chest leads (V1 to
V6). Fig. 1.5 illustrates the three-dimensional orientation of these 12 standard
leads within the XYZ-coordinate system.

A VCG represents both the spatial and temporal information of cardiac ac-
tivity. The depolarization and repolarization loops can have clinical relevance
in detecting cardiac conditions such as myocardial infarction or myocardial
injury during coronary surgery, features that are not easily observable in a
standard ECG signal. Spatial VCG signals have been shown not only to facili-
tate a basic understanding of the electrical phenomena associated with cardiac
function, but also to reveal pathological features that are difficult to detect in
an ECG [30].

The information provided by the VCG complements the ECG in the analy-
sis of acute myocardial infarctions and allows for a more detailed evaluation of
the association between conduction blocks and chamber hypertrophies. VCG
has been demonstrated to be a valuable tool in identifying conditions such
as right ventricular hypertrophy, lateral infarction, ventricular pre-excitation
syndrome, and Brugada syndrome [31], among other pathologies [32]. The
simultaneous analysis of ECG and VCG has also proven to be an important
tool for diagnosing certain cardiac pathologies [33], through what is known as
electrovectorcardiography.

The Frank lead system is a vectorcardiographic approach designed to cap-
ture the three-dimensional electrical activity of the heart more accurately than
the standard ECG system [34]. It employs a set of orthogonal leads, typically
labeled as XYZ, to directly measure the heart’s electrical vectors along three
mutually perpendicular axes (see Fig. 1.5). These leads provide a more precise
spatial representation of cardiac electrical activity by minimizing projection
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distortions seen in the standard ECG.

Figure 1.5: The three-dimensional view of 12 ECG leads on the xyz-coordinate axis system.
Adapted from [35] https://www.mdpi.com/1424-8220/20/24/7246.

Linear mathematical transformations such as Dower or Kors [36–38], can
be applied to the standard 12-lead ECG to project the electrical signals into
a three-dimensional space, thereby synthesizing the VCG or XYZ components
of cardiac electrical activity. These synthesized XYZ leads aim to replicate
the orthogonal views provided by systems like the Frank lead configuration.
Dower conducted his research based on the torso models developed by Frank
and introduced a linear transformation matrix to derive a 3-lead VCG from the
standard 12-lead ECG. This transformation was shown to preserve clinically
relevant information related to the heart’s electrical dynamics [30].

The Kors/Dower transformations derive the VCG from the recorded leads
xlipnq where li “ V 1, V 2, V 3, V 4, V 5, V 6, I, II leads, based on equation 1.3.
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where xVCGpnq, yVCGpnq, zVCGpnq are the components of the VCG along the
XYZ axes, xl1pnq, xl2pnq, . . . , xlmpnq are the ECG signals from the standard

https://www.mdpi.com/1424-8220/20/24/7246
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12-lead ECG (V1 to V6, I, and II leads) and aij are the elements of the trans-
formation matrix that relates the VCG signals to the ECG signals. In this way,
by applying the inverse matrix in (1.3), an equivalent VCG can be obtained
from an ECG recording.

The set of cardiac cells that depolarize at a given moment in time can be
represented as a dipole, which can be associated with a vector whose position,
direction, and magnitude describe the behavior of the dipole over time. The
sum of all the vectors can be represented as a dominant vector that describes
the direction of the electrical impulse during the depolarization and repolariza-
tion phases in a three-dimensional plane. This vector can be visualized through
a VCG.

1.4.1 Genesis of P, QRS and T waveforms, and their associated intervals

An ECG signal presents several important waves and intervals that are critical
for clinical analysis, and detecting these has been a key area of development
in biosignal processing. The names and intervals of the ECG in humans are
exemplified in Fig. 1.6. Atrial depolarization is identified by the P wave, while
ventricular depolarization is represented by the QRS complex, and the T-wave
reflects the ventricular repolarization phase. Atrial repolarization is difficult to
determine, as it coincides largely with the QRS complex. The QRS complex
encompasses the depolarization process of both ventricles, and its duration can
range from 70 to 110 ms. The amplitude during this phase can reach 2-3 mV.

From the standard 12-lead ECG, the QRS duration (QRSd) is a characteris-
tic associated with morphophysiological abnormalities and serves as a predictor
of congestive heart failure [39], an incident of atrial fibrillation [40], and death.
The RR interval represents the length of a cardiac cycle and is measured be-
tween two successive R peaks.

The T-wave is generated by ventricular repolarization and can last around
300 ms. The duration of the interval between the T-wave peak and its end (Tpe)
is a parameter also measured to analyze the dispersion of repolarization. The
QT interval represents the time from the onset of ventricular depolarization to
the complete ventricular repolarization. Since this parameter varies with heart
rate, it is important to correct it to have biomarkers heart rate independent.

During the repolarization phase, the QT and Tpe intervals have been iden-
tified as predictors of ventricular arrhythmias in severe cardiac conditions [41].
The ratio between Tpe and QT (Tpe/QT) shows the relationship between the
dispersion of repolarization relative to ventricular APD and is considered an
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Figure 1.6: Diagram of an ECG with representative markers at different stages of the cardiac
cycle: the P wave corresponding to atrial depolarization, the QRS complex corresponding to
ventricular contraction, and the T-wave corresponding to repolarization.

index of arrhythmogenesis [42].

1.5 Intrauterine growth restriction and its cardiac impacts

Cardiac remodeling is widely recognized as a major contributor to cardiovas-
cular disease. Anatomical and physiological changes such as alterations in
size, geometry, and function, can result from cardiac injury or be triggered
by various factors, including ischemia/reperfusion, pressure and volume over-
load, genetic predisposition, IUGR, or neuroendocrine activation, among other
causes [43]. When cardiac remodeling occurs as a result of IUGR, it is often re-
ferred to as fetal programming [44]. Although the connection between cardiac
remodeling and myocardial dysfunction is well-established, the underlying pro-
gression of this phenomenon remains incompletely understood. Consequently,
recent research has increasingly focused on the potential influence of the fetal
environment on the development of adult diseases.

Cardiac adaptation, as a compensatory strategy to respond to an inade-
quate growth environment, is expected to reverse once the initial stressor is
removed. However, in some cases, cardiac remodeling persists into adulthood.
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IUGR affects 7-10% of all pregnancies, with a higher incidence in underde-
veloped or developing countries [45]. There is substantial evidence linking in-
trauterine development with adult-onset cardiac diseases [46]. IUGR is associ-
ated with adult obesity and increased risk of death from cardiovascular diseases
and stroke. Animal models studying fetal growth have also shown that this
condition leads to permanent alterations in cardiac morphophysiology, which
are connected to diseases later in life. Various experimental methods have been
applied to alter the fetal environment to simulate less efficient growth condi-
tions. Regardless of the method used, common consequences such as a reduced
nephron number, impaired vascular function, and significant increases in blood
pressure, can often be observed, resembling conditions seen in humans [16].

1.5.1 Structural cardiac remodeling in IUGR

Altin et al. [10] demonstrated that systolic and diastolic functions are altered
in infants born SGA with mild growth retardation, and these alterations differ
during the first six months of life. Further evidence supporting the occurrence
of primary cardiac remodeling during the fetal stage, which continues into
infancy (up to six months of corrected age), is presented by Cruz Lemini et
al. [8]. Their study utilized echocardiography and blood pressure measurements
in a cohort of 80 SGA fetuses and 80 control fetuses, reinforcing the idea that
cardiac changes begin in utero and persist postnatally.

Another study, conducted with a cohort of 58 IUGR children and 94 con-
trols, provides evidence that cardiac remodeling persists until preadolescence,
showing similar characteristics to those observed in the prenatal stage and
early childhood. The study confirmed the presence of a spherical ventricle and
reduced longitudinal motion, using 2D and 3D echocardiography, along with
blood pressure and/or ECG measurements (see Fig. 1.7) [13].

Additionally, children with IUGR exhibited a higher prevalence of post-
systolic shortening in the LV, particularly in the septal and lateral walls, which
is associated with pressure overload and generates increased stress on the sep-
tum. A large study involving nearly 150 000 adolescents, reported by Nils-
son [47], demonstrated that systolic blood pressure is inversely correlated with
birth weight, with lower birth weights linked to higher blood pressure. This
finding further supports the concept of fetal programming and its long-term
effects into adolescence.

On the other hand, Arnot et al., [48] in a study with a cohort of 784 young
adults (aged 34-49 years, all born at term and followed since birth), reported
that while adults who were SGA at birth exhibit cardiac changes in geometry
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Figure 1.7: 2D echocardiographic image showing the four heart chambers at the end of
diastole, comparing a control subject and a subject with fetal growth restriction (FGR). The
apex-to-base length and basal diameter are indicated, highlighting the more spherical shape
of the heart in the FGR subject. The control heart appears more elongated in contrast.
Image edited from [13]

and function similar to those observed in SGA children and adolescents, only
subtle alterations in cardiac anatomy and physiology are evident compared to
individuals born at a normal weight or appropriate for gestational age (AGA).
This analysis was conducted using 2D transthoracic echocardiograms.

Birth weight and its relationship with vascular function may stem from
reprogramming during the fetal stage. Studies have demonstrated a link be-
tween low birth weight and impaired endothelium-dependent dilation, both in
childhood and in individuals aged 20 to 30. However, the impact of this rela-
tionship diminishes progressively in the presence of an increased cardiovascular
risk [49].

Several studies have shown that the effects of IUGR can persist during
the early years after birth. However, the literature review revealed a lack
of studies linking the postnatal environment experienced by individuals born
with this condition to the persistence of cardiac remodeling. It is evident that
the postnatal developmental environment of infants influences growth, just
as it did during the fetal stage. Factors such as postnatal nutrition, parental
socioeconomic status, and the social environment significantly affect the overall
development of the individual [45]. On the other hand, regarding final height,
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the study by Legger et al. found that the ultimate stature and individual height
gain of children with IUGR are influenced by maternal and paternal height as
well as birth length, while discarding other variables such as pregnancy-related
risk factors associated with IUGR [50].

1.5.2 Electrophysiological changes in IUGR subjects

Cardiac remodeling is present with preterm birth, leading to changes in ventric-
ular mass, volume, and shape, particularly in the LV. The extent of geometric
remodeling is more pronounced in those born extremely preterm. Using car-
diac magnetic resonance imaging, Cox et al. [11] studied 34 preterm infants
and 10 term controls, finding a higher weight-indexed LV mass and greater
end-diastolic volume compared to the term controls. Echocardiography in
IUGR newborns also revealed a more globular heart with a reduced apex-base
length (L), likely an adaptation to manage pressure and volume overload.

Changes in pressure and volume are associated with a more globular heart
shape, dilated atria, and thicker myocardial walls, primarily due to hypoxia and
elevated placental resistance during the fetal stage, as seen in IUGR cases [8].
The SGA group demonstrated a more globular cardiac shape, with a lower left
SpI: 2.06 in controls vs. 1.87 in SGA prenatally, and 1.92 vs. 1.67 postnatally,
as well as signs of systolic longitudinal dysfunction.

The effects of cardiac remodeling are evident in the depolarization and
repolarization processes. Previous studies on ECG signals from adults who
experienced IUGR have shown that the angle between the dominant vectors of
the QRS and T waves is significantly different from that in control individuals.
This may reflect the cardiovascular electrophysiological remodeling that follows
IUGR and preterm birth into adolescence [14]. In a cohort of adults, there is
further evidence of ECG differences, with statistically significant differences
in the angle between the dominant vector of the QRS loop and the dominant
vector of the T-wave in the frontal plane [15].

In the fetal stage, QRSd measurements have been shown to be two stan-
dard deviations below the normal value when comparing an IUGR group (26
pregnant women) with AGA fetuses. These measurements were taken from
ECG recordings on the maternal surface within 10 days before delivery [51].
Similar results were found by Pardi [52], where 54 of 68 fetuses were classified
as IUGR, and of these, 44 showed QRSd below two standard deviations from
the mean normal value for their gestational age.

In contrast to these findings, Grimm et al. [53] compared the intervals
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using fetal magnetocardiography (fMCG) in a group of 30 IUGR and 60 control
subjects, finding a non-significant increase in QRSd. Similarly, Van Leeuwen et
al. [54] found significantly longer QRSd in an IUGR group, measured through
fMCG. Additionally, Velayo et al., [55] found no significant difference in QRSd

between the IUGR group (15 subjects) and controls (20 subjects), though a
significant prolongation of the QT interval was observed in the IUGR group,
measured through transabdominal fetal ECG.

Variations in the repolarization segment have also been observed in neonates,
reflected in greater QT and JT dispersion in the IUGR group [56], further
strengthening the link between IUGR and electrophysiological remodeling.
Changes in T-wave morphology are associated with the action potential of
different transmural layers during repolarization [57]. Considering the geomet-
ric changes in the basal diameter (ϕ), which widen the ventricular wall, these
changes could potentially affect the morphology of the T-wave and the QRS
complex.

While these markers (QRSd, QT, and Tpe) have shown a correlation with
IUGR subjects, the relationship between geometric remodeling and its impact
on their variation is not yet clearly understood. It has been suggested to further
investigate their role in distinguishing between IUGR and AGA individuals [58].

1.6 Biomarkers of cardiac electrophysiology

Among the consequences of IUGR, cardiac remodeling has been observed [8,13,
59], affecting the ventricular SpI, ratio of apex-base length L to basal diameter
ϕ (SpI=L{ϕ), primarily in the LV [60]. This morphological remodeling has
been observed in both newborns and preadolescents (8-12 years) [13], although
its persistence into adulthood appears to be subtle [48]. Additionally, studies in
adults suggest that individuals who experienced restricted growth during fetal
and early childhood stages exhibit greater left ventricular mass, particularly
affecting the interventricular septum and left posterior wall. This is reflected
by a significant increase in the relative wall thickness in the IUGR cohort [61],
with a similar trend also observed in preadolescents diagnosed with severe
IUGR [13]. Another study in adults born at term with a history of IUGR
reported a significant reduction in basal left ventricular diameter in the IUGR
cohort, but no differences in posterior ventricular wall thickness [62].

Regarding electrophysiology, clinical data from preadolescents have shown
differences in the dominant vectors of depolarization and repolarization loops
across the three spatial planes of the VCG [14], findings that are supported



1

1.6 Biomarkers of cardiac electrophysiology 27

by in silico simulations [63]. Similar electrical alterations have also been ob-
served in adults [15]. Moreover, In silico studies highlight significant shifts in
the direction of dominant vectors due to geometric remodeling, though some
discrepancies remain when compared to clinical results [64].

The QRSd obtained from the standard 12-lead ECG is a key marker asso-
ciated with morphophysiological abnormalities and has been shown to predict
congestive heart failure [39], incidents of atrial fibrillation [40], and death.
Studies examining fetal QRSd in IUGR have yielded conflicting results: while
some report reduced QRSd [51,52], one study found no significant change [53],
another observed a prolongation [54], and yet another detected no difference
[55] when compared to controls.

During the repolarization phase, the QT and the Tpe intervals are important
indicators of ventricular arrhythmias in severe cardiac conditions [41]. The
Tpe/QT ratio serves as an index of arrhythmogenesis, reflecting the relationship
between repolarization dispersion and ventricular APD [42]. Changes in the
T-wave morphology are linked to AP changes across the ventricles [57].

The review of the state of the art and some of the most relevant findings
aligned with this thesis are summarized in the Table 1.1. It primarily lists sci-
entific articles that have reported geometric alterations in the heart of IUGR
subjects, as well as studies that have identified changes in cardiac electrophys-
iology.
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Zaharie et al.,
2019 [60]

Longitudinal
prospective
cohort study

40 neonates with IUGR and 21 new-
borns with birthweight AGA

Evaluation at
24–48 hours of life
and follow-up at 6
months of age

Left heart measurements were significantly
lower in IUGR newborns compared to
AGA cohort

Sarvari et al.,
2017 [13]

Prospective co-
hort study

58 children with FGR and 94 controls
with normal fetal growth

From fetal life
to preadolescence
(8–12 years old)

LV SpI reduced in IUGR cohort

Arnott et al.,
2015 [48]

Prospective
longitudinal
cohort study

157 adults born SGA and 627 born
AGA

31 years (from
birth to age 34–49)

Adults born SGA have some statistically
significant but subtle changes in cardiac
structure and function

Vijayakumar et
al., 1995 [61]

Prospective co-
hort study

290 men born between 1920 and 1930
in East Hertfordshire, England

From birth to
adulthood

Enlarged LV mass associated with reduced
growth in infancy, affecting both the inter-
ventricular septum and the LV posterior
wall

Bjarneg̊ard et
al., 2013 [62]

Prospective co-
hort study

19 young adults (aged 22–25 years)
born at term after IUGR with abnor-
mal fetal blood flow, and 18 healthy
controls

Approximately
22–25 years

Significant reduction in basal LV diameter
in the IUGR cohort, but no differences in
posterior ventricular wall thickness

Ortigosa et al.,
2016 [14]

Cross-sectional
study

125 preadolescents: 33 with severe
IUGR and medically-induced preterm
birth, 32 with spontaneous preterm
birth and AGA, and 60 controls born
at term with AGA

Preterm-IUGR subjects showed increased
angles in depolarization (vs. XY plane and
repolarization vector) and decreased repo-
larization angle (vs. XZ plane) compared
to controls

Bueno-
Palomeque
et al., 2020 [63]

Computational
simulation
study

Not applicable Not applicable T-wave/XZ-plane angle increased in glob-
ular model. QRS-T XY-plane angle was
lower in control. A more globular LV al-
ters QRS/T-wave loop angles

Ortigosa et al.,
2018 [15]

Cross-sectional
study

87 adults (54 with a history of IUGR
and 33 controls)

Not applicable In the frontal plane (XY), the QRS-T an-
gle was statistically significantly larger in
controls (13.49˘13.65) compared to IUGR
adults (9.26˘8.47)

Bueno-
Palomeque
et al., 2023 [64]

Computational
simulation
study

Not applicable Not applicable QRS-T angle trends align with clinical
data, supporting the link between IUGR-
induced morphological remodeling and ob-
served angle changes
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Ilkhanoff et al.,
2012 [39]

Prospective co-
hort study

4,591 adults (mean age 61 years; 51%
women; 39% White) without baseline
cardiovascular disease

Mean of 7.1 years QRSd ą 100 ms was significantly associ-
ated with incident heart failure

Aeschbacher et
al., 2018 [40]

Prospective co-
hort study

15.314 participants from the
Atherosclerosis Risk in Communi-
ties (ARIC) study, free of atrial
fibrillation at baseline

Not specified QRSd was an independent predictor of in-
cident atrial fibrilation among women, but
not in men

Brambati et
al., 1982 [51]

Observational
study

26 fetuses diagnosed with IUGR Not applicable QRSd measurements two standard devi-
ations below the normal value in IUGR
group

Pardi et al.,
1986 [52]

Observational
study

68 fetuses with ultrasound evidence of
growth retardation

Not applicable 44 showed QRSd below two standard devi-
ations from the mean normal value

Grimm et al.,
2003 [53]

Observational
study using
fetal magneto-
cardiography

30 fetuses with IUGR and 60 nor-
motrophic fetuses

Not applicable Non-significant diference in QRSd

Van Leeuwen
et al., 2001 [54]

Observational
study using
fetal magneto-
cardiography

6 fetuses with IUGR and 39 healthy
fetuses as controls

Not applicable Significantly longer QRSd in an IUGR
group

Velayo et al.,
2017 [55]

Descriptive
observational
study

15 fetuses with early IUGR and 20 ges-
tational age-matched healthy controls,
between 20+0 and 33+6 weeks of ges-
tation

Not aplicable No significant difference in QRSd. A sig-
nificant prolongation of the QT interval in
the IUGR group

Yamaguchi et
al., 2003 [41]

Observational
study

27 patients with acquired Long QT
Syndrome

Not applicable QT and Tpe have been identified as pre-
dictors of ventricular arrhythmias in severe
cardiac conditions

Gupta et al.,
2008 [42]

Review article Not applicable Not aplicable The ratio Tpe/QT is considered an index
of arrhythmogenesis

Emori and
Antzelevitch,
2001 [57]

Experimental
study using
canine ventric-
ular myocyte

Canine ventricular myocytes Not applicable Changes in the T-wave morphology are
linked to AP changes across the ventricles

Table 1.1: Characteristics of the studies included in this research
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CHAPTER 2

METHODOLOGY AND COMPUTATIONAL MODELS
IN CARDIAC ELECTROPHYSIOLOGY

2.1 Modeling cardiac electrophys-
iology

2.1.1 Hodgkin-Huxley model

2.1.2 Ventricular action po-
tential models

2.1.3 Bidomain and mon-
odomain equations

2.2 Software and computational tools

2.2.1 Finite elements in elec-
trophysiology

2.2.2 Simulation framework
(ELECTRA)

2.3 Anatomical model with re-
duced sphericity index

2.3.1 Parameters control-
ling the deformation
of the biventricular model

2.4 Signal processing and analysis

2.4.1 Pseudo-ECG genera-
tion and analysis

2.4.2 Dominant vectors of
QRS and T Waves in
VCG

2.4.3 Detection and delin-
eation in ECG

2.4.4 Principal component
analysis in ECG

2.4.5 Dataset

Computational models play an important role in cardiac electrophysiology,
serving as fundamental tools for the understanding of underlying mechanisms
in biomedical engineering research. These models integrate anatomical, func-
tional, biophysical, and electrophysiological data, facilitating the analysis of
cellular and tissue dynamics under diverse physiological and pathological con-
ditions. Within the scope of this research, computational simulations were
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developed using realistic heart and torso models. Based on these, globular
models were generated to model the anatomical remodeling of IUGR subjects,
and subsequently to simulate electrophysiological behaviour at the organ level.

This chapter details the methods and tools employed in the development
of the simulation environment, the cellular models utilized, and the aspects
incorporated into the simulations to enhance their realism. Additionally, it
details the biosignal processing tools used for the delineation and analysis of
ECG-based interval measurements.

2.1 Modeling cardiac electrophysiology

Cellular electrophysiology has undergone remarkable advancements through
the development of mathematical and computational models that describe the
electrical behavior of excitable cells, leveraging experimental data. In particu-
lar, AP models have evolved from simplified representations to highly detailed
descriptions that integrate multiple physiological and molecular variables [65].

Early models, such as the one developed by Hodgkin and Huxley in 1952
[66], focused on the quantitative description of primary ionic currents: sodium,
potassium, and a leakage current. This model, based in differential equations,
provided a framework to describe the ionic current dynamics responsible for
the generation and propagation of AP, laying the foundation for future model
developments. Experimental techniques, such as the voltage-clamp method,
were essential in providing precise data on the biophysical characteristics of
ionic channels [65].

In recent decades, technological and computational advancements have fa-
cilitated the creation of models that incorporate interactions among multi-
ple cellular components, such as voltage-gated ion channels, Na`/K` ATPase
pumps, Na`/Ca2` exchangers, and intracellular calcium dynamics. These de-
velopments have expanded the capabilities of models to simulate complex phe-
nomena, including cellular refractoriness, pharmacological modulation, and in-
tracellular calcium oscillations, which are crucial for understanding cardiac
contraction [66].

Furthermore, the personalization of AP models using individual data has
gained prominence with the integration of artificial intelligence and machine
learning techniques. These tools have enabled the fine-tuning of specific pa-
rameters based on patient characteristics, driving advancements in personalized
medicine and the design of more effective treatments [67]. AP models as the
one developed by O’Hara et al., have incorporated high-resolution experimen-
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tal human data, achieving simulations that accurately represent normal and
pathological cardiac electrophysiology [25].

2.1.1 Hodgkin-Huxley model

The Hodgkin-Huxley model first described the dynamics of the AP in excitable
cells such as neurons or muscle fibers. This model, based on differential equa-
tions, represented the flow of ionic currents across the cell membrane and their
relationship with changes in the membrane potential. The model specifically
characterized the propagation of the electrical impulse in a squid giant axon,
modulated by three ionic currents: the sodium current (INa), the potassium
current (IK), and a leakage current (Il). Each current was defined as follows:

INa “ gNam
3hpVm ´ ENaq, (2.1)

IK “ gKn
4pVm ´ EKq, (2.2)

Il “ glpVm ´ Elq, (2.3)

where gNa, gK, and gl represent the maximum conductances for sodium, potas-
sium, and leakage currents in mS/cm2, ENa, EK, and El represent the equilib-
rium potentials for sodium, potassium, and leakage currents in mV. The m, h,
and n are the so-called gating variables that control the opening and closing
of ion channels and can vary between 0 and 1 to represent the channel’s state.
Each gating variable follows the time-dependent equation:

dx

dt
“ αxp1 ´ xq ´ βxx, (2.4)

where x represents the gating variables (m, h, and n), αx represents the rate of
channel opening, and βx determines the rate of channel closing. The equations
governing these variables are as follows:

αm “ 0.1 25 ´ V

ep25´V q{10 ´ 1
, βx “ 4e´V {18,

αh “ 0.07e´V {20, βh “
1

ep30´V q{10 ` 1
,

αn “ 0.01 10 ´ V

ep10´V q{10 ´ 1
, βn “ 0.125e´V {80.

To simulate an AP, these differential equations are solved numerically us-
ing methods such as Euler or Runge-Kutta [68], adjusting initial conditions
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and experimental parameters. Numerical methods are essential because the
equations are nonlinear and require iterative approaches to obtain accurate
temporal solutions for the membrane potential and gating variables.

The Hodgkin-Huxley model provides a conceptual framework for under-
standing how ionic channels interact to generate and propagate electrical sig-
nals in excitable cells. This model has served as the foundation for the develop-
ment of more sophisticated models in neuroscience and cardiology, enabling the
simulation of complex phenomena such as arrhythmias, synaptic integration,
and neural network activity.

2.1.2 Ventricular action potential models

The evolution of computational models for studying cardiac APs has been cru-
cial for understanding the electrical mechanisms of the human heart. From the
early models based on the work of Hodgkin-Huxley in 1952 to Denis Noble’s
contributions in 1960, these approaches have advanced significantly, incorpo-
rating increasingly detailed and specific experimental data to address complex
phenomena. Nowadays, the O’Hara-Rudy action potential cell model (ORd),
stands out as one of the most comprehensive and advanced tools in cardiac
electrophysiology [25].

The ORd model was developed using a robust dataset derived from over 100
healthy human hearts. This approach represented a substantial improvement
over earlier models, which primarily relied on animal data extrapolated to
human physiology. The ORd model reformulated equations to more accurately
represent the behavior of critical ionic currents, such as L-type calcium current
(ICaL), IK` , and Na`/Ca2` exchanger currents, all of which are essential for
maintaining the AP.

An innovative feature of the ORd model was the inclusion of Ca2`/calmodulin-
dependent protein kinase II (CaMKII) effects on ionic currents, enabling the
simulation of intracellular calcium modulation under both physiological and
pathological conditions. Additionally, the model incorporated transmural het-
erogeneities, accounting for functional differences among epicardial, midmy-
ocardial, and endocardial cells based on messenger RNA and protein expression
data.

Unlike models such as TP06 by ten Tusscher [67] or GPB by Grandi [69],
the ORd significantly improved the representation of calcium dynamics. These
advancements enabled the simulation of complex phenomena such as early
afterdepolarizations, which previous models struggled to replicate accurately.
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Furthermore, the ORd provided a robust framework for studying arrhythmias
and evaluating pharmacological therapies’ effects on ionic currents and APs.

The ORd model has been widely used to investigate arrhythmic mecha-
nisms, assess the efficacy of pharmacological treatments, and explore the patho-
physiology of cardiac diseases. Its efficient design allows for multiscale simu-
lations, ranging from individual cells to tissue and whole-heart models. This
multiscale approach facilitates the analysis of complex interactions between
cellular and tissue levels, offering valuable insights for developing personalized
therapies.

The ORd model for healthy tissue was used for the simulations performed in
this study, both for the control model and for all globular models. Apicobasal
heterogeneities were incorporated by reducing IKs to achieve a more realistic
propagation. These modifications were applied consistently across all simulated
models. The adjustment factor is detailed in Section 3.2.2.

Among recent models of human ventricular electrophysiology is the ven-
tricular cell model developed by Tomek et al. (ToR-ORd) [70], builds upon
the ORd framework and accurately reproduces experimental data under both
normal and pathological conditions. It includes updated formulations for ion
channels such as the L-type calcium current, and emphasizes accurate restitu-
tion properties and drug-response simulation. Another notable model is the
BPS2020 model by Bartolucci et al. [71], which was developed with a focus on
reproducing experimental variability and inter-subject heterogeneity exploring
changes in ventricular electrophysiology induced by electrolyte changes such as
Ca2` concentrations. Both models contribute to the understanding of ventricu-
lar electrophysiology, supporting a wide range of applications from mechanistic
studies to in silico drug testing.

2.1.3 Bidomain and monodomain equations

In computational modeling of cardiac electrophysiology, the equations describ-
ing the propagation of the AP in cardiac tissue are not limited to reproducing
ionic activity in cardiomyocytes but also represent varying levels of complexity
and simplification in simulating the heart’s electrical activity.

The bidomain equation describes the propagation of the electrical potential
by considering two distinct domains: the intracellular domain and the extra-
cellular domain. The interaction between these domains is mediated by the cell
membrane, which acts as a capacitor separating the two regions. The bido-
main system allows modeling phenomena such as the anisotropy of electrical
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conductivity in cardiac tissue, providing a detailed representation of the electri-
cal activity. However, it is computationally expensive due to the requirement
to solve equations for both domains simultaneously.

The bidomain equations are derived from the conservation of current and
charge, assuming the sources are related to the cell membrane. By combining
the capacitive current (Ic) and the ionic current (Iions) into the total trans-
membrane current (Im), the bidomain equations can be expressed as follows:

∇ ¨ pσi∇ϕiq “ β

ˆ

Cm
BVm

Bt
` Iion

˙

, (2.5)

∇ ¨ pσe∇ϕeq “ ´β

ˆ

Cm
BVm

Bt
` Iion

˙

, (2.6)

where σi and σe are the conductivities of the intracellular and extracellular
domains in S/m, ϕi and ϕe represent the potentials in the intracellular and ex-
tracellular domains in V, β is the surface-to-volume ratio of the cell membrane
in m´1, Cm is the capacitance of the cell membrane in F/m2, Vm “ ϕi ´ ϕe is
the transmembrane potential in V, and Iion is the ionic current density through
ion channels, pumps, and exchangers in A/m2.

The boundary conditions assume that currents at the boundaries only flow
through the extracellular space:

n ¨ pσi∇ϕiq “ 0, (2.7)

n ¨ pσe∇ϕeq “ Ie, (2.8)

where n is the outward-facing unit normal vector and Ie is the applied extra-
cellular current density in A/m2. The bidomain equations are important in
scenarios where the extracellular space is relevant such as research in defibri-
lattion shocks [72].

The monodomain equation is a simplification of the bidomain equation,
assuming a linear relationship between intracellular and extracellular conduc-
tivities [73]. Under this assumption, the two domains are combined into a
single domain, removing the need to calculate ϕi and ϕe separately. This as-
sumption reduces computational complexity, making the monodomain model
less expensive to solve compared to the bidomain model. The monodomain
equation is formulated as:

∇ ¨ pσ∇Vmq “ β

ˆ

Cm
BVm

Bt
` Iion

˙

, (2.9)
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where σ is the intracellular conductivity in S/m, Vm is the transmembrane
potential (ϕi ´ ϕe). The monodomain model typically assumes isolated (no-
flux) boundaries, enforcing zero transmembrane current via a homogeneous
Neumann condition.

In this thesis, electrical impulse propagation is simulated using the mon-
odomain model, which has been reported as suitable for studying propagation
of APs at the scale of the human heart in the absence of applied currents [74].

2.2 Software and computational tools

2.2.1 Finite elements in electrophysiology

The finite element method (FEM) is commonly used to solve problems in elec-
trophysiology, which involve the conservation of intracellular and interstitial
charge, and is based on a system of nonlinear partial differential equations,
specifically, a system of reaction-diffusion equations. This equation describes
the phenomenon of electrical potential propagation through the cardiac mus-
cle, along with the reactions generated due to the opening and closing of ion
channels.

For the application of FEM, the domain under study is divided into a fi-
nite number of subdomains or elements, and the Galerkin method is applied
to each one of these [75]. The elements do not overlap or intersect. Generally,
in 2D, triangular or square elements are used, while in 3D, tetrahedrons and
hexahedrons are employed. The size of each element and its aspect ratio are
crucial for proper analysis using FEM. The smaller the element, the more accu-
rate the solution, but it involves a high computational cost. To determine the
formulation of the solution for a reaction-diffusion system, a one-dimensional
space can be established within a defined domain (Ω). The weak formulation
of equation (2.9) is obtained by multiplying the equation by a weight w and
integrating over the domain Ω of the problem [76].

ż

Ω
CmVt w dΩ “ ´

ż

Ω
D∇V w dΩ `

¿

Γ

D∇V w dΓ ´

ż

Ω
Iionw dΩ, (2.10)

where Γ defines the boundary of the system’s domain.

To discretize the proposed expression, the number of elements into which
the original domain was divided is considered, and the potential can be ex-
pressed as a linear combination of base functions as follows:
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V px, tq «

ne
ÿ

j“1
N e

j pxqV e
j ptq, (2.11)

where ne is the total number of nodes of an element, V e
j ptq is the voltage at the

j-th node, dependent on time t, and N e
i pxq are the basis functions associated

with node j. This equation can be written in matrix form as follows:

Vpx, tq “ pNeqT Veptq, (2.12)

by substituting the approximations of V into the weak form of equation (2.10)
and setting w “ N , a time-discretized equation for node i of element j is
obtained:

ne
ÿ

j“1
pM e

i,j
9V e
j `Ke

i,jV
e

j q “ Qe
i , (2.13)

Met 9Veu ` KetVeu “ Qe, (2.14)

where:

M e
ij “

ż

Ω
Cm Ni Nj dΩ, (2.15)

Ke
ij “

ż

Ω
DpNiqx pNjqx dΩ, (2.16)

Qe
i “

ż

Ω
pNiqIion dΩ. (2.17)

The matrices are assembled to generate a system of equations for the entire
domain:

M 9V ` KV “ Q. (2.18)

Solving the resulting reaction-diffusion system of equations requires very
small time steps, for which various time-stepping methods exist. A fixed,
small time step can be used to ensure the convergence of the result, or an
adaptive time step can be assigned, as there are stages of the cardiac AP, such
as depolarization, where the potential changes rapidly over a short period of
time.
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2.2.2 Simulation framework (ELECTRA)

ELECTRA v0.5.1 is a cardiac electrophysiology simulator developed by the
BSICoS research group (Biomedical Signal Interpretation and Computational
Simulation) at the University of Zaragoza. The software was primarily built
using a C++ library and employs FEM [77] and Meshfree [78, 79] techniques
to solve monodomain and bidomain models for simulating the heart’s electrical
activity. ELECTRA enables detailed simulations of action potential propaga-
tion in cardiac tissue, facilitating the study of phenomena such as arrhythmias
and other cardiovascular diseases. It integrates seamlessly with real anatomical
data, allowing for precise and clinically relevant simulations in both research
and clinical contexts.

The interaction with ELECTRA requires a universal scripting file in JSON
(JavaScript Object Notation) format. This file contains all the information
associated with the electrophysiological simulation process. Below are the pa-
rameters that must be configured for the simulation:

• Version and Data: The header of the document includes information
about the software, its version, license details, and contact information.

• Simulation: In the version used (v0.5.1), the user must specify a simula-
tion name and the simulation scale (cell or tissue).

• Reference Units: This section defines the units for time, capacitance,
and current to be used during the simulation. For our case, we used ms
(milliseconds), pF (picofarads), and mA (milliamps).

• Tissue: This section defines the attributes of the geometry, including
units, dimensionality, number of vertices, and the file path for the geom-
etry to be used in the simulation (the input mesh file should be in *.inp
format):

– The dimensions parameter allows the user to select 1D, 2D, or 3D
simulations.

– The number of vertices refers to the element type:

– 1D: linear elements with 2 vertices.

– 2D: triangular or quadrilateral elements with 3 or 4 vertices.

– 3D: tetrahedral or hexahedral elements with 4 or 8 vertices, respec-
tively.

• Material: This section defines the electrical properties for the simulation:
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– Type: ELECTRA currently supports only transverse anisotropy.

– Diffusivity units: In our study, we used cm2/ms.

– Transmembrane diffusivity: A single value is set for monodomain
models. For bidomain models, two additional diffusivity parameters
can be set for internal and external.

– Transversal ratio: Specifies the percentage of diffusivity applied in
the direction perpendicular to the fiber orientation.

• Fibers: In the version of ELECTRA used, a unit vector representing
fiber direction is required. The number of components in the vector
corresponds to the simulation dimensionality (X, Y for 2D; X, Y, Z for
3D).

• Stimuli: This section defines the characteristics of the electrical stimuli
that initiate propagation in the model:

– Number of stimuli: An n number of stimuli can be defined, with
each stimulus described as follows:

– Id: stimulus identifier.

– Nodeset: node group where the stimulus is applied.

– Start: stimulus onset time.

– Duration: duration of the applied stimulus.

– Cycle length: period after which the stimulus repeats.

– Amplitude: current amplitude of the stimulus.

• Electrophysiology: This section defines the action potential propagation
models to be used in the simulation.

– Model number: Specifies how many regions of the geometry will be
assigned distinct electrophysiological models.

– Model-1: This defines the model type, cell type, and associated
nodeset. Ventricular models include: Bueno2008 [80], O’Hara2011
[25], Gong2020 [81], and Paci2013v [82]. For the conduction sys-
tem, the Stewart2009 [20] model is available. Cell types can also be
configured as ventricular (endo, mid, epi), atrial (left atrial, right
atrial) or Purkinje.

– Initial conditions for the model’s state variables can also be imported
from an external file
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• Conduction System: The cardiac conduction system is treated as a sep-
arate section.

– Geometry: Specifies the file path of the Purkinje network geometry,
units for node positioning, and the PMJ radius (representing the
connection region between Purkinje terminals and the endocardial
surface of the ventricular model).

– Nodesets: Two groups are defined:

– av node: nodes corresponding to the atrioventricular section of the
network.

– puki end nodes: terminal nodes of the Purkinje branches.

– Diffusivity: Defines the global or local diffusivity of the network and
PMJs.

– Electrophysiology: Specifies the action potential model for the con-
duction system.

• Physics: This section configures the reaction-diffusion system:

– Type: monodomain or bidomain.

– Solver: numerical solver to be used for system resolution. The sim-
ulator allows users to choose between monodomain and bidomain
models and offers various numerical solvers: Forward Euler, a dual
adaptive explicit time integration method [77], Backward Euler, and
Crank-Nicholson. Finally, the output file paths must be specified in
the configuration file, ensuring the results are stored in designated
directories.

– Dt unit: defines the time step unit and its min/max limits.

– Simulation time: total simulation duration.

– Output Interval: Specifies the frequency at which computed results
are saved.

• Post-Processing: Defines the time window for computing local activation
times.

• Output: Specifies the directory for saving simulation results, including
both propagation in the Purkinje network and the cardiac model.

In used version of ELECTRA, the program runs just on a CPU. For the sim-
ulations in this study, we used a desktop computer with an Intel(R) Core(TM)
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i7-9700K processor running at 3.6 GHz, and with 32 GB of RAM. Simulating
one heartbeat for the biventricular model with the Purkinje network required
approximately 1.3 hours.

2.3 Anatomical model with reduced sphericity index

In various studies across different age groups, the prevalence of these anatom-
ical changes in the cardiac muscle has been demonstrated. In children, cardio-
vascular assessments that included echocardiography and blood pressure mea-
surement have shown that cardiac changes persisted from birth until 6 months
of age [8]. In preadolescent patients, evidence obtained through echocardiog-
raphy and three-dimensional analysis of heart shape indicates that remodeling
persists, showing similar results to those observed in childhood [13]. Sub-
sequent tests conducted on adults have corroborated the findings observed
in studies on children and preadolescents. Using surface electrocardiography
recordings and generating a VCG, a statistically significant variation was found
between the angle of the dominant QRS depolarization vector and the T re-
polarization angle in the XY plane between a control group and a group with
IUGR. This difference could be crucial for the cardiovascular risk of patients
with IUGR [15].

2.3.1 Parameters controlling the deformation of the biventricular model

The in silico simulation of the geometric changes in the cardiac muscle was
based on the human biventricular model, which was used in this study as
the control model (C). This biventricular mesh was embedded in a torso vol-
ume generated from computer tomography images of a 43 year old woman.
The heart and torso meshes were combined by rotating and translating into
anatomically-realistic concordance as described in [83].

To deform the C model, we used the nonlinear finite element solver for
biomechanics FEBIO v2.9.1 [84]. In the preprocessing application for FEBIO,
PreView, we formulated a stress-strain problem to deform the human biven-
tricular model, characterized as an elastic tissue and subjected to mechanical
stress applied to the ventricular walls until a deformation percentage similar to
that reported in the literature was reached. For this purpose, the coordinate
and connectivity matrices from the original *.mat file were converted into an
*.stl file, and the information was imported into the PreView software. At
this stage of the research, we analyzed the proposed methodology for generat-
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ing globular models and its applicability in obtaining appropriate results for
SpI reduction and subsequent electrophysiological simulation. The geometric
change approach focused on the LV in accordance with the evidence reported
in [13,85]. Fig. 2.1 presents a synthesis of our main objective at this stage: to
simulate the geometric changes resulting from IUGR.

Figure 2.1: a: Biventricular control model and, b and c: two globular variations obtained
by applying tensile force to the free wall of the LV. The color blue indicates regions without
deformation, while the color red represents maximum deformation.

To generate a geometric change in the LV, we applied certain movement
constraints to specific regions of the heart model, particularly on the RV. The
displacement along the X-axis is denoted as fxpxkq at the xk coordinate of the
k ´ th node, fypykq for the Y -axis, and fzpzkq for the Z-axis. A restriction on
node movement along a specific axis is denoted as fxpxkq, fypykq, fzpzkq “ 0.
The regions with constraints and the forces applied are shown in Fig. 2.2,
setting various regions of movement restrictions and applying force in the radial
direction from the LV endo. In general, we applied two types of forces to reduce
the SpI. The first force was applied to the LV free wall to increase the basal
diameter ϕ, followed by a force applied along the longitudinal axis in the apex-
to-base direction to reduce its length L. The procedure for generating the
globular models is detailed in the next section.

As a result of the deformation processes on the C model, a displacement
matrix for each of the mesh nodes was obtained. This information was used to
generate the globular models in MATLAB by adding nodal displacements to the
original coordinate matrix. This methodology for generating globular models
was maintained throughout this study, with several algorithmic improvements
to develop them more efficiently. Chapter 3 will detail the parameters used for
the generation of eight globular models (GA to GH), and Chapter 5 will present
the geometric parameters employed to generate eight different globular models
(G1 to G8).
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Figure 2.2: *.stl file of the human biventricular model in PreView software, showing surface
regions assigned with zero mobility (fxpxkq, fypykq, fzpzkq “ 0) as reference and the forces
applied to the LV endocardial surface to achieve the globular models.

2.4 Signal processing and analysis

2.4.1 Pseudo-ECG generation and analysis

For the calculation of the surface ECG, an algorithm was used that utilizes
the monodomain system solution previously obtained from ELECTRA. By
inputting the torso volume, the extracellular potential is computed. This ex-
tracellular potential calculation on the virtual electrodes was performed in
MATLAB, using a volume conductor model [22,86] as follows:

ϕpe, tq “

ż

Ω

ˆ

´D ¨ ∇rVmpr, tq ¨

ˆ

∇r
1

}r ´ e}

˙˙

dr, (2.19)

where ϕpe, tq is the extracellular potential calculated at e “
“

ex ey ez

‰

, the
spatial coordinates of the electrodes; D is the diffusion tensor of the tissue,
considered constant and homogeneous in this study; Vmpr, tq is the membrane
potential; and 1{||r´e|| represents the decay of the electric field with distance,
and Ω is the volume where the tissue is located. For the simulation of the
control model C and globular models G, a desktop computer Intel Core i7-
9700K CPU at 3.60 GHz and 32 GB of RAM was used. Later, to perform
the displacement test described in the Section 3.3, the extracellular calculation
was executed on the HERMES cluster of the I3A Institute, as this test required
simulating over 100 different scenarios. As a result of this algorithm, a matrix
was obtained with a number of rows corresponding to the simulation time in
milliseconds (3000 rows for a simulation of 3 heartbeats lasting 1000 ms each)
and 12 columns representing the leads I, II, III, aVR, aVL, aVF, V1, V2, V3,
V4, V5, and V6.
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2.4.2 Dominant vectors of QRS and T Waves in VCG

The spatial representation of electrical activity through a VCG can be gen-
erated from an ECG using various methods. The most widely used method
is Dower’s [87], which employs a linear transformation matrix that relates the
standard ECG leads to the X, Y, and Z components of the VCG. Other com-
monly used methods include Frank’s and Kors’ methods [36–38], which also
use inversion matrices but with different coefficients. The table below presents
the coefficients proposed in Dower’s method.

Lead X Y Z
V1 -0.172 0.057 -0.229
V2 -0.074 -0.019 -0.310
V3 0.122 -0.106 -0.246
V4 0.231 -0.022 -0.063
V5 0.239 0.041 0.055
V6 0.194 0.048 0.108
I 0.156 -0.227 0.022
II -0.010 0.887 0.102

Table 2.1: Inverse Dower matrix coefficients

To assess the dominant vector direction of the electrical wavefront along the
depolarization and repolarization loops, we used the inverse Dower’s transform
[87] to transform the 12-lead ECG into the orthogonal leads X, Y, and Z
of a VCG, rather than directly computing the VCG. The rationale behind
this choice is to closely replicate the approach used in the studies analyzing
clinical data [14], which are being used as a reference for comparing clinical
and simulated results. Next, we calculated the angles of the dominant vectors
relative to the transverse, XZ, frontal, XY, and sagittal, ZY planes according
to the angular variables measured in [15].

2.4.3 Detection and delineation in ECG

Biomedical signals are signals that carry information that is used in the biomed-
ical field for the diagnosis, monitoring, or treatment of various conditions or
pathologies under study. The entire process of obtaining information from a
biosignal may involve different processing stages depending on the quality of
the acquired signal and the specific information that needs to be observed. The
role of ECG signal processing has gained increasing prominence as it allows ac-
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curate measurements of signals recorded under complex conditions, such as in
ambulatory settings.

The diagram in the Fig. 2.3 shows a set of blocks that group the main signal
processing tools that could be used for the processing of an ECG signal, start-
ing with the noise filtering stage, which addresses noise from various sources
related to the recording process and from electromagnetic sources, QRS com-
plex detection, delineation, and data compression. This general scheme can be
adapted to emphasize different types of specific analyses.

Figure 2.3: General diagram of the stages for ECG signal processing [23].

One of the stages in ECG signal processing is automatic delineation, which
functions to determine the boundaries of the different recorded PQRST waves,
allowing for the measurement of their amplitude and the duration of vari-
ous intervals. Accurate delineation of these waves is crucial for the diagno-
sis of several cardiac conditions. Different mathematical and computational
techniques are currently used for automatic detection. Among these meth-
ods are wavelet transform-based techniques [88, 89] and deep learning appli-
cation [90, 91], among others, which aim to achieve higher precision and are
evaluated through testing on various databases.

The wavelet transform (WT) decomposes a signal and represents it as a
combination of a set of basis functions obtained by dilating a factor “a” and
translating in time by “b” a mother wavelet ψptq. The WT of a signal xptq is
defined as follows:

Wxpa, bq “

ż 8

´8

xptq
1

a

|a|
ψ

ˆ

t´ b

a

˙

dt, a ą 0. (2.20)

For the detection of the waves in an ECG signal, a wavelet prototype ψptq,
such as the derivative of a smoothing function θptq, can be used, mainly because
an ECG signal consists of slopes, positive and negative peaks at different scales
[89]. The first five scales of the discrete wavelet transform (DWT) contain most
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of the energy of an ECG signal. In Fig. 2.4, simulated ECG signals are shown
along with the response up to the fifth scale of the DWT. It can be observed in
this image that the different scales provide distinct information for the various
stages of the ECG. In Fig. 2.4, QRS, it is evident that scales 1 and 2 clearly
detect the QRS complex, while for the P or T waves, their shapes are better
represented in scales 4 and 5.

Figure 2.4: Five levels of WT interval scales from a simulated ECG signal. Adapted from [89].

To detect the QRS complex, the different scales obtained from the DWT
are analyzed, and certain signal shape parameters are detected. In the QRS
complex, the detection of the R peak is relatively easy, as it involves searching
for values that exceed specific thresholds, which can be done across various
scales (see Fig. 2.4). Subsequently, isolated or redundant maximum lines are
removed. For each pair of maximum and minimum values, the point where the
signal crosses zero is identified, and finally, a sweeping process is performed to
ensure no QRS complex is missed.

For the detection and delineation of the T-wave, the prior identification of
the QRS complex is crucial, as its presence and the identification of the RR
interval indicate the region where the T-wave should be located. The detection
can be performed by defining a search window. Within this window, maximum
peaks are searched. If at least two points exceed the threshold, the presence
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of a T-wave is considered. Next, the points where the signal crosses zero are
identified. Subsequently, the wave is classified according to its polarity, and if
it cannot be detected, a different scale is analyzed.

2.4.4 Principal component analysis in ECG

The principal component analysis (PCA) is a statistical technique used to re-
duce the dimensionality of a data set while preserving the main characteristics
of the original data. This tool has important applications in the analysis of
ECG signals, considering that in clinical practice, a standard 12-lead ECG
set is typically available for each patient [92, 93]. The principal components
of a group of signals are obtained from the linear combination of these origi-
nal variables. Each principal component results from the weighted sum of the
original variables, each characterized by specific weights. The assigned weights
are determined such that the principal components are orthogonal to each
other, ensuring no redundancy between them and that each component con-
tains different information. The first components represent the most significant
variations and patterns of the original dataset, while the following components
contain less variability (see Fig. 2.5) [92].

Two transform leads, one applying PCA emphasizing the QRS complex
(PCAQRS), and other applying PCA emphasizing the T-wave (PCAT ), were
generated. PCA separates the orthogonal components of the L=8 independent
leads in descending order of variance [92]. The matrix ΨPCA defining the
transformation was obtained (learned) from the eigenvectors of the 8ˆ8 inter-
lead ECG auto-correlation matrix computed using the samples in the QRS (or
T waves) [92, 94] within the corresponding learning window, for PCAQRS (or
PCAT).

The 8×8 auto-correlation matrix is computed from a larger matrix, see
below, where each row corresponds to one lead and contains the concatenated
samples of all QRS complexes (or T waves) within the learning window. Thus,
the auto-correlation captures the temporal and inter-lead relationships across
all collected beats, providing the basis for extracting the principal components.
As a result, the transform lead coming from the first PCA component is the
lead maximizing the QRS (or T-wave) energy and selected as PCAQRS (or
PCAT). To illustrate computation of matrix ΨPCA, let K be the number of
segmented and aligned T waves (or QRS complexes) in the learning window,
having N samples each, for L available leads. Let xk,lpnq denote the n-th
selected sample of the k-th beat in the l-th lead of the filtered ECG signal. In

vector notation, xk,l “
“

xk,lp0q ¨ ¨ ¨ xk,lpN ´ 1q
‰T

represents the T-wave (or
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Figure 2.5: 8-lead ECG (I, II, V1 to V6) and the first three principal components of the
signals. Marks are shown at the onset of the QRS, R-wave, and the onset, peak, and end of
the T-wave, with different colors for each lead. The PCA transform is applied to the entire
ECG waveform.

QRS complex) from the k-th beat of the l-th lead, which are piled together in
the LˆN matrix Xk:

Xk “
“

xk,1 xk,2 . . . xk,L

‰T
, (2.21)

where the n-th column of Xk contains the amplitudes of the L leads at a
given sample n. A data matrices X is then constructed by concatenating K
consecutive matrices Xk,

X “
“

X1 X2 ¨ ¨ ¨ XK

‰

. (2.22)

To maximize the signal energy at the transform leads, it is known that the
8ˆ8 transform matrix ΨPCA “

“

ψ1 ψ2 ¨ ¨ ¨ ψ8
‰

should accomplishes the
following equation:

RXΨPCA “ ΨPCAΛ, (2.23)
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being RX the spatial correlation matrix of X, estimated as

RX “
1

KN
XXT , (2.24)

and Λ a diagonal matrix containing the eigenvalues of RX at the diagonal.

If xpnq “
“

x1pnq x2pnq ¨ ¨ ¨ xLpnq
‰T

, xlpnq being the ECG signal sam-
ples at l-th lead, represents, in matrix notation, the multilead ECG signal at
the n-th sample, then the first transform lead PCApnq (PCAQRS or PCAT )
becomes

PCApnq “ ψT
1 xpnq. (2.25)

These transformed leads were delineated to identify the beginning, peak
and end points, with lead PCAQRS used for the QRS complex and lead PCAT
for the T-wave, as these leads are better suited for each case, as illustrated in
Figure 2.5.

2.4.5 Dataset

The study involved the measurement of ECG intervals during both depolar-
ization and repolarization phases using 12-lead surface ECG recordings (see
Chapter 4). The study population included 93 preadolescents (from 8 to 12
years old), divided into two cohorts. The control cohort consisted of 60 term-
born subjects with normal growth profiles, while the IUGR cohort comprised
33 subjects diagnosed with severe IUGR and who underwent medically induced
delivery. IUGR was defined as a birth weight below the 10th percentile for ges-
tational age combined with an abnormal umbilical artery Doppler, indicated by
a pulsatility index above the 95th percentile. Adequate growth was considered
when a birth weight above the 10th percentile for gestational age occurs, based
on standards in [95].

The study population was described in a previously published cohort study,
conducted at a tertiary university hospital in Barcelona, Spain [96]. The study
conformed to the standards set by the Declaration of Helsinki, except for reg-
istration in a database. The study was approved by the Hospital Clinic Ethics
Committee (Ref: HCB2014/0598) and written parental consent was obtained.
For each subject, a 13-second ECG recording sampled at 1000 Hz was col-
lected. ECG data used in this study is available under reasonable request from
the authors of the clinical data acquisition study described in [96].
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In Chapter 1, the state of the art related to the geometric changes observed
in the cardiac muscle as a consequence of IUGR was reviewed. The evidence
has shown a reduction in the SpI, characterized by a shortening of the apex-
to-base length and an expansion of the basal diameter, primarily in the LV.
Additionally, significant alterations in the direction of the depolarization and
repolarization loops have been reported in individuals with a history of IUGR.
In Chapter 2, the tools used for the electrophysiological simulations described
in the current chapter were established.

To better understand the mechanisms behind these electrophysiological
changes in IUGR subjects, this chapter outlines the methodology used to de-
velop the framework for in silico simulations investigating how morphological
changes associated with IUGR affect ventricular electrophysiological function.
This chapter focuses on the dominant QRS and T angles, as well as QRS-T
angles in the VCG. Additionally, it details the creation of globular cardiac mod-
els to represent hearts with varying degrees of sphericity. Simulated results of
the dominant vector directions relative to different body planes were compared
with clinical data [14]. The findings suggest that QRS-T angles could serve as
non-invasive biomarkers for detecting structural changes in the heart caused
by IUGR.

3.1 The conduction system in the computational model of
human electrophysiology

In silico simulations provide a tool to study the interplay between cardiac
structure and function. They enable to model hearts with specific anatomical
and electrical properties, such as the changes in sphericity examined in this
study. These simulations allow for a controlled exploration of how such vari-
ations impact cardiac performance, something that would be challenging or
impractical to achieve in clinical or experimental settings. In silico simulations
provide an ethical, efficient, and cost-effective alternative, enabling the study
of conditions like IUGR, refining diagnostic techniques such as QRS-T angle
validation, and advancing personalized medicine by modeling patient-specific
cardiac characteristics to improve non-invasive diagnostics and targeted treat-
ments.

In silico simulations of the electrophysiological activity of the ventricles
were conducted using a biventricular geometry [97], taken as the reference
model. The geometry was discretized into a high-resolution tetrahedral mesh,
consisting of approximately „1 870 000 elements and 345 000 nodes, ensur-
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ing accurate spatial representation. Numerical simulations were carried out
using the software ELECTRA [77], which implemented FEM to solve the mon-
odomain model of electrical propagation in cardiac tissue.

3.1.1 Purkinje network

Simple approaches to initiate electrical stimulation in the biventricular model
involve selecting specific regions of the endocardial tissue where the initial
stimulus is applied [97,98]. The selected regions and the sequence of activation
pulses are organized in a controlled manner to achieve a physiological propa-
gation pattern. In preliminary tests conducted in this study, the endocardial
surface of the ventricles was divided into regions from the apex to the base, and
a sequence of stimuli was applied to achieve activation in the longitudinal ven-
tricular direction, as shown in Fig. 3.1a. In this figure, it can be observed that
the stimulated regions at the apex (red-colored regions) are larger compared
to those in the mid-ventricular and basal areas.

An alternative and more realistic approach to stimulating cardiac tissue
involves implementing a Purkinje network, which transmits the electrical stim-
ulus along its branches and ultimately connects to the endocardial surface
through Purkinje myocardial junctions (PMJ). These PMJs are defined based
on the structure of the Purkinje network and the terminal points of its branches
(see Fig. 3.1b).

The electrical propagation using this latter method starts at the bundle of
His and propagated through the Purkinje network until reaching the endocar-
dial tissue. The Purkinje network was incorporated into the model using a
method based on fractal projection [99,100].

In this thesis, the electrical propagation is simulated using the latter method,
starting at the bundle of His and transmitted through the Purkinje network
until it reaches the endocardial tissue. To incorporate this mechanism into the
model, the Purkinje network was generated using a fractal projection-based
method, allowing for a realistic representation of its branching structure and
connectivity.

The generation of a Purkinje network through computational modeling pro-
vides a valuable tool for realistic visualization and simulation of the fast con-
duction system allowing the investigation of its impact on electrical propagation
in the cardiac muscle.

To generate the Purkinje network on the biventricular model, it is neces-
sary to first identify the endocardial surfaces of the model. The model’s entire
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Figure 3.1: Propagation sequence of the AP. a: Simulation with manual selection of the
regions where the stimulus initiates, and b: Simulation using a Purkinje network. The blue
color represents an AP of -80 mV, and the red color represents +20 mV.

surface is represented by a triangular mesh, with the nodes belonging to the
tetrahedral volumetric mesh. Considering the specific models used in this re-
search, three surfaces were identified: the epicardial surface, and those of the
RV and LV, as shown in Fig. 3.2a.

On the endocardial surface of the RV, a main branch is defined from the
bundle of His to the apex, excluding stimulation terminals in the right septal
region. From the bundle of His, two main branches also extend over the LV,
one towards the anterior part and the other towards the posterior surface (see
Fig. 3.2b). The bifurcation was positioned at the base of the biventricular
model, and both the left and right bundles extend along the septal endocardial
surface. The initiation site of electrical stimulation, representing the His bundle
[101], was defined 2 mm from the bifurcation point.

The Purkinje network was generated using the algorithm proposed in [99].
In addition to the aforementioned guiding points, a minimum branch length
and the angle between branches were input. Using the endocardial surfaces as
a reference for the network, we configured a network with a branch length of
0.04 cm for the ventricular region and a branch angle of 0.45 radians for both
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Figure 3.2: a: Endocardial surface of the right (red) and left (blue) ventricles. b: Main
branch of the Purkinje network extending from the bundle of His towards the ventricles. c:
Purkinje network on the ventricular endocardial surface.

ventricles. The average branch length of the resulting Purkinje network was
0.042˘0.026 cm, with a total of „12 500 nodes for the entire network. The
distribution of nodes on the endocardial surfaces can be observed in greater
detail in Fig. 3.3 for both ventricles.

The fast conducting system was coupled to the biventricular model, and
a heartbeat simulation was performed using the ELECTRA software. During
the evaluation of simulation time, it was observed that the time step for solv-
ing the system of equations decreased, which led to an extension of the overall
simulation time. Without modifying the biventricular model or its mesh, we
identified that the minimum configured distance between Purkinje network
nodes was too small, causing the time steps to shorten. As a result, we ex-
plored Purkinje networks with a reduced number of nodes. By testing various
mesh reductions, we halved the number of nodes, resulting in a decrease in
total simulation time without compromising the propagation velocity across
the myocardium.

During the reduction process, the nodes at branch bifurcations were iden-
tified and retained as reference points for the generation of the new mesh.
From the nodes between bifurcations, every second node was selected. The
final average branch length of the Purkinje network increased to 0.076˘0.035
cm, with a total of „7 000 nodes in the new complete network. Finally, using
the generated nodes, two vectors were created: one containing the coordinates
of the network nodes, and another for connectivity, indicating the connection
order of the network branches.

This reduction in the number of nodes affected the propagation time over
the biventricular model, delaying it by 1 ms. This was evidenced by analyzing
the activation time of various nodes both at the apex and the base of the
LV. To avoid altering subsequent results, it was decided to retain this reduced
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Figure 3.3: Distribution of the Purkinje network on the endocardial surface of both ventri-
cles, shown with white lines. The main branch and its division towards the ventricles are
highlighted in green.

Purkinje network for both the control and pathological simulated models.

For the PMJ that eventually make contact with the endocardial surface, a
radius of 0.1 cm was selected around the PMJ, and all ventricular endocardial
surface nodes within this circle were chosen as contact nodes for the application
of the electrical stimulus (see Fig. 3.4). The different anisotropic conductivities
in the ventricular myocardium and the His-Purkinje were adjusted using appro-
priate diffusion coefficients and set to result in a longitudinal CV of 67 cm/s in
the myocardium and of 2.5 - 3.0 m/s in the His-Purkinje system, respectively.

The CV between the Purkinje tree and the PMJs that contact the endo-
cardial surface was reduced to smooth the transition to the cardiac tissue. The
cellular membrane kinetics of the Purkinje network were represented by the
Stewart AP model [20] and the human ventricular cell electrophysiology by
the ORd model for healthy tissue [25].
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Figure 3.4: Each PMJ of the Purkinje network connects to the endocardial surface with the
nodes located within a radius of 0.1 cm. The propagation can be seen starting from the
bundle of His (t=4 ms), and on the right, the propagation from t=29 ms to t=30 ms is shown
through the selection of nodes on the endocardial surface.

3.1.2 Fiber architecture

Another factor that influences the propagation of the AP and is important
to incorporate into simulations is the direction of the potential’s propagation.
The computational models’ mesh is made up of nodes, which are the basic
elements of the propagation structure, and each requires proper orientation
to realistically represent a cardiomyocyte. Determining fiber orientation in a
patient poses a challenge that limits in silico model customization. However,
there are two main ways to incorporate this information: using ex vivo fiber
maps [102] or rule-based methods [103–105].

For this research, we used the algorithm proposed in [104] to determine
fiber orientation on the endocardial surfaces of the RV and LV and the entire
epicardial surface.

The algorithm establishes a local coordinate system to determine the di-
rection of a 3D unit vector for each mesh node. This system consists of longi-
tudinal (êl), transmural (êt), and circumferential (êc) axes. The first two axes
are defined by solving the Laplace equation using the model’s defined surfaces
as Dirichlet boundary conditions, and by calculating the solution gradient.
The circumferential axis is defined as the cross product of the transmural and
longitudinal axes.

The transmural direction (∇Φ) is obtained by solving the Laplace equa-
tion between the endocardial and epicardial surfaces of each ventricle, and by
calculating the gradient of the solution. Dirichlet boundary conditions assign
Φ “ ´2 for the endocardium of the LV, Φ “ 1 for the endocardium of the RV,
and Φ “ 0 for the epicardium:
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∇2Φ “

$

’

&

’

%

0, on Γepi

1, on ΓRV endo

´2, on ΓLV endo

(3.1)

The longitudinal direction (∇Ψ) is computed from apex to base, considering
a biventricular model. Dirichlet boundary conditions are set with Ψ “ 0 at the
base and Ψ “ 1 at the apex:

∇2Ψ “

#

0, on Γbase

1, on Γapex

(3.2)

Using the computed gradients, the local coordinate system for each node
of the mesh is obtained as follows:

êl “
∇Ψ

||∇Ψ||
, êt “

∇Φ ´ pêl ¨ ∇Φqêl

||∇Φ ´ pêl ¨ ∇Φqêl||
, êc “ êl ˆ êt. (3.3)

Finally, the rotation process for each vector associated with the mesh nodes
is performed by rotating the coordinate system in the following way: the vector
êc rotates counterclockwise around êt by an angle α.

α “ αendopwq ¨ p1 ´ dq ` αepipwq ¨ d, (3.4)

where d represents normalized transmural depth between 0 and 1. The value
of w is obtained from an intraventricular interpolation function that guides
the fiber direction between apex-base within the ventricle. The values of αendo

and αepi were chosen following the Streeter rule from apex to base in a coun-
terclockwise direction, ranging from ´60˝ on the endocardium to 60˝ on the
epicardium for both ventricles [21].

The second rotation involves the vector êc rotating counterclockwise around
êl by a transverse angle β, defined by the following equation:

β “ βendopwq ¨ p1 ´ dq ` βepipwq ¨ d. (3.5)

In our study, we selected values of RV βendo “ 120˝, βepi “ 180˝, and for
the LV: βendo “ 180˝, and βepi “ 0˝.

The process of preparing the files for the application of the proposed al-
gorithm involved several preprocessing stages, which were semi-automated as
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follows. We began with the biventricular model meshed with 4 nodes tetra-
hedral elements. Next, labels were applied to specific points on the cardiac
model surface to set Dirichlet conditions and generate the local reference sys-
tem. These surfaces included the left and right endocardium, and the left and
right apex. This selection and labeling were done manually using Paraview
software. Four *.xlsx files containing the node list for each identified region
were generated. From there, we developed a MATLAB based pipeline with the
following stages:

• Biventricular model input: We first imported the biventricular model
(*.mat), ensuring only the coordinate and connectivity matrices were
defined. Additionally, the output file directory was specified.

• Border identification: We then imported the *.xlsx files containing the
node lists for each identified region: RV endo and apex, and LV endo
and apex. This stage generates an initial mesh model with the identified
border regions (see Fig. 3.5 a).

• Surfaces detection: This process generated a second one mesh file, which
identified five groups of nodesets: the epicardial surface, the entire model
surface (allsurf ), the endocardial surfaces of the right and left ventricles,
and myocardium, corresponding to all remaining nodes outside the sur-
face (Ω - allsurf ) (see Fig. 3.5 b - f). With this file, we can execute Doste’s
algorithm [104] to generate a mesh file with an attribute corresponding
to the fiber orientation field at each node (see Fig. 3.5 g).

This MATLAB tool was developed to reduce testing time, as the research
involved multiple trials that required modifying anatomical meshes and conse-
quently generating fiber directions to simulate electrophysiological propagation.
For this reason, we included three additional options:

• The first additional option allowed for incorporating study regions that
can be labeled and included in the generated model, done by manually
selecting nodes in Paraview, generating an *.xlsx file.

• The second option generates model files with *.inp and *.vtk extensions.
The former is necessary for working in ELECTRA, and the latter is useful
for viewing all model details graphically in Paraview.

• The third additional option allows generating a *.json file that includes
the names of the generated files, identified subregions, and also incorpo-
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Figure 3.5: a: Right and left ventricular borders and apex labeled for fiber direction gener-
ation algorithm import, b: Detected epicardial surface, c: Complete model surface, d: RV
endocardium, e: LV endocardium, f: Myocardium of the model, g: Fiber orientation per node
from endocardium to epicardium.

rates fiber data. Parameters configured in this file are detailed in the
Section 2.2.2.

In ELECTRA, the longitudinal axis, aligned with the fibers, was configured
for faster propagation than along the transverse axis. The propagation ratio
between these two axes was set at 4:1. A sequence of three stimuli, separated
by 1000 ms, was applied to generate electrical activity in the ventricles. The
stimuli consisted of a square impulse with an amplitude of 200 mA and a
duration of 0.5 ms. The third beat was used for analysis.
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3.2 Transmural and apicobasal heterogeneities modeling in-
tersubject variability

Computational simulation of the electrical activity in the human heart con-
tinues to incorporate parameters that enable a closer representation of this
complex biological system. Despite these advancements, biological systems
exhibit subject-specific characteristics, posing a significant challenge to in sil-
ico representation for the ongoing development of computational simulation.
Nevertheless, this challenge is well received in the simulation field, as it al-
lows for the representation of numerous pathological or histological scenarios.
High-performance computing systems facilitate advanced simulations, reducing
computational time. Among the various inter-subject characteristics present in
cardiac electrophysiology, we chose to focus on two primary factors in this re-
search project: the inclusion of transmural heterogeneities through cardiac tis-
sue segmentation into endocardium, mid-myocardium, and epicardium regions,
and adjustments to the apico-basal propagation speed of the slow potassium
current IKs.

3.2.1 Endo-, mid-, and epi-cardium segmentation

In the development of this research project, transmural heterogeneities were
incorporated into the biventricular model by segmenting the cardiac tissue
into three groups: endocardium, mid-myocardium, and epicardium. Each of
these three subregions in the biventricular model was represented using the
ORd for healthy human ventricular cell electrophysiology [25]. The primary
differences among the endo, mid, and epi models are due to variations in ionic
parameters, which lead to differences in APD. In the endo and mid models,
the transient outward potassium current (Ito) is less pronounced, resulting in a
slower repolarization compared to the epi model. Additionally, the slow (IKs)
and rapid (IKr) potassium rectifier currents are less dense in the endo and mid
cells, leading to a prolonged AP. In contrast, the epi model, with higher IKr
and IKs density, allows for a more rapid repolarization. Midmyocardial cells
exhibit the highest late sodium current (INaL), along with reduced IKr and IKs,
leading to the longest APD of the three. Endocardial cells exhibit intermediate
levels of these currents and APD [25].

In Fig. 3.6, the results of a 2D surface simulation are shown, using square
mesh elements with a side length of 1 mm. A stimulus of 200 mA was applied
at t=0 ms with a duration of 0.5 ms, targeting a group of 4 nodes located in
the bottom left corner of the model. The simulation of AP propagation was
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conducted using FEM, and three simulations were performed: in the first, the
entire surface was represented as epi cells, in the second as endo cells, and in the
third as mid cells. A monodomain model was used for these simulations, and
the AP was evaluated at 60, 100, 200, and 300 ms. Additionally, on the right
side of the figure, the differences in amplitude and duration across the three
simulated ORd are shown, taking an intermediate point of the mesh located in
the lower-left quadrant of the surface.

Figure 3.6: Simulated AP on a 2D surface represented as epi, endo, and mid tissue at t=60,
100, 200, and 300 ms. On the right, the AP is shown on a node with the entire surface
modeled as epi, endo, and mid cells.

The spatial distribution of transmural heterogeneity in membrane kinetics
was modelled by incorporating distinct endo-, mid-, and epi-cardial cell lay-
ers with varying relative thicknesses. The full width of the cardiac wall was
divided into three regions modeled as endo, mid, and epi. The division per-
centages were varied in different decile proportions to assess their impact on
the electrophysiology of the study. Each configuration was denoted as Cuvw
where u, v and w denote the first digit (decile) of the percentage proportions
of endo-, mid- and epicardial cells, respectively, u` v ` w “ 10, (e.g. C334
represents the case with 30% endo-, 30% mid- and 40% epicardial cells).

We identified three surfaces on the mesh model, the left and right ventric-
ular endocardial surfaces and the epicardial surface. From the k-th node in
the mesh, located at coordinates nk “

“

xk yk zk

‰

, we selected those which
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corresponded to the ventricular endocardial surfaces, nken , ken belonging to
the subset of tk P endou, and looked out for the nearest point in the epicardial
surface nkep , kep in the subset tk P epiu, by determining the minimal Euclidean
distance, Dmpkenq, between two nodes as

Dmpkenq “ min
kep

›

›

“

xken yken zken

‰

´
“

xkep ykep zkep

‰›

› . (3.6)

A proportion, pen, of the nodes in the Dmpkenq transmural section from
endo to epi, departing from endo, were set to endocardial nodes. Another
proportion, pepi, of those departing from epicardium were set to epicardial
nodes. Those in middle were considered as midmyocardial nodes. This was
implemented by considering a sphere with center in

“

xken yken zken

‰

and
radius ren “ pen ˆDmpkenq. Every node inside the sphere was classified as
an endocardial node. This process was repeated for the epicardial nodes (see
Fig. 3.7).

Figure 3.7: Representation of the algorithm for dividing cardiac tissue into endo, mid, and
epi. The red circles represent nodes nken and nkepi ; their distance is calculated and then
divided into percentages according to ren and repi, which are the radius of the spheres within
which the nodes are selected as endo or epi.
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The implementation of this algorithm was carried out in MATLAB, and in
its initial version, it was performed by sweeping the entire LV endocardial sur-
face, then the RV, and finally the epicardial surface. This algorithm functioned
correctly as long as an additional file was included indicating the mesh nodes
corresponding to the septum. This information was generated when applying
the Laplace equation on the endocardial surfaces to determine fiber orientation
(see Section 3.1.2), where the nodes of the RV and LV were clearly identified.

Regarding the interventricular septum, we tested the inclusion of a mid-
myocardial region, but it introduced pronounced repolarization gradients that
distorted the morphology of the precordial T waves. Then, When the septum
was modeled as a single endocardial region, T-wave shapes in the precordial
leads returned to within physiological ranges.

Once the heterogeneities were set, the region-detection algorithm was op-
timized starting from the epicardial surface. From this surface, for each node
comprising it, the closest endocardial node, either from the left or RV, was
identified, and the Euclidean distance to this node was measured. This dis-
tance Dmpkepiq was then divided into 10 partitions by using a parameter
pepi P t0.1, 0.2, ¨ ¨ ¨ , 0.9u.

Next, a sphere was defined with its center at
“

xkepi
ykepi

zkepi

‰

and radius
repi “ pepi ˆDmpKepiq, and all nodes within this sphere were considered as
epi nodes. After executing this algorithm, we obtained a file listing the epi
nodes for spheres of 10, 20, 30, . . . , 90% of Dmpkepiq, which was then used
to generate additional models with different tissue segmentation. With this
algorithm, any combination of endo, mid, and epi tissue can be automatically
generated, restricting u` v ` w “ 10.

Once we had the epi file, we were able to generate different models with
varying endo, mid, and epi assignments more quickly. However, as this project
stage aimed to represent a wide range of tissue combinations to understand
their impact on the ECG, we adapted the aforementioned algorithm for exe-
cution on the high-performance cluster provided by the Aragón Institute for
Engineering Research (I3A) at the University of Zaragoza. For algorithm exe-
cution, two external files were required: the first containing the original mesh,
including the node coordinates, the connectivity matrix, and subgroups in-
dicating the nodes belonging to the RV and LV located on the endocardial
and epicardial surfaces; and the second file listing the different percentages of
Dmpkepiq

1.

1The code requires four input arguments: the model combination name, w (epi percent-
age), and a parameter uaux (sum of the mid and epi percentages), both used in the Dmpkepiq
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A total of fifteen configurations were developed considering variations from
10% to 30%, in steps of 10%, in the midmyocardial, and this paired with all
possible combinations from 10% to 50% in the endocardial, and 20% to 80%
in the epicardial segment, restricted transmurally to sum up to 100%

3.2.2 Incorporation of apex-to-base heterogeneity

Apex-to-base electrophysiological heterogeneities were introduced in the model.
The variability in electrophysiological behavior within myocardial tissue has
been reported in both animals and humans, with changes observed in Ito, the
INa, and the IKr and IKs currents [106,107]. The variability present during the
repolarization phase and APD along the ventricular walls has been associated
with heterogeneity in the relative densities of IKr and IKs [106].

To capture the longer APD observed at the base compared to the apex, we
scaled the conductance of the slow delayed rectifier potassium current (GKs)
[108], who reported significant differences in the expression levels of proteins
forming the IKs channel between the apical and basal regions of the heart.
The conductance value of IKs, prior to introducing the apex-to-base scaling
factor, was adopted from the human model by ORd, where the ratio of GKs
for epi/endo is 1.4 and mid/endo is 1 [25].

The biventricular human model was divided into three regions along the
apex-to-base direction: apex, middle, and base to account for the longer APD
at the base compared to the apex. For this division, we consider the longi-
tudinal coordinate variable ζ, moving in the apex to base direction, for each
node nk, ζnk

. The minimum (ζmin) and maximum (ζmax) values of the model
nodes along the longitudinal base-to-apex axis were considered and the longi-
tudinal distance L defined as L “ ζmax ´ ζmin. The threshold value between
the regions was calculated as ζth “ L{3, and the mesh nodes were subsequently
classified in three regions Rapex, Rmiddle and Rbase according to the following
definitions:

percentage file. These parameters enable quick identification of elements belonging to the
endocardial (endo), mid, and epicardial layers. For instance, to generate a model with 40%
endo, 10% mid, and 50% epi distribution across the ventricular wall, the input should be
w “ 50 and uaux “ 60. From these, it is straightforward to determine that epi region will be
50%, endo will be 100 ´ uaux “ 40%, and the mid region will be the remaining 10%.
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Rapex ” tnk | ζmin ď ζnk
ď ζmin ` ζthu ,

Rmiddle ” tnk | ζmin ` ζth ă ζnk
ď ζmin ` 2ζthu , (3.7)

Rbase ” tnk | ζmin ` 2ζth ă ζnk
ď ζmaxu .

Nodes at each region were assigned a distinct factor that contributed to the
reduction of GKs, leading to a variation in IKs magnitudes. Specifically, GKs
was reduced with a distinct scaling factor: 5 at the apex, 2.6 in the middle,
and 0.2 at the base [109]. This segmentation resulted in an ECG that closely
resembles a physiological ECG, as shown in Fig. Fig. 3.8. Other strategies, such
as implementing linear gradient transitions, are not expected to significantly
affect T-wave morphology, as cell-to-cell coupling through gap junctions tends
to attenuate sharp transitions. Nonetheless, this strategy will be incorporated
in future work.

Figure 3.8: Pseudo ECG from the simulation of 3 heartbeats on a biventricular model, show-
ing the effect of incorporating apex-to-base heterogeneities in red compared to the simulation
without apex-to-base heterogeneities in blue.

This new grouping of nodes was introduced into the algorithm detailed in
Section 3.2.1 for the incorporation of transmural heterogeneities, so that the
nodal subgroups were automatically generated. The biventricular model was
ultimately divided into 9 regions, taking into account the previously detailed
transmural and apex-to-base heterogeneities, as shown in Fig. 3.9. These char-
acteristics were used in all the models generated in this research.

In Fig. 3.10, the effect of incorporating apex-to-base heterogeneities on the
propagation of the AP along a 2D surface, meshed with square elements of
1 mm per side, is shown. In this figure, it can be observed that in the apex
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Figure 3.9: Biventricular human model with incorporated transmural and apex-to-base het-
erogeneities.

region there is a higher density of IKs, which results in a faster repolarization
phase. In the middle region, the repolarization phase is accelerated, although to
a lesser extent than in the apex. Finally, in the base region, the repolarization
phase is prolonged due to the slowing effect introduced in GKs.



333

68
C
h
ap

ter
3
.
Q
R
S
-T

an
g
le

ch
an

g
es

in
co
m
p
u
tatio

n
al

IU
G
R

m
o
d
els

Figure 3.10: Propagation of the AP along a 2D surface at time t=180 and 280 ms for endo tissue, t=220 and 280 ms for mid tissue,
and t=200 and 280 ms for epi tissue. On the bottom, the AP curve is shown for endo, mid, and epi tissue. The reference curve from
the human model by ORd, without scaling, is added in black.
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This scaling represented a significant change in the 12-lead ECG simulation
on the biventricular human model, particularly during the repolarization phase,
as shown in Fig. 3.8. The incorporation of this scaling factor allowed for a more
realistic pseudo-ECG.

3.2.3 Generation of globular models

The anatomical changes resulting from IUGR (see Section 1.5.1) have lasting
consequences into adulthood, as demonstrated by several studies (see Table
1.1). Cardiovascular remodeling can manifest as a reduction in the ventricular
SpI defined as the ratio between the base-to-apex length, L, to the basal diam-
eter (ϕ), SpI=L{ϕ, and these changes have been shown to be more prominent
in the LV. They may even be associated with an increased risk of mortality in
adulthood [110].

The models introducing deformation changes emulating the IUGR globular
cardiac morphologicaly remodeling are denoted as G models, and built depart-
ing from the control model C. To build G from C, we incorporated echocardio-
graphic findings on left and right ventricular morphometry as reported in [13].
Specifically, we increased the basal diameter ϕ and shortened the apex-base
length L, resulting in a reduction of the SpI (see Table 3.1). In order to focus
the study on evaluating the impact of geometrical changes on the simulations,
the electrophysiological characteristics of the G model, such as fiber orienta-
tion, ventricular heterogeneities, and CV, were kept unchanged with values as
previously described in the control model.

To deform the C model, we used FEBIO software and the cardiac tis-
sue was modeled as an isotropic, homogeneous, hyperelastic, and incompress-
ible Mooney-Rivlin material [111] with an invariant term C1=0.38 MPa and
C2=0.31 MPa. Nodes, nk “

“

xk yk zk

‰

were deformed, generating a nodal
displacement to nk ` dk, with dk “

“

uk vk wk

‰

.

We generated eight distinct deformed models G with the same SpI (Fig. 3.11).
We first applied three different strategies to increase the ϕ of the control ge-
ometry by applying a load on the Y -axis (where ϕ is measured) resulting in a
displacement fypykq on the yk coordinate: dk “

“

0 fypykq 0
‰

.

• The first strategy, denoted as (Y Ñ), expanded the epicardium of the LV
by applying a surface traction on the epicardial surface with a boundary
condition fypykq “ 0, no displacement, for yk in the septum nodes.

• In the second strategy, we applied a similar load on the septal left wall
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Table 3.1: Base-apex length L, basal diameter ϕ, and sphericity index SpI feature values from
echocardiographic measurements, with statistical difference between patient groups, [13] and
the same morphometry measurements in the simulations models C and GA to GH deformed
models variants.

Data
Feature L length (cm) ϕ diameter (cm) SpI

Left Right Left Right Left Right

Clinical
dataset

Control subjects 6.9˘0.6 6.5˘0.6 3.4˘0.3 3.0˘0.4 2.0˘0.01 2.1(0.2-0.22)
IUGR subjects 6.4˘0.6 6.1˘0.6 3.5˘0.3 3.0˘0.3 1.9˘0.01 2.0(0.1-0.2)
p-value 0.003 0.01 0.003 0.32 ă0.001 0.006

Model

Control (C) 7.0 5.7 4.6 4.2 1.5 1.4
GA [Y Ð, Z Ò] 6.5 5.3 4.7 4.2 1.4 1.3
GB [Y Ð, Z Ó] 6.5 5.3 4.7 4.2 1.4 1.3
GC, D [Y Ð, Z Ù] 6.5 5.3 4.7 4.2 1.4 1.3
GE [Y Ñ, Z Ò] 6.5 5.2 4.7 4.3 1.4 1.2
GF [Y Ñ, Z Ó] 6.5 5.2 4.7 4.3 1.4 1.2
GG, H [Y Ø, Z Ù] 6.5 5.4 4.7 4.2 1.4 1.3

(Y Ð), fypykq “ 0 for yk in the left ventricular wall.

• In the third strategy, a similar load was homogeneously applied to the
entire endocardial wall of the LV (Y Ø),
dk “

“

fxpxkq fypykq 0
‰

, fxpxkq, fypykq “ 0 for xk and yk in the right
ventricular wall.

We also applied three different strategies to reduce the L length,
dk “

“

0 0 fzpzkq
‰

.

• In the first strategy, a surface load (Z Ò) was applied to the apex, fzpzkq “

0 for zk in the base.

• In the second strategy (Z Ó), the load was applied to the base, with
fzpzkq “ 0 for zk in the apex.

• In the third strategy (Z Ù), a scale factor, α, was introduced to homoge-
neously reduce the L length, LAB, up to LAB ´ ∆LAB, α “ ∆LAB{LAB.
We calculated the displacement on the Z -axis as fzpzkq “ αpzr ´ zkq,
where zr is the zero displacement reference coordinate. GG and GC mod-
els meet fzpzrq “ 0 at the apex, and GH and GD models meet fzpzrq “ 0
at the base (Fig. 3.11).

The surface loads were applied on each one of the triangle surface elements,
resulting in a total displacement dk “

“

uk vk wk

‰

formed by the summation
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Figure 3.11: The upper part shows, through the color map, the nodal displacement obtained
as a result of the deformation of the original control model C. The Y and Z axes were
associated with the deformation in the ϕ and in the L, respectively. The eight G models
resulting from combining the deformations in Y and Z axes were shown at the bottom.

of the apex-base and endo-epi displacements, and applied to the original mesh
to generate the eight G models (Fig. 3.11). Twelve deformed models were
obtained through the combination of the three methods for ϕ deformation with
the four methods for apex-base deformation. Four models were excluded from
the study as the angles of depolarization and repolarization they produced fell
outside the physiological limits. This could be attributed to a less uniform
distribution of deformation resulting from the combined methods of modifying
ϕ and L length. Fig. 3.11 displays the eight models that were retained for
analysis.
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3.3 Confounding effect of heart location within the torso

In addition to generating multiple globular models, we investigated the impact
of a global displacement of the heart’s anatomy relative to the thoracic cage,
with a magnitude comparable to the deformation of the model nodes. This
displacement, which can also account for electrode mispositioned, was incorpo-
rated by translating the original coordinate system of the biventricular mesh.
This nodal displacement raised an important question: Is the electrophysiolog-
ical change observed in the results just a result of the geometric remodeling, or
could it be also attribute to the nodal displacement of the biventricular model,
particularly the LV?

Figure 3.12: Displacement tests description for C model, C334 configuration, when displacing
mesh nodes by 5, 10, and 15 mm. a) location grid around a red point representing one node
of the mesh and its relocation. Each gray point represents the displacement of each of the
nodes of the model in any direction. 120 dk displacements were made around the original
point, at 5, 10, and 15 mm. b) QRS and T-wave vectors and their angles with respect to the
three corporal planes. Note that T-wave (red line) and QRS (blue line) loops have a similar
dominant vector direction.

To answer this question, in addition to the morphological remodeling con-
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sisting of a reduction in the SpI, a displacement of the heart anatomy within
the thoracic cage was included. The C model was relocated in the three axis
in one hundred and twenty different forms, by displacing each node nk accord-
ing to the vector dk “

“

∆x ∆y ∆z
‰

where }dk} P t5, 10, 15u mm (Fig. 3.12).
The pseudo-ECG was computed considering the displacement of the biventric-
ular model inside the torso mesh and the dominant vectors from the VCG were
computed.

3.4 Pseudo ECG/VCG calculation from the biventricular hu-
man model

In the previous sections, all the features incorporated into the models for per-
forming in silico simulations have been described. All simulations were carried
out on both the control C and globular G models, maintaining similar propaga-
tion characteristics, heterogeneity, and fiber orientation, though adapting them
to the geometric changes of the globular models. The features incorporated into
the models are summarized in Fig. 3.13.

Figure 3.13: Parameters considered on the C and G models. a) Mesh segmentation consid-
ering transmural (endo/mid/epi myocardium) and gradient heterogeneities (apex/intermedi-
ate/base, dark blue to light blue), b) Purkinje network on the endocardial surface, c) fiber
orientation from endocardial (blue lines) to epicardial surface (red lines), and d) color map
showing the nodal displacement on the C model to obtain the G models.

The voltages in the biventricular mesh nodes and in the torso volume where
it was embedded were used to compute extracellular potentials, using a mon-
odomain cell model. Virtual electrodes were positioned on the torso surface
at electrode positions required to compute the standard 12-lead ECG [112].
The torso volume consisted of „3 250 000 nodes and „19 500 000 tetrahedral
elements. The torso structure and its position in space allow precise placement
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of the heart within it, along with virtual electrodes on its surface to simulate
the propagation of electrical activity through the volume and over the surface
to calculate the ECG. Fig. 3.14 shows the torso and heart models, along with
the electrodes and their spatial position. In this case, the C model of the heart
is displayed.

Figure 3.14: Heart model embedded in the torso with virtual electrodes on its surface (pre-
cordial leads V1 to V6 and limb leads RL, RA, LL, and LA).

We calculated the VCG from the synthetic ECG using the inverse Dower
matrix [87], as described in Section 2.4.2. The projection of the QRS-T angle on
the XY plane was calculated (θRT-XY). Three angles were determined between
the QRS loop vector and each of the three VCG planes (ϕR-XZ, ϕR-XY, and
ϕR-ZY), and other three for the T-wave vector (ϕT-XZ, ϕT-XY, and ϕT-ZY).
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Finally, the angular difference between the QRS and T-Wave on each of the
three planes was calculated (ϕR-XZ´ϕT-XZ, ϕR-XY´ϕT-XY, and ϕR-ZY´ϕT-ZY).

Fig. 3.15 shows the projection of the dominant depolarization and repolar-
ization vectors of the VCG, obtained by simulating the C model, in the three
planes frontal, transverse, and sagittal. Additionally, the projection of the dom-
inant vectors on the XY plane is illustrated. The loop observed corresponds to
the third simulated heartbeat.

Figure 3.15: Loops and dominant vectors of depolarization and repolarization in the three
reference planes: frontal, sagittal, and transverse. The QRS complex loop is shown in blue,
and the T-wave loop is shown in red. The dashed line represents the dominant vectors of
depolarization and repolarization. a: VCG and the three planes, b: Projection of the QRS
vector onto the XY plane, with the angle highlighted in orange, c: Angles of the dominant
vectors with respect to the YZ-Sagittal plane, d: With respect to the XZ-Transverse plane,
and e: With respect to the XY-Frontal plane.

Three different stages were simulated for evaluation of the angular vari-
ables. First, simulations were performed in the control model C incorporating
transmural and apicobasal heterogeneities, as described in previous sections.
Second, the control model was deformed to make the ventricles more globular
G using eight different strategies, GA to GH . Subsequently, different transmural
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heterogeneities were incorporated in two representative deformed models, GG

and GH . In the third stage, a global displacement test applied to the C model
was introduced by moving all mesh nodes equally.

3.5 Results

3.5.1 Transmural heterogeneities induced angular variation

Variability in the depolarization and repolarization VCG and ECG leads was
introduced by using different transmural proportions of endo, mid and epi cells
across the ventricular wall. The resulting X, Y, and Z leads are shown in
Fig. 3.16. Dotted lines show the QRS and T-wave time intervals from which
the dominant vectors were computed. The QRS complex was defined to occur
between 12 and 85 ms, while the T-wave was considered to span from 200 to
378 ms. Fig. 3.16 shows the variation in the T-wave corresponding to different
tissue heterogeneities for the fifteen simulated combinations described in the
table inside Fig. 3.16.

The calculated angles of the QRS and T-wave loops with respect to the three
corporal planes from different Cuvw configurations were plotted in Fig. 3.17,
leftmost boxplot in each angle column. The angles variance across the Cuvw
configurations were: in the frontal plane XY, 2.6˝, 3.0˝, and 3.7˝ for θRT-XY,
ϕR-XY, and ϕT-XY, respectively; in the transverse plane XZ, 0.02˝ and 0.1˝ for
ϕR-XZ and ϕT-XZ, respectively, and in the sagittal plane ZY, 2.1˝ and 1.7˝ for
ϕR-ZY and ϕT-ZY, respectively.
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Figure 3.16: List of the different transmural tissue heterogeneities configurations. Columns
and rows indicate the percentage of endocardium and epicardium respectively. Bold lines
correspond to configurations with inter-middle (C334) and extremes (C136 and C532) T-
wave amplitudes. X, Y, and Z leads computed using the biventricular model at the C case,
combining different endo-mid-epi tissue ratios configurations, Cuvw. Dotted lines show QRS
and T-wave time intervals from where the dominant vectors were computed.
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Figure 3.17: Depolarization and repolarization angles, plotted with a bias ∆θ or ∆ϕ reported on each column top, for visualization
purposes. Each column corresponds to an angle and includes three subplots. The leftmost subplots include the angles estimate from
C case for the 15 different Cuvw transmural configurations, representing the central configurations (endo having 20%, 30%, and 40%)
in dark green, with percentiles boxplot, and in light green otherwise except the reference C334 which is plotted in black square; the
two extreme cases of C136 and C532, were surrounded by square and diamond, respectively. The middle plots have eight colored
dots, corresponding to angles estimated from the GA to GH models deriving from the control C at transmural distribution C334 (black
square). The rightmost subplot includes angles estimates for GG (red) and GH (brown) for the extreme transmural configurations
C136 (squares) and C532 (diamond).



333

3.5 Results 79

3.5.2 Angular variation in globular, G, models

The eight deformed G models, for C334 transmural distribution, exhibited vary-
ing QRS and T-wave angles with respect to the three VCG planes (Fig. 3.17,
central columns), despite having a similar SpI. For each deformed model, we
computed the QRS and T-wave loops. Subsequently, we derived the average
QRS loop and the average T-wave loop across all the deformed models. The
average loops were then compared to the loops of each deformed model using
a least squares adjustment. As a result the GC and GG models exhibited the
closest similarity to the average QRS loop, while GG and GH demonstrated the
closest similarity to the average T-wave loop. Based on this observation, the
GG and GH models were selected as the two representative deformed models
for the study. The GG model shares the same ϕ deformation as the GH model
but differs in its apex-base variation, allowing the two models to capture com-
plementary features of cardiac deformation.

To analyze in detail the QRS loops changes, Fig. 3.18, we divided them
into three colored segments: blue from loop start to 31 ms, gray from 31 to
64 ms, and magenta from 64 to 85 ms. We plotted the simulation results of
the GG and GH models as representatives of average deformations. GG keeps
an apex constraint as the reference point of deformation while GH keeps a base
constraint.

In the first segment, the electrical propagation went from His bundle through
the branches until the septum, discreetly to the right, as can be evidenced in
the frontal plane of the VCG (Fig. 3.18). Dominant vectors from GG and GH

extended slightly towards the right side of the torso, probably due to the en-
largement of the LV in the upper third septal myocardium and there was a
slightly angular change in the sagittal and transverse planes. In the second
segment of the loop, between 31 and 64 ms (Fig. 3.18), the electrical propaga-
tion in the LV predominated and the direction of the vector towards the lower
left part of the torso can be observed. By decreasing the L length in the G
models, the local activation time (LAT) of the region was reduced, causing a
loop that reached its maximum point faster. After the potentials reached the
apex, propagation continued into the large regions corresponding to the free
walls of the LV. In the third segment of the loop, after 64 ms (Fig. 3.18), the
last areas close to the base in the posterior area were mainly activated. In the
globular G models, the LAT was reduced on the base of the left and RV.
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Figure 3.18: Temporal segmentation of the QRS loop in three parts to analyze the vector changes. QRS loop projections of the C,
and its evolved GG and GH models, all in C334, between 1 and 31 ms, 31 and 64 ms, and 64 and 85 ms. Dashed arrows represent the
dominant vectors of the loops.
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Subsequently, three tests were performed on the GG model, incorporating
transmural heterogeneities: C136, C334, and C532. The first and the last
configurations were selected as extreme scenarios in the behavior of the T-
wave, and the C334 was the one showing a behavior closer to the average,
based on the tests carried out on the C model, Fig. 3.16.

The C136 configuration reached a higher T-wave amplitude but decayed
faster. On the contrary, C532 reached the lowest amplitude but extended its de-
cay beyond the two additional compared models, Fig. 3.16. Regarding the QRS
and T-wave angles, the C136 and C334 models maintained similar trends as
those reported in the clinical data at certain angles (θRT-XY, ϕR-ZY, ϕT-XY, ϕT-ZY

for adults, and θRT-XY, ϕR-XZ, ϕR-XY, ϕT-XZ for preadolescents, in Table 3.2).
To compare the angular variation not only the angle difference values between
control, C, and deformation, G, models, ∆, were compared, but the relative
change, R, calculated as the ratio between angle at deformation G and at
control C, was computed, and displayed in Table 3.2. A value of R ă 1 rep-
resents an angular reduction in the G model with respect to the C model and
a value of R ą 1 represents an increase. This index shows that the θRT-XY

angle decreases in the GG models compared to the C model but in a non-
homogeneous way. The R index shows a noticeable change on ϕR-XZ ´ ϕT-XZ,
less marked in ϕR-XY ´ ϕT-XY, and shows a pronounced heterogeneous change
on the ϕR-ZY ´ ϕT-ZY. Here it is possible to observe that the models C136
and C532 generate opposite extreme angular values, Fig. 3.16. For further
comparative testing we also report the C334 model results as the intermediate
behaviour.

The G models kept the same Purkinje network and the apico-basal gradient
and transmural heterogeneities than the C model. The angle measurements are
presented in Table 3.3. Second to fourth columns show the preadolescent results
presented in [14], fifth to seventh columns show the adults results from [15],
together with the R and ∆ indexes. Results on GG and GH models relative
to the C, were shown from eighth to twelfth columns. Angles that followed in
simulation the same trend as in the clinical data are highlighted in bold and
underlined.
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Table 3.2: QRS and T-wave angles using different transmural heterogeneities on GG model.
∆ and R, angle difference and ratio, respectively, between deformed GG and control C models.
Bold, and underlined, font highlights the angles which tendency of change between GG and C
models follows similar trend to clinical results between IUGR and control for preadolescents
[14], and adults [15], respectively.

Angle (degrees)
C136 C334 C532

C GG ∆|R C GG ∆|R C GG ∆|R
ϕR-XZ 43.1 40.4 -2.7|0.9 43.4 40.2 -3.1|0.9 43.2 38.9 -4.3|0.9
ϕR-XY 22.6 24.7 2.1|1.1 24.2 26.5 2.3|1.1 29.0 31.8 2.8|1.1
ϕR-ZY 38.4 39.6 1.2|1.0 36.9 38.3 1.4|1.0 33.0 35.0 2.0|1.1
ϕT-XZ 37.1 36.9 -0.2|1.0 37.5 37.1 -0.4|1.0 38.0 37.7 -0.3|1.0
ϕT-XY 30.5 31.4 0.9|1.0 28.7 30.0 1.2|1.0 22.4 24.5 2.1|1.1
ϕT-ZY 37.9 37.4 -0.6|1.0 39.1 38.4 -0.7|1.0 43.6 42.3 -1.2|1.0

θRT-XY 3.3 0.8 -2.5|0.2 4.9 2.0 -2.8|0.4 9.7 5.3 -4.4|0.5
ϕR-XZ´ϕT-XZ 6.0 3.5 -2.5|0.6 5.9 3.1 -2.8|0.5 5.2 1.2 -4.0|0.2
ϕR-XY´ϕT-XY -7.9 -6.8 1.2|0.9 -4.5 -3.5 1.1|0.8 6.5 7.2 0.7|1.1
ϕR-ZY´ϕT-ZY 0.4 2.2 1.8|5.0 -2.2 -0.2 2.1|0.1 -10.6 -7.3 3.2|0.7
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Table 3.3: Results are presented in three blocks: the leftmost block represents the clinical data for preadolescents, the central block
represents the clinical data for adults, and the rightmost block represents the simulation results. The loop angle values are reported
as mean ˘ standard deviation or interquartile range. Simulation results display the angles obtained for deformation GG and control
C in configuration C334. The angles that exhibit a tendency of change between GG and C models, similar to the tendency observed
between IUGR and control subjects for preadolescents [14], are highlighted in bold. Likewise, for adults [15], the angles are underlined.
Significant differences *p-valueă0.05, **p-valueă0.01.

Angle (degrees)
Clinical result preadolescents [14] Clinical result adults [15] Simulations on C334

Control IUGR ∆|R Control IUGR ∆|R C GG ∆|R GH ∆|R
n=60 n=33 n=33 n=54

ϕR-XZ 37.6 (29.9 - 40.8) 34.2 (28.6 - 40.0) -3.4|0.9 33.0 ˘ 9.1 35.7 ˘ 6.1 2.8|1.1 43.4 40.2 -3.1|0.9 40.7 -2.7|0.9

ϕR-XY 20.0 (10.1 - 28.6) 25.5 (19.8 - 33.6)˚ 5.5|1.3 29.5 ˘ 13.0 22.1 ˘ 11.8˚˚ -7.4|0.7 24.2 26.5 2.3|1.1 24.5 0.3|1.0

ϕR-ZY 46.0 ˘ 9.3 43.1 ˘ 8.9 -2.9|0.9 40.7 ˘ 12.1 44.2 ˘ 9.8 3.5|1.1 36.9 38.3 1.4|1.0 39.4 2.5|1.1

ϕT-XZ 36.4 (32.1 - 38.8) 32.0 (28.6 - 38.6)˚ -4.4|0.9 29.4 ˘ 10.6 33.2 ˘ 10.7˚ 3.8|1.1 37.5 37.1 -0.4|1.0 36.7 -0.8|1.0

ϕT-XY 29.4 (13.7 - 27.2) 21.5 (12.8 - 25.9) -7.9|0.7 14.4 ˘ 8.7 14.5 ˘ 9.4 0.1|1.0 28.7 30.0 1.2|1.0 28.0 -0.7|1.0

ϕT-ZY 47.2 (38.8 - 52.9) 47.9 (41.1 - 56.6) 0.7|1.0 54.8 ˘ 9.5 51.5 ˘ 12.1 -3.3|0.9 39.1 38.4 -0.7|1.0 40.5 1.4|1.0

θRT-XY 6.6 (2.7 - 11.3) 6.5 (3.9 - 15.8) -0.1|1.0 13.5 ˘ 13.7 9.3 ˘ 8.5˚˚ -4.2|0.7 4.9 2.0 -2.8|0.4 3.2 -1.7|0.7

ϕR-XZ´ϕT-XZ 1.7 (-4.0 - 5.4) 0.9 (2.3 - 6.1) -0.8|0.5 3.5 ˘ 9.6 2.5 ˘ 8.4 -0.9|0.7 5.9 3.1 -2.8|0.5 4.0 -1.9|0.7

ϕR-XY´ϕT-XY -0.5 ˘ 14.1 5.3 ˘ 12.1˚ 5.8|-10.6 15.1 ˘ 14.1 7.6 ˘ 14.6˚˚ -7.5|0.5 -4.5 -3.5 1.1|0.8 -3.5 1.0|0.8

ϕR-ZY´ϕT-ZY -0.7 ˘ 12.5 -4.9 ˘12.7 -4.2|7.0 -14.1 ˘ 14.0 -7.4 ˘ 14.0˚˚ 6.8|0.5 -2.2 -0.2 2.1|0.1 -1.1 1.1|0.5
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3.5.3 Impact of electrode position

The nodal displacement tests allowed us to identify the angular variation gen-
erated only by displacing the C model a certain distance in different directions.
Fig. 3.19 shows the values of the QRS loop angles, ϕR-PL, (horizontal axis)
against the T-wave angles, ϕT-PL, (vertical axis), PL P tXY, ZY, XZu. Simula-
tions results without displacement are shown in big squares: green for the C
model (center of the clouds in Fig. 3.19 subplots) and magenta and cyan for
the GG and GH models, respectively.

Figure 3.19: QRS, ϕR-PL, vs T-wave, ϕT-PL, angles, PLP tXY, ZY, XZu, from the VCG,
considering a 5 (yellow), 10 (orange), and 15 (blue) mm displacement of the heart inside the
torso. Each color group shows one hundred and twenty tests. The green square shows the
control C results, and the magenta and cyan squares correspond to the angular results for the
GG and GH models without displacement, respectively.

Table 3.4 presents the impact of heart displacement on the angular loops.
The analysis shows that the maximum change in angle occurs in ϕT-ZY, followed
by ϕT-XY. However, the relative angles (last three rows) exhibit lower changes,
likely due to their nature as relative angles, where the influence of displacement
is reduced. As observed earlier (Fig. 3.17), the transverse plane XZ showed
lower angle variations. Based on Fig. 3.18, we observe that the deformations
primarily occur along the X and Y axes, while the deformation along the Z axis
is minimal. In addition, the loop in the XZ plane mainly spans along the Z axis,
resulting in minimal changes to its axis. As a result, this contributes to the
lower variability of angles observed in the XZ plane, even in the displacement
tests.

The nodal displacement in all the GA´H models did not exceed 3mm in all
axes, for this reason, the angle measurements were compared against the 5mm
displacement in the Fig. 3.20. In this figure, the magenta region represents the
angular variation obtained when the C model is displaced 5mm in any direction
and is compared with the loop and dominant vector of the deformed GG model.
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Table 3.4: Angle value for model C with no displacement, and ˘ standard deviation (˘SD)
when ||dk|| ‰ 0. Bold font highlights the larger SD. Note that the angle value for ||dk|| “ 0
is the same as the mean angle for ||dk|| ‰ 0.

Control model C, with C334
||dk|| (mm) 0 5 10 15

Degrees (o) Angle SD SD SD
ϕR-XZ 43.4 ˘ 0.5 ˘ 0.9 ˘ 1.4
ϕR-XY 24.2 ˘ 1.2 ˘ 2.4 ˘ 3.6
ϕR-ZY 36.9 ˘ 1.0 ˘ 2.0 ˘ 3.0
ϕT-XZ 37.5 ˘ 0.5 ˘ 1.0 ˘ 1.4
ϕT-XY 28.7 ˘ 1.2 ˘ 2.5 ˘ 3.8
ϕT-ZY 39.1 ˘ 1.5 ˘ 3.0 ˘ 4.6
θRT-XY 4.9 ˘ 0.7 ˘ 1.5 ˘ 2.2

ϕR-XZ´ϕT-XZ 5.9 ˘ 0.6 ˘ 1.2 ˘ 1.8
ϕR-XY´ϕT-XY -4.5 ˘ 0.2 ˘ 0.3 ˘ 0.5
ϕR-ZY´ϕT-ZY -2.3 ˘ 0.7 ˘ 1.4 ˘ 2.0

3.6 Discussion

Significant cardiac morphological changes as a consequence of IUGR remain
from the fetal stage to adolescence and adulthood [113], [96], [13], [15] and have
been associated with cardiovascular disease [43], [46], [114], [16]. The impact
of morphological changes on cardiac electrical activity might contribute to a
better understanding of IURG-related cardiac remodeling. In this work, we
evaluated whether the morphological changes described in IUGR subjects [13]
result in the changes in QRS and T-wave loop angles observed in patients [14,
15], using computational models based on heart and torso realistic anatomies.

3.6.1 Analysis of angular variability in simulation

The incorporation of transmural heterogeneities to the control C model aims to
represent in silico the observed inter-patient variability in tissue proportions
and assess its impact on the analyzed angular parameters. In Fig. 3.16, it is
possible to see the impact that transmural changes have on the amplitude of the
T-wave and its duration, causing changes in all the angular parameters [115],
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Figure 3.20: QRS and T-wave loops in the three VCG planes. The magenta region corre-
sponds to the angle variation when displacement ||dk||=5 mm in any direction. QRS and
T-wave loops correspond to the GG model simulation. Dotted lines represent the dominant
vectors.

but in different proportions. In Fig. 3.17, we can observe a higher dispersion
of angles in the frontal plane XY. On the other hand, in the transverse plane
XZ, the lowest variability in angles is evident for ϕR-XZ and ϕT-XZ.

IUGR can occur due to a combination of unfavourable maternal, placental,
fetal, and genetic factors. Cardiac remodeling as a consequence of IUGR has
been evidenced by a change in the ventricular SpI, reducing the L length and
increasing ϕ [13]. We deformed the C model by applying loads on different
regions of the ventricular model (Fig. 3.11). The simulated globular models
underwent changes in their SpI that aligned with the magnitude observed in
clinical data. These changes were achieved through the implementation of
eight distinct deformation protocols, intended to replicate the effects of IUGR.
The different methods applied to obtain the deformed models GA´H influence
the angular parameters of the QRS and the T-wave. Fig. 3.17 shows these
calculated angles, in addition to the reference angular value of the control C
model at configuration C334. QRS angles present greater variability than T-
wave angles, because the reduction in the L length and the widening of the
ϕ directly affect QRS, reducing the time in which the apex and the external
walls of the LV were activated.

In the simulation, a wide range of transmural differences were considered
being C136 and C532 configurations the ones displaying extreme angular val-
ues. However, the angular variability resulting from transmural cell type is
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smaller than the one resulting from the deformed GA´H models in Fig. 3.17,
particularly when only non extreme tissues dispersion is considered, consistent
with the significant variations found in patients. Fig. 3.17 additionally shows
the angular result when introducing extreme transmural heterogeneities (C136
and C532) on the deformed models GG and GH . As expected, this variation
caused extreme angular values in the T-wave and minor changes in the QRS,
following the same pattern of change evidenced in the results with the C model.

The results obtained in this article were compared with clinical results of
preadolescents [14] and adult subjects [15] with IUGR. Only some of the mea-
sured parameters present a statistically significant difference between IUGR
and control subjects; however, they were not the same in preadolescents and
adults, with the exception of: ϕR-XY, ϕT-XZ, and ϕR-XY´ϕT-XY. The θRT-XY

angle, measured in both preadolescents and adults, shows a decreasing trend
in the IUGR groups, although the change reaches statistical significance only
in adults.

Considering the angles that present significant variation, both control groups
(preadolescent and adult) in clinical studies, exhibit different central tendency
values, likely due to the anatomical and physiological differences between age
groups. Similarly, when comparing the IUGR groups (preadolescent and adult),
the opposing angular variations may be associated not only with the conse-
quences of IUGR but also with changes in cardiac orientation and differences
in ventricular mass, for instance. Additionally, large intersubject angular vari-
ability contributes to the apparent reversal of mean trends from adolescence
to adulthood. Despite this, the changes in depolarization and repolarization
angles calculated in silico simulations were mostly concordant with the clinical
results when evaluating the R index, Table 3.3.

The significant difference observed between the two clinical studies is no-
table, although the opposing trends warrant further investigation to identify
which additional parameters are influencing these changes. It may also be nec-
essary to conduct a more extensive study involving preadolescents and adults
to obtain more detailed electrophysiological insights.

From Table 3.3, in the simulation section, it can be observed that the
slight longitudinal displacement of the heart („3 mm) in the globular models,
resulting from the shortening of L, can affect the calculated angles and their
interpretation. Observing the trend of changes, the GG model shows more
angular parameters aligned with those observed in the clinical data from the
adult study, whereas the GH model presents a pattern of angular changes more
consistent with the study in preadolescents.
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These results support that the morphological remodeling of the heart is, at
least partially, responsible for the observed electrophysiological changes mod-
ifying most of the depolarization and repolarization angles. However, angle
variations were also observed to be sensitive to the relative position of the
heart with respect to the torso and electrodes, although the impact of these
variations were lower than those observed by the morphological remodeling,
for low displacements, as expected from electrode misspositioning, etc.

The θRT-XY values, both in the C and G models, were within the ranges of
healthy people [116]. A wider angle (greater than 100 degrees) is usually asso-
ciated with changes in the T-wave axis rather than QRS related and carries a
considerably increased cardiac risk [117]. Reasons for θRT angle changes are as-
sociated to changes in ventricular repolarization itself, or secondary to conduc-
tion abnormalities [118,119]. A wide spatial θRT angle has been demonstrated
to be a predictor of sudden cardiac death in the general population (low risk)
and in groups considered to be at higher risk (clinical population) and a strong
predictor of all-cause mortality in post-menopausal women [117, 119, 120]. In
our study, the reduction in θRT-XY can be attributed to changes in both the
QRS and the T-wave dominant vectors, being the QRS angle the one showing
the largest change (Table 3.3). Both QRS and T-wave angles changed from
control to deformed simulations without considering ventricular conduction ab-
normalities in the deformed model. A recent genome-wide association study
showed that ventricular conduction abnormalities are the most likely cause of
QRS-T angle widening, being able to counteract the reduction in θRT-XY [118].
As far as we know, there have been no studies indicating that conduction ab-
normalities occur as a result of IUGR. Therefore, in this analysis, we have kept
the same conduction system in the control and deformed models in order to
specifically assess the effect of geometrical changes on the VCG loops.

This reduction in θRT-XY between control and IUGR patients is tiny in the
clinical results reported in [14] with R “ 1.0, and larger in [15] with R “ 0.7,
and it is reproduced with a similar trend in the simulation results for the GG

and GH models, with values of R=0.4 and 0.6 respectively (Table 3.3).

Regarding the transverse plane XZ, the clinical results show a significant
difference only in ϕT-XZ. The simulation results show a similar trend than
in adolescents and reverted than in adults data (R “ 0.9 for preadolescents,
R “ 1.1 for adults, and R “ 1.0 for the GG and GH models). In the same
plane, ϕR-XZ shows an index R “ 0.9 for the GG and GH models, similar to
preadolescents and contrary to R “ 1.1 in adults.

The angular variation with respect to the sagittal plane ZY does not show
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a significant difference in the clinical results; however, the R index shows a
trend similar to the simulations results. For ϕR-ZY, R “ 0.9 (preadolescents),
R “ 1.1 (adults) and 1.0 for GG and 1.1 for GH model. For ϕT-ZY, R “ 1.0
(preadolescents), R “ 0.9 (adults) and 1.0 for GG and GH models.

The changes in planarity and roundness of the QRS and the T-wave loops
in GG and GH models with respect to C model were also computed as in [14],
and did not evidence significant changes, similar to what was reported for clin-
ical results in preadolescents [14]. Although the angular variations in QRS and
the T-wave loops introduced by deformation were small, these variations were
still greater than those generated by the incorporation of transmural hetero-
geneities or due to displacement of the heart alone. The angular variation is
more accentuated (R index more different from 1) when comparing the relative
angular values between the QRS and the T-wave, ϕR-PL´ϕT-PL, last three rows
in Table 3.3, and its trend is congruent to the clinical results in adults. Note
that in preadolescents the angles at control were very small making the index
R less reliable.

3.6.2 Angular changes with electrode position

We can see in Fig. 3.20 that, although the displacement of the GG model does
not exceed 3 mm, the dominant vector direction of the QRS loop is clearly
different, which supports the hypothesis that the angular variation is not only
a result of the nodal displacement of the heart but also of its deformation.

In the 5 mm displacement test (Table 3.4), we found a linear angle variation
with a maximum value of 1.5 degrees on T-wave loop with respect to the
sagittal plane ZY. Considering the deformed models, the change in the θRT-XY

showed a variation of less than 3 degrees. This slight variation aligns with the
clinical observations of IUGR preadolescents used for validation in this study,
who showed an average change of 0.1 degrees [14]. Furthermore, IUGR adults
displayed a mean change of 4.2 degrees [15]. These values for changes in the
θRT-XY angle are small compared to those produced by other clinical pathologies
such as conduction abnormalities, suggesting that the IUGR preadolescents
included in the study have not developed any conduction abnormality. Previous
studies have shown that displacement of precordial leads by 2 cm can result in
changes in R wave progression in the precordial zone [121].

In the study conducted by Nguyen et al. [122], an in silico study was per-
formed by reconstructing cardiac structures using magnetic resonance imaging
from five subjects with intraventricular conduction defects. The heart was sim-
ulated considering displacements in four directions of up to 6 cm and a rotation
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of ˘30° around the anteroposterior axis. The results revealed changes in the
QRS-T angle ranging from –6% to 3%, and a greater variation in the amplitude
of the QRS complex, ranging from –36% to 59%. In our study, θRT-XY showed
a variation of –59.2% for the GG model and –34.7% for the GH model. From
a clinical perspective [123], in a total of 194 patients, the diagnosis did not
change in 87.5% of cases when the electrodes were shifted from the fifth to the
fourth intercostal space. The QRS-T angle showed a variation ranging from
–13.2% to 18.1%.

Cardiac remodeling of the fetus involves various mechanisms inducing the
morphological change, as an adaptation to pressure and volume excess and
resulting in a reduction of the SpI. In addition to this anatomical remodeling,
electrophysiological changes with dominant QRS and T-wave angular varia-
tions have been reported [14, 15]. In silico simulations have allowed us to
observe that the anatomical variation of the SpI of the heart is associated with
an angular modification of the depolarization and repolarization vectors on
most of the angles, with a similar trend to that reported in the literature. The
angles also result sensitive to the relative position of the ventricles with respect
to the torso and to the electrodes placed on it, which introduces an additional
factor to the sphericity in the interpretation of the results.

The globularly deformed G model of the heart was based on the results
presented by [13] where the change in the sphericity of preadolescents as a
consequence of IUGR is evidenced with a subtle variation. Although the used
SpI was obtained from a cohort of preadolescents, we still compare with adults
based on the study in [48], where it is evidenced that anatomical and functional
changes can be maintained from childhood to adulthood, even questioned by
other studies [124]. Variations in the rotation of the heart within the torso were
not considered in our deformed G models, a factor that can alter the potentials
calculated on the leads. This fact is strengthened by observing that the de-
polarization and repolarization angles and their tendency change significantly
when the VCG is calculated using the coefficients for Kors regression transfor-
mation. We have included the results of VCG using the inverse Dower method
to be able to contrast the results with those presented in the literature [14,15].

The control C and deformed G models have been simulated keeping the
same fiber orientation and the same Purkinje network adapted to the globular
models in order to specifically assess the impact of the morphological changes
on the depolarization and repolarization loop angles. The changes observed in
the QRS angle are only due to the geometrical deformation as the conduction
system remained unchanged in the control and the deformed models. Factors
such as conduction abnormalities have not been taken into consideration and
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are deemed beyond the scope of this study, requiring proper remodeling quan-
tification under IUGR to include the effects in a future study. Although it is
known that intrauterine growth in an unfavorable environment leads to a dif-
ferent structuring of the fibers, which would change the cellular conductivity
pattern [59], it has also been observed in adults that changes in pressure on an
infarcted region do not lead to significant changes in fiber orientation at the
edge of the infarct zone [124], which makes uncertain to what extent a change
in pressure, characteristic of cardiac remodeling, leads to fiber orientation re-
modeling.

Future research should focus on extending the work presented here, using
models of rounded hearts developed from real images and considering the po-
sition and rotation of the heart within the torso. Additionally, the impact
of cardiac remodeling on the direction of the myocardial fibers and on the
Purkinje network requires further studies.

3.7 Conclusions

The findings of this computational study indicate that the SpI of the heart,
which represents anatomical variations, partially accounts for the changes ob-
served in the dominant vectors of depolarization and repolarization reported
in clinical studies [14, 15]. Changes in the dominant depolarization and re-
polarization angles can result from both ventricular spherical alterations and
the relative displacement of the heart in relation to the torso and attached
electrodes. However, it has been observed that the angular variations caused
solely by heart displacements are smaller than those generated by deformation,
particularly when the displacement remains within a few mm.

The reduction in θRT-XY and θR-XZ ´ θT-XZ aligns with the reported clinical
trends in adults and preadolescents, highlighting them as suitable biomarkers
for quantifying sphericity reduction. Furthermore, these relative measures fo-
cusing on the depolarization-repolarization relationship were less sensitive to
changes in heart-to-electrode positioning, making them more robust and suit-
able for clinical use.

The variations observed in the absolute angles (i.e., the angles between
depolarization and repolarization loops) in the computational simulations, as
shown in the last three rows of Table 3.3, do not align with the clinical data ob-
tained from adults and/or preadolescents. This phenomenon can be attributed
to the fact that the remodeling observed in preadolescents may not persist
in adults [14, 15], thus affecting the comparison. Whether this is a result of



333

92 Chapter 3. QRS-T angle changes in computational IUGR models

methodological limitations or attenuation of the remodeling in adulthood will
require future studies.
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CHAPTER 4

QRS WIDTH AND T-PEAK TO T-END INTERVAL IN
PREADOLESCENTS WITH SEVERE IUGR AT BIRTH

WHEN COMPARED TO CONTROLS

4.1 Dataset and signal processing

4.1.1 Dataset

4.1.2 ECG waves delineation

4.1.3 ECG interval
biomarkers from de-
lineation marks

4.1.4 Optimal spatial trans-
form leads for QRS or
T waves measurement
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4.2.1 QRS width and T
peak-to-end intervals
in IUGR and control
patients

4.2.2 Intervals result on
PCAQRS and PCAT
transform leads

4.3 Discussion

4.4 Conclusions

In Chapter 3, the in silico impact of geometric changes associated with
IUGR on the angular variation of depolarization and repolarization loops was
evaluated. IUGR shows morphological changes in the ventricles beyond the
fetal stage, evidencing cardiac structural and functional remodeling [13] that
manifest as variations in the depolarization and repolarization phases of the
VCG in preadolescents [14] (see Sections 1.5.1 and 1.5.2, respectively). Some of
these electrical changes have also been measured in adults with IUGR [15,63].
Results from previous studies have shown significant changes in the duration
intervals of the depolarization and repolarization phases (see Section 1.6) in

93
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subjects who experienced IUGR. Some of the studies and their findings have
been summarized in Table 1.1 of the same section.

From the standard 12-lead ECG, the QT and Tpe intervals have been identi-
fied as predictors of ventricular arrhythmias in several cardiac conditions [41].
Besides, the Tpe{QT ratio, which quantifies the dispersion of repolarization
relative to ventricular action potential duration, is considered an index of ar-
rhythmogenesis [42]. T-wave morphology accounts for the spatial dispersion of
APD found in the transmural ventricular wall, apex-to-base and right-to-left
directions [57]. As IUGR-related cardiac remodeling involves basal diameter
ϕ widening and increase of the ventricular wall thickness (W ), we hypothesize
these anatomical changes may affect T-wave morphology and therefore Tpe.
Additionally, it is not known how these differences in anatomy may affect the
time of ventricular activation reflected in the ECG as QRS width.

In this chapter, we employed the methodology and the 12-lead ECG dataset
introduced in Chapter 2 to measure intervals in a cohort of IUGR and con-
trol subjects. Automatic annotation was performed on the leads, and QRSd,
Tpe, and QT intervals were compared between the control and IUGR groups.
Additionally, PCA was applied to isolate and emphasize the QRS complex
(PCAQRS) and the T-wave (PCAT ). QRSd was measured on the PCAQRS

derived signal, while Tpe and QT intervals were measured on PCAT . Finally,
these interval measurements were replicated on the globular model GG to assess
whether the clinical data findings could also be observed in silico.

4.1 Dataset and signal processing

4.1.1 Dataset

The dataset used for the chapter was detailed in Section 2.4.5 and consisted of
12-lead ECG recordings (13 seconds at a sampling frequency of 1000 Hz) from
a population of 93 preadolescents. From those, 33 subjects had severe IUGR
with medically induced preterm delivery and 60 subjects were normally grown
controls born at term. IUGR and control subjects were selected from the study
conducted at a tertiary centre (Hospital Clinic of Barcelona) [96].

4.1.2 ECG waves delineation

The ECGs were delineated, identifying QRS onset and end and the T-peak and
T-end fiducial points using a wavelet-based ECG delineator [89]. We made use
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of the BioSigBrowser (BSB) software [125] using the delineator in a multi-lead
strategy [89]. This wavelet-based delineator identifies the onset, offset, and
primary peaks of the P wave, QRS complex, and T-wave. When executing the
delineation algorithm on the ECG data of a subject, a *.mat file is generated for
each of the eight independent ECG leads input into the application, containing
the detection times of each characteristic point of the signal (see Fig. 4.1).

Figure 4.1: Identification and marking of the P wave, QRS complex, and T-wave across each
of the 8 ECG leads. The blue dotted lines are aligned with the markers of lead V2 to illustrate
that the markers for each lead are different when a selection rule is not applied.

A standard ECG recording simultaneously captures signals from all avail-
able leads. Thus, it is expected that, for instance, the P wave onset will be
similar across all leads, except for some small projection termination differ-
ences at different axis (leads). Considering this fact, it can be ensured that
the detection of a wave onset mark can be considered as valid as long as the
detection is present in at least a number k of leads. If the detection is not
found in these number of leads, it may be considered an incorrect detection in
the signal. To apply this detection rule, the BSB application is configured to
evaluate the single-lead generated list of detections. The algorithm organizes
the detected annotation times into a matrix, with values expressed in sample
units. The matrix consists of cells, one for each ECG recording. Each cell is
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composed of a number of rows equal to the number of beats per subject, and
the columns (15 in total) correspond to the following detected points:

• P onset, P peak, P’ peak (if it exists), and P end.

• Main QRS peak, QRS onset, Q peak, R peak, S peak, R’ peak (if it
exists), and QRS end.

• T onset, T peak, T’ peak (if it exists), and T end.

Using this annotation matrix, beat selection is performed by applying the
single-lead delineation combined with a multilead rule technique to identify
global, lead-independent fiducial points for each beat, following the rules de-
scribed in [126]. To detect a representative mark across all leads, a selection
rule based on the median of the peak positions from all leads is applied. For
the identification of onset/end limits of the signals, the annotations are first
ordered. Then, the selected single-lead annotation is the earliest among onsets
and the latest among offsets that satisfies the condition of having at least k
neighbors within a window of σ ms. In the algorithm, this selection process
requires the input of certain configuration parameters, including the signal’s
sampling frequency, the k neighbors value, and a QRS complex period of anal-
ysis, based on the sampling frequency. Finally, an annotation matrix adjusted
to these rules is generated, as shown in Fig. 4.2

Figure 4.2: 12-lead ECG with annotations following a multilead rule. The onset, peak, and
end of the QRS complex and T-wave are shown. The red dashed lines indicate the markers,
now aligned across all leads.
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4.1.3 ECG interval biomarkers from delineation marks

Using the dataset of 93 subjects, we proceeded to compute interval biomarkers
in the 8 leads of each subject. A visual inspection was performed for each lead
to detect errors in the delineation process. For all patients, the first beat was
discarded, and an initial measure of the distance between R peaks (RR inter-
val) was established, calculated as: RR “ pRRi ´RRi´1q{1000, corresponding
to the i-th heartbeat, when expressed in seconds. Subsequently, the duration of
the QRS complex QRSd was computed as: QRSd “ pQRSend ´QRSonsetq{1000.
Knowing this interval for each beat, the patient median value was calculated
and considered representative for each patient. The position of the median
value was identified to perform an additional visual analysis, ensuring that the
median value was representative for each patient and that no abnormal value
was selected as the median. Fig. 4.3 shows lead I from the ECG of IUGR sub-
ject #33, highlighting the identified median value of QRSd. From this process,
we obtained two vectors: one for the control group and one for the IUGR group,
with 60 and 33 QRSd values, respectively, one for each patient. Subsequently,
the median and interquartile ranges of these two vectors were determined.

Figure 4.3: Detection of the median in IUGR subject #33 on lead I. The QRS median is a
single value, while the Tpe,c median is the average of the two observed values, as containing
a even number of beat with Tpe,c measurement.

The Tpe and QT values were determined for each beat and corrected using
Fridericia’s formula [127,128],

Tpe,c “
Tpe

3?RR
, (4.1)

QTc “
QT

3?RR
, (4.2)

respectively, ensuring that the corresponding RR value for each T-wave (rather
than the median) is used for the correction. Using the corrected Tpe (Tpe,c)
and the corrected QT (QTc) for each patient, the median is calculated, and the
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beat position is identified for further review. This median value is considered
representative of each patient. Finally, we obtained two vectors: one for the
control group and one for the IUGR group, with 60 and 33 median values, re-
spectively, for both Tpe,c and QTc. For each patient, the ratio Tpe,c/QTc is also
computed, resulting in a third vector for both the control and IUGR groups.
From the three resulting vectors, we proceeded to calculate the median and
interquartile range as representative values for each patient group. Statistical
comparison was performed between the control and IUGR groups using the
Student’s t-test, and for each group, the median and interquartile range were
recalculated. The results are displayed in the Table 4.1

4.1.4 Optimal spatial transform leads for QRS or T waves measurement

Clinical Electrocardiographic data

The measurement of intervals (QRSd, Tpe, and QT) in the control and IUGR
groups showed variability among the leads due to the different projection of
the electrical activity at each lead axis. Each lead contains specific informa-
tion that allows for defining the duration of depolarization and repolarization
intervals differently. To perform a global analysis, independent of the lead
projection, a linear combination of the 8 leads in the ECG database, generat-
ing a new spatial lead transformation was used to generate a new lead where
the information from the independent 8-leads was maximally condensed at the
transformed lead, and where more accurate delineations can be obtained. The
transformation is made based on the PCA technique which maximized the sig-
nal energy at the transform lead, and consequently the robustness of measured
performed on that signal. The description of the application of this technique
to ECG signals was detailed in Section 2.4.4.

To extract depolarization-based biomarkers, the transform coefficients were
learned by focusing on the QRS region of multiple training beats. This process
generates PCAQRS to improve the robustness of features measured within the
QRS complex. Alternatively, when features of the T-wave were of interest,
the transform PCAT was learned using the T-wave segment. The transformed
leads from PCAQRS and PCAT were then analyzed to identify key fiducial
points in the ECG, including the R peak, the onset and end points of the QRS
complex, the T-wave, and its peak and end (Fig. 4.4). On the new spatially
transformed leads, the R amplitude (QRSa) and the amplitude of T-wave (Ta)
were measured in the PCAQRS and PCAT leads, respectively.

The Tpe and QT values were determined for each beat and corrected using
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Figure 4.4: The independent 8 ECG leads from a subject in the control group with marks on
QRS onset and end, R-wave peak, T-wave onset, peak, and end with red long lines. Similarly,
PCAT and PCAQRS first leads include annotations marked as red lines over the leads together
with definitions of the intervals of interest (Tpe, QT, and QRS) shaded in purple.

Fridericia’s formula according to equations (4.1) and (4.2), respectively. Subse-
quently, the medians of Tpe,c and QTc series were taken as representatives for
each patient. The Tpe,c/QTc ratio was also calculated. Statistical comparison
was performed between the control and IUGR groups using the Student’s t-
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test, and for each group, the median and interquartile range were recalculated.
The results are displayed in the Table 4.2.

On each patient’s PCAQRS lead, the onset and end of the QRS complex
were identified, and a parallel comparison was made between the duration of
this interval between the control and IUGR groups.

Manual delineation was performed on the PCAQRS lead of two subjects
at the QRS onset, as automatically generated marks were erroneously located
on the peak of the Q-wave and not at its beginning, due to a low Q voltage
protection rule of the delineator.

Simulated data from computational models

Additionally, computational simulations of cardiac electrophysiology were con-
ducted using the biventricular electrophysiological model presented in Sec-
tion 2.3, based on a realistic heart and torso [112]. The C model and the
globular GH model were used as computational models for control and IUGR
respectively. Both models included a tissue division of 30%, 30%, and 40% for
endo, mid, and epi tissue respectively.

FEM was employed on the control and IUGR models to determine the
electrical propagation in cardiac tissue using a monodomain model [64]. A
sequence of three beats were simulated to reach steady state conditions in the
ventricular electrical activity with a cycle length of 1000 ms, using a stimulus
amplitude of 200 mA and a stimulus duration of 0.5 ms. To compute the 12-
lead ECG simulations, a torso volume was used to calculate the extracellular
potential at virtual electrode positions. Using the simulated ECG, PCAT and
PCAQRS leads were also computed and delineated for fiducial points and related
interval estimations in simulation.

4.2 Results

4.2.1 QRS width and T peak-to-end intervals in IUGR and control pa-
tients

The results are described based on the comparison between the QRSd, Tpe,c,
and QTc intervals of the IUGR cohort (n=33) and the control group (n=60).
Initially, the intervals were compared across each of the eight leads between
the two study groups. In general, the measurements of the ECG intervals
show variability across all eight leads, as shown in Table 4.1. The intervals for
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the control and IUGR groups were evaluated using the t-student test, and the
p-value is included in the Table.

Statistical analysis of the ECG intervals revealed significant differences be-
tween control and IUGR groups in specific leads. In Lead II, the QRSd was
significantly shorter in the IUGR group compared to controls (p=0.015), with
a difference between medians of 4 ms. In Lead V4, multiple parameters showed
significant changes: the Tpe,c interval was prolonged in the IUGR group (5 ms,
p=0.005), the Tpe,c/QTc ratio was higher (0.006, p=0.016), and the QRSa was
reduced (0.1 mV, p=0.046), indicating both increased repolarization dispersion
and diminished depolarization voltage. Additionally, in Lead I, although the
median QRSa appeared similar between groups, a highly significant difference
(p=0.004) was observed, with greater variability in the IUGR group.

Complementary to these findings, other leads such as V2 and V5 exhibited
noticeable trends toward lower QRSa and prolonged depolarization in IUGR,
although without reaching statistical significance. These results collectively
highlight distinct alterations in both depolarization and repolarization pro-
cesses in subjects with a history of IUGR.
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ECG Intervals, (ms) Waves amplitude (mV)
Lead QRSd Tpe,c QTc Tpe,c/QTc QRSa Ta

I
Control 85 (78 - 91) 78 (74 - 82) 394 (379 - 411) 0.197 (0.189 - 0.209) 0.5 (0.3 - 0.6) 0.2 (0.2 - 0.2)
IUGR 82 (73 - 88) 78 (75 - 81) 397 (385 - 404) 0.199 (0.189 - 0.206) 0.5 (0.4 - 0.8) 0.2 (0.1 - 0.3)
p-value 0.314 0.847 0.884 0.848 0.004 0.787

II
Control 83 (74 - 92) 77 (75 - 82) 395 (379 - 406) 0.197 (0.188 - 0.211) 1.1 (0.9 - 1.3) 0.3 (0.3 - 0.4)
IUGR 79 (63 - 84) 80 (73 - 84) 390 (383 - 400) 0.201 (0.190 - 0.217) 1.1 (0.9 - 1.4) 0.3 (0.2 - 0.4)
p-value 0.015 0.139 0.758 0.146 0.870 0.140

V1
Control 90 (82 - 96) 73 (69 - 78) 403 (387 - 418) 0.181 (0.176 - 0.192) 0.3 (0.2 - 0.3) -0.2 (-0.3 - -0.2)
IUGR 91 (84 - 99) 75 (70 - 77) 399 (387 - 411) 0.185 (0.178 - 0.195) 0.3 (0.2 - 0.3) -0.3 (-0.3 - -0.2)
p-value 0.944 0.309 0.792 0.262 0.962 0.680

V2
Control 91 (85 - 94) 84 (60 - 112) 392 (376 - 412) 0.226 (0.155 - 0.278) 0.6 (0.4 - 0.8) 0.1 (-0.0 - 0.2)
IUGR 95 (87 - 101) 76 (62 - 114) 397 (379 - 414) 0.181 (0.161 - 0.260) 0.5 (0.3 - 0.7) 0.1 (-0.1 - 0.2)
p-value 0.087 0.582 0.331 0.438 0.072 0.133

V3
Control 91 (88 - 95) 86 (73 - 107) 403 (383 - 415) 0.215 (0.185 - 0.263) 0.8 (0.6 - 1.2) 0.2 (0.1 - 0.3)
IUGR 91 (86 - 95) 79 (62 - 116) 403 (395 - 414) 0.206 (0.158 - 0.282) 0.8 (0.6 - 1.0) 0.1 (0.0 - 0.3)
p-value 0.845 0.563 0.555 0.439 0.109 0.345

V4
Control 81 (75 - 88) 78 (75 - 84) 393 (376 - 404) 0.201 (0.193 - 0.216) 1.4 (1.1 - 1.7) 0.3 (0.2 - 0.4)
IUGR 83 (69 - 88) 83 (76 - 92) 396 (383 - 409) 0.207 (0.195 - 0.235) 1.3 (1.0 - 1.5) 0.3 (0.1 - 0.4)
p-value 0.958 0.005 0.350 0.016 0.046 0.097

V5
Control 80 (72 - 88) 76 (73 - 80) 391 (378 - 400) 0.196 (0.186 - 0.206) 1.3 (1.1 - 1.5) 0.3 (0.3 - 0.4)
IUGR 79 (65 - 84) 78 (74 - 82) 387 (376 - 399) 0.200 (0.191 - 0.215) 1.4 (1.0 - 1.6) 0.3 (0.2 - 0.4)
p-value 0.177 0.087 0.571 0.080 0.554 0.432

V6
Control 78 (73 - 85) 75 (72 - 79) 392 (379 - 408) 0.191 (0.184 - 0.199) 1.1 (0.9 - 1.4) 0.3 (0.2 - 0.4)
IUGR 78 (63 - 85) 77 (73 - 78) 390 (379 - 400) 0.197 (0.189 - 0.202) 1.2 (1.0 - 1.4) 0.3 (0.2 - 0.4)
p-value 0.457 0.326 0.581 0.261 0.626 0.905

Table 4.1: Measurements of QRSd, Tpe,c, and QTc intervals, and QRSaand Ta. The lower row in each lead shows the p-value obtained
by comparing the two groups using the t-student test, after verifying the normality of the results.
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Marker Clinical ECG data Computational Models

Control (n=60) IUGR (n=33) p-value Control (C) IUGR (GH)

QRSd (ms) 83 (74 - 89) 87 (81 - 90) 0.039 67 68

Tpe,c (ms) 76 (74 - 81) 78 (76 - 83) 0.030 78 78

QTc (ms) 391 (376 - 406) 389 (381 - 399) 0.703 345 344

Tpe,c/QTc 0.196 (0.188 - 0.207) 0.202 (0.196 - 0.212) 0.020 0.226 0.226

QRSa (mV) 2.9 (2.4 - 3.5) 3.1 (2.3 - 3.6) 0.553 1.86 2.04

Ta (mV) 0.8 (0.6 - 1.0) 0.7 (0.5 - 0.9) 0.318 1.21 1.33

Table 4.2: Median and interquartile range and p-value for QRSd, Tpe,c, QTc, and Tpe,c/QTc measured on the optimally spatial
transformed leads (PCAQRS ans PCAT), on the control and IUGR subjects groups. The two most right columns show the results
obtained in the simulation of the control and IUGR models, taking the median value of the beats.

Figure 4.5: Changes in Tpe,c, QTc, Tpe,c/QTc, and QRS width for control (blue) and IUGR (orange) groups measured on the
optimally spatial transformed leads (PCAQRS ans PCAT). Central red lines indicate the median and the bottom and top edges
of the box show the 25th and 75th percentiles, respectively.
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4.2.2 Intervals result on PCAQRS and PCAT transform leads

Following the analysis of each of the 8 ECG leads from the clinical data, we
proceeded to conduct the analysis on the new PCAQRS and PCAT leads. The
IUGR group exhibited a significantly prolonged Tpe,c compared to the con-
trol group, along with a similar increase in the Tpe,c/QTc ratio. The QTc

remained unchanged without significant variation, as shown in Figure 4.5 and
Table 4.2. The amplitude value of the T-wave did not show a significant
difference (Control=0.826(0.631-0.993) mV, IUGR=0.776(0.561-0.899) mV, p-
value=0.318). In the control group, the Tpe,c value of one subject was excluded
due to a reduced RR interval, which resulted in overcorrection of heart rate us-
ing Fridericia’s formula, leading to an outlier Tpe,c value. In the IUGR group,
manual correction of the T-wave end delineation was performed for two subjects
due to an overshoot T-wave end in the PCA lead that led to early detection of
this point.

The results for the analysis of the QRSd can be observed in Figure 4.5. The
IUGR group exhibited a significantly longer QRSd compared to the control
group, as shown in Table 4.2. Regarding the amplitudes ratio, no significant
differences were observed.

For the simulation of the globular model, the GH model previously defined
in Section 3.2.3 was used, which incorporated the geometric changes observed
in IUGR subjects [13]. The results showed an increase of 1 ms in QRSd in the
globular model. During the depolarization phase, the Tpe interval remained
unchanged, while the QT interval showed a reduction of 1 ms. Both QRSa and
Ta exhibited an increase in the globular model simulation of approximately 9%
compared to the amplitude values of the control model.

4.3 Discussion

The present chapter focused on the analysis of changes in QRSd, Tpe,c and
QT intervals in two groups of preadolescents: control and IUGR. The analysis
was performed on the 8 independent standard ECG leads of the subjects and
subsequently on the newly generated spatially transformed PCAQRS and PCAT
leads. It also extended the analysis to the simulation of two computational
models, one representing control and the other IUGR. To simulate IUGR, the
sphericity index (calculated as base-apex length divided by basal diameter) was
intentionally decreased, reflecting the cardiac anatomical changes observed in
individuals diagnosed with IUGR (see Section 2.3).
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For the correction of Tpe and QT, the Fridericia’s formula was used having
a wider range of proper correction than other formulas as Bazett’s one, and
still being general in application [129].

The results of interval measurements across the leads show high variabil-
ity among them. Starting with QRSd, statistically significant differences was
found in lead II (p-value=0.0153). For Tpe,c, a significant difference was found
in lead V4 with a p-value=0.005. In the QT interval, no significant difference
was found in any lead. However, for the Tpe,c/QTc ratio, a significant differ-
ence was observed in lead V4 with a p-value=0.0164. Finally, the QRSa showed
significant differences in leads I and V4 (p-value=0.004 and p-value=0.046 re-
spectively), while no significant difference was observed in Ta in any lead. This
variability in the results is one of the reasons for applying PCA to spatially
transform the leads into a global lead, focused on the depolarization or repo-
larization phases, depending on the intervals of interest.

The IUGR cohort presented a significantly prolonged QRSd compared to
the control cohort (Table 4.2). This increase could be associated with a larger
ventricular tissue volume (VTV), which delays electrical propagation, widening
the QRS complex. Regarding the change in QRSd, our results align with
previous studies [53, 54], where its prolongation and a greater QT dispersion
were also observed in [55]. We hypothesize that the increase in W impacts the
intervals, especially Tpe. To analyze the influence of geometric remodeling on
electrophysiology, in silico tests were conducted in the Chapter 5.

When comparing the control and IUGR groups, using the PCAQRS and
PCAT leads, the results for Tpe,c showed a significant increase in the IUGR
group, potentially associated to the widening of the left ventricular wall. How-
ever, in the simulations where sphericity was adjusted to replicate IUGR by
primarily modifying the apex-to-base length, no difference in this parameter
was observed between the control and IUGR models. The IUGR simulation
model was deformed, reducing its SpI by 8.7%, in agreement with the mor-
phological changes reported in [13]. Nonetheless, the maximum increase in the
ventricular wall width in the model was minimal at the base of the left ventric-
ular wall (0.2 mm), resulting in an insignificant change in the Tpe,c duration
(78 ms). The next chapter presents a study exploring the impact of increased
ventricular wall width on the duration of Tpe.

The QTc interval results from the clinical subjects showed no significant
differences between the control and IUGR groups, results mirrored by the find-
ings in the simulation. Both the Tpe,c and QTc markers were measured from
the PCAT first lead. The amplitude of the T-wave peak did not exhibit a
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significant difference between the analyzed groups. For the analysis of the
QRS complex interval duration, delineation was performed on PCAQRS first
lead. QRSd showed more variability within the control group than in the IUGR
group, with the IUGR group displaying significantly higher values (see Fig. 4.5).
This increase in duration could be attributed to the increase in ventricular vol-
ume and W, leading to a delay in electrical propagation, thus resulting in a
widening of the QRS complex in the ECG. In the simulation, no significant
differences were observed in this parameter. Regarding the amplitude of the
R peak, a slight increase was observed in the IUGR group, compatible with a
higher ventricular tissue volume, but it did not reach statistical significance.

4.4 Conclusions

Our findings suggest that cardiac anatomical remodeling in IUGR subjects
leads to an increase in Tpe,c, compatible with the previously reported increase
in relative wall thickness. This rise in Tpe,c can be associated with an increased
transmural dispersion; although this increase is relatively modest (2 ms). While
such a change is associated with a higher risk of ventricular arrhythmia, the
impact of various additional parameters including ionic remodeling that gener-
ally affect ventricular dispersion, and not considered in this study, should not
be overlooked. Similarly, an increase in QRSd is observed, which could be also
linked to the increase in the width of the ventricular walls, which leads to the
analysis in the next chapter.
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5.1 ECG biomarkers alterations as a consequence of IUGR

In chapter 4, an analysis was conducted on ECG signals from a cohort of pread-
olescents diagnosed with severe IUGR, providing an opportunity to investigate
whether the changes in biomarkers reported during the newborn stage per-
sist into later developmental stages. Although depolarization and repolariza-
tion biomarkers exhibited variations related to IUGR, the relationship between
IUGR-induced geometric remodeling and changes in these electrophysiological
biomarkers remains unclear. Furthermore, the underlying mechanisms driving
these variations are also not well understood.

We hypothesize that the anatomical alterations in the basal diameter ϕ and
the widening of the ventricular wall thickness W may impact the morphology
of both the QRS complex and the T-wave.

The primary aim of this chapter was to assess in silico how IUGR-induced
anatomical remodeling, including a reduction in the sphericity index SpI and
variations in wall thickness W, affects these ECG biomarkers. For this purpose,
8 globular models were developed, distinct from those presented in Section 2.3,
as they included an additional variation in W. The models presented in this
chapter are referred to as G1 to G8.

5.2 Computational modeling of human electrophysiology

A realistic biventricular heart within a torso model was used for this study [97]
as the control model (C), and was later deformed to generate globular IUGR
models (G). The C model was meshed using tetrahedral elements („330 000
nodes and „2 000 000 elements).

The ORd AP model for healthy tissue [25, 130] was employed to simu-
late the cellular electrophysiological behavior of the ventricles. To model the
propagation of electrical impulse across the myocardium, we utilized the mon-
odomain model [74] through the finite element method [131], defined by the
reaction-diffusion equation 2.9.

Extracellular potentials were calculated at the positions of virtual electrodes
e using a torso model to generate a virtual 12-lead ECG [86]. The same coor-
dinates were used in all simulations. Extracellular potentials were computed
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from ventricular potentials following the equation 2.19:

After pre-pacing the cellular model to achieve steady state conditions, a
sequence of three beats was simulated at a frequency of 60 bpm (RR=1000 ms),
using a stimulus amplitude of 200 mA with a 0.5 ms duration. The third beat
was selected to ensure that the state variables involved in the cellular model
reached steady state conditions. A dual adaptive explicit time integration
method as described in [77] was employed, with an adaptive time step ranging
from 0.01 to 0.1 ms.

The globular models generated for this stage of the research employed the
methodology developed in Section 3.2.3, resulting in 8 models. These models
varied in geometric properties, as will be explained in Section 5.2.4.

5.2.1 Electrophysiological propagation

The electrical propagation used in this stage was based on the methodology pro-
posed in Section 3.1.1, where the electrical stimulus initiated at the bundle of
His and spread through a Purkinje network, which couples to the myocardium
at discrete sites (PMJs), see Fig. 5.1a.

Figure 5.1: a: Implementation of the Purkinje network on the endocardial surface of the
models. The red circle indicates the His Bundle where electrical propagation begins. b:
Implementation of fibers and propagation direction at each node from the endocardial to the
epicardial surface. c: Division of the tissue into 9 zones incorporating transmural (endo, mid,
and epi tissue) and apicobasal heterogeneities (base (B), middle (M), and apex (A)).

The Purkinje network was generated using a fractal projection method [99],
incorporating a posterior main branch to achieve QRS morphologies within
clinical ranges. To ensure the rapid electrical conduction at 2.9 m/s, a diffusion
coefficient of 0.013 cm2/ms was set along the Purkinje network [132]. At the
PMJs, this value was reduced to 0.0023 cm2/ms, modelling the transition to
the myocardial tissue. The Purkinje cellular AP was represented using the
Stewart model [20]. The Purkinje network was meshed with an average edge
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length of 750 µm. First, a network was generated for the C model and later
adapted to fit the modified endocardial surface of each of the G models, while
maintaining the same number of nodes and segments across all models („7 000
nodes and elements), as shown in Fig. 5.2, with orange representing the control
model and blue representing the globular model G6 (see Sec 5.2.4). The onset
of the electrical activation was set in all simulations at the same spatial point
corresponding to the His bundle.

Figure 5.2: Purkinje network for the control model in orange and the globular model G6 in
blue. The same network was adapted to the endocardial surface of the globular models.

Within the myocardial tissue, electrical propagation followed a fibre archi-
tecture defined by a rule-based method [104] (see Section 3.1.2). The fiber ori-
entation exhibited a counterclockwise rotation from the apex to the base, with
fiber angles gradually transitioning from ´60˝ at the endocardium to `60˝ at
the epicardium across both ventricles (see Fig. 5.1b). The myocardial tissue was
modeled with orthotropic conductivity and transverse isotropy, i.e. with iden-
tical conductivities in the sheet and normal-sheet directions. A transverse-to-
longitudinal conductivity ratio of 0.25 was applied, introducing CV anisotropy
consistent with experimentally observed cardiac tissue behavior [133]. The lon-
gitudinal diffusion coefficient was set at 0.0013 cm²/ms, complemented by a
membrane capacitance of 1 pF/cm². This configuration resulted in an average
longitudinal CV of 0.67 m/s within the myocardium [132].

5.2.2 Transmural and apicobasal heterogeneities

The spatial distribution of transmural heterogeneity in membrane kinetics was
modelled by incorporating distinct endocardial, midmyocardial and epicardial
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cell layers with varying relative thicknesses, see Fig. 5.1c. Specifically, the
RV and LV wall thickness was distributed such that 30% was allocated to
endocardial cells, 30% to mid-myocardial cells, and 40% to epicardial cells
[134] with the interventricular septum modelled entirely as endocardial cells,
as described in Section 3.2.1.

Additionally, electrophysiological heterogeneities were introduced along the
apex-base axis to reflect the longer APD observed at the base compared to the
apex. The model was segmented into three regions: apex, middle and base,
each assigned a distinct factor, decreasing the conductance GKs, and thereby re-
ducing the magnitude of the slow potassium current IKs. This was achieved by
scaling the conductance of the slow delayed rectifier potassium current (GKs),
based on findings by [108], which reported significant differences in the expres-
sion levels of proteins forming the IKs channel between the apical and basal
regions of the heart. Specifically, GKs was reduced scaling factor: 5 at the
apex, 2.6 in the middle, and 0.2 at the base, as described in Section 3.2.2.
These repolarization heterogeneities were applied consistently to both the con-
trol C(30-30-40) model and each of the globular G(30-30-40) models.

Additionally, the impact of transmural repolarization variability on the
analyzed ECG biomarkers, particularly those related to repolarization, was
assessed by reducing the width of the midmyocardial layer, the region with
longer APD values. For this purpose, the control C model and the globular
G7 model, see Section 5.2.4, were configured with 48% of endocardium, 4%
midmyocardium, and 48% epicardium, denoted as C(48-4-48) and G7(48-4-48),
respectively (Fig. 5.3). The methodology and algorithms used to generate these
models are described in Section 3.2.1.

Figure 5.3: Cross-sectional view of the control model C(30-30-40) with 30% endocardium,
30% mid-myocardium, and 40% epicardium, and for C(48-4-48) model with its corresponding
transmural distribution.
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Extracellular potentials were calculated at the positions of virtual electrodes
using a torso model to generate a virtual 12-lead ECG, with the same sampling
rate than in real recording, 1000 Hz. The onset, peak, and endpoint of the syn-
thetic ECG waves were identified through their delineation on the transformed
leads obtained by applying PCA to the 8 independent virtual leads, following
the same process described in Section 2.4.4.

5.2.3 ECG signal processing and the computation of biomarkers

The virtual 12-lead ECG signals were delineated using a wavelet-based de-
lineator [125] as described in Section 4.1.2. The onset and end of the QRS
complex and T-wave were identified using a single-lead delineation method
enhanced by a multilead-based rule technique, ensuring accurate and lead-
independent marks [89]. PCA was applied to create two spatially transformed
leads: PCAQRS, optimized for the QRS complex, and PCAT, focused on the
T-wave to improve delineation accuracy. PCAQRS was used to identify the
beginning, peak, and end of the QRS complex, while PCAT was used for the
T-wave [92]. This approach enhanced precision by tailoring each lead to the
specific waveform, as shown in Fig. 5.4.

Subsequently, the median value of the QRSd across beats was calculated
and considered representative for each patient. Tpe and QT intervals were
measured in each beat in lead PCAT and Tpe/QT ratio was also determined.

5.2.4 Globular anatomical models with reduced sphericity index

The geometric changes resulting from IUGR were represented by constructing
eight globular G models. These models were developed departing from the
control C model and reducing its SpI plus increasing the width W of the left
ventricular wall. The methodology used to generate these models is detailed
in Section 3.2.3.

Geometrical models were remeshed to achieve the same target edge length
(887 µm). This was done by remeshing the surface using an in-house implemen-
tation of the algorithm outlined in [135], resulting in a surface mesh of high
quality, as expected from state-of-the-art techniques. The surface mesh was
then used as input for Tetgen [136]. As is typical in state-of-the-art practices,
optimal quality parameters were employed to generate high-quality tetrahedral
meshes.

Regarding the tetrahedral meshes, the quality metrics “radius ratio” and
“scaled jacobian”were evaluated, both computed with VTK (https://vtk.

(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
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Figure 5.4: The standard 8-leads ECG, from the simulated control C model, with marks on
QRS and T-wave onset and end points indicated with black dashed lines, and QRS and T
peaks with red squares and circles, respectively. QRSd interval measured over PCAQRS is
shaded in orange and Tpe and QT intervals measured over PCAT are shaded in red.

org/doc/nightly/html/classvtkMeshQuality.html). In practice,
tetrahedra with a radius ratio value less than 3 are typically considered to
be of good quality for FEM simulations. The meshes used in this work ensure
that more than 95% of the elements meet this condition for each geometry
utilized. Regarding the scaled jacobian, tetrahedra with values greater than
0.2 are regarded as having good quality, and over 95% of the tetrahedra in all
the meshes used in this work satisfy this criterion.

To assess model convergence, we performed simulations on the control
model using a finer mesh (edge length=400 µm). This resulted in only a 1 ms
reduction in QRS duration, indicating minimal impact on activation. Based
on this small difference, we chose to proceed with the coarser mesh (887 µm)

(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
(https://vtk.org/doc/nightly/html/classvtkMeshQuality.html)
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for this study.

The different geometric variations corresponding to each of these Gi models
are observed in Fig. 5.5. The variation in L of the Gi models relative to the
C model had a median value of 6.9(4.6-9.6) mm, while ϕ showed a median of
2.3(0.4-2.6) mm. The globular models are organized considering W, and their
detailed descriptions are as follows:

• Model G1: this model was generated by deforming the C model through
the application of surface traction. The percentage variation in ϕ and L
were based on the average findings from [13], with increases of 2.7% and
reductions of 6.6%, respectively. This model has an 8.4% reduction in
the left SpI and an increment of 2.3% in W relative to the C model. The
detailed methodology for generating the globular model was outlined in
Section 3.2.3 [64]. This initial globular model maintains a percentage of
geometric change relative to the globular models GG and GH used in the
Chapter 3.

• Model G2: this globular model aimed to generate a more pronounced
deformation, pushing the boundaries of variability as presented in [13].
The left SpI was reduced by 16%, with greater expansion of ϕ and further
reduction of L compared to G1. The increment in W was 2.3% relative
to the C model.

• Model G3: in this model, the left SpI was reduced by 14.8%, an increment
of 7.1% in W and 5% reduction in VTV compared to the C model.

• Model G4: in this model, W increased by 7.3% compared to the C model.

• Model G5: the C model was modified by applying surface traction to the
epicardial tissue, increasing the left W by approximately 4 mm (22.0%
compared to C). This increase led to a 9.9% increase in VTV compared
to the C model, with a corresponding reduction in left SpI of 10.9%.

• Model G6: this model featured extreme thickening of W (33.8% compared
to C) along with a reduced basal diameter ϕ. The left ϕ was reduced by
16% and L by 21%. This produced a reduction of approximately 5% in
the left SpI. This model drastically reduced the left ventricular cavity
such that the total VTV of the model increased minimally by 0.04%
compared to the C model.

• Model G7: this model displayed moderate changes. The left ϕ increased
by 0.44% and L was reduced by 8.6%. This resulted in a reduction of
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8.5% in the left SpI. There was an increase in W by 35.3% and VTV by
8.6% [137].

• Model G8: This model exhibited an approximately 40% increase in mus-
cular mass compared to the C model. The left SpI was reduced by 14.4%,.
The W by 40.7% and VTV increased by 35.89%.

The VTV can be seen as an aggregated surrogate of a global heart size
change, fusing apex-base, basal diameter and wall modifications. To evalu-
ate the impact of geometric changes on the depolarization and repolarization
phases, the electrophysiological characteristics of the Gi models, including fiber
orientation, ventricular heterogeneities and CV, were kept as in the C model.
Only the Purkinje network was adjusted to adapt to the new dimensions of
the endocardial surface of the Gi models. Table 1 shows the variations in basal
diameter ϕ, apex-base length L, wall thickness W, and VTV for the eight
globular models Gi with i P t1, ..., 8u, compared to the C model.

Model Left ventricle Right ventricle VTV (cm3)L (mm) ϕ (mm) SpI W (mm) L (mm) ϕ (mm) SpI
C 69.5 45.8 1.5 13.1 57.3 42.4 1.4 139.8
G1 65.0 47.0 1.4 13.4 53.0 42.0 1.3 131.0
G2 61.1 48.2 1.3 13.4 51.1 41.1 1.2 125.3
G3 61.7 48.0 1.3 14.0 51.0 41.8 1.2 132.6
G4 64.9 48.5 1.3 14.0 53.3 41.5 1.3 131.0
G5 64.8 48.2 1.3 16.0 54.4 41.1 1.3 153.6
G6 54.9 38.3 1.4 17.5 48.1 42.7 1.1 139.8
G7 63.5 46.0 1.4 17.7 52.7 42.6 1.2 151.9
G8 59.4 46.0 1.3 18.4 49.3 42.6 1.2 189.9

Table 5.1: Measurements of L, ϕ, W and ratio SpI in both ventricles for the C and G models.
W shows the maximum width of the LV measured at the base and the last column show the
VTV of the entire ventricular mesh models.
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Figure 5.5: Eight G models generated from C model. The cross-section of the models allows for the observation of changes in L, ϕ,
SpI, W, and VTV. The direction of the arrows indicates the direction of change in the simulated parameters.
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To analyze the impact of the increase in the left ventricular wall thickness
W, we examined the APD in three nodes of the heart mesh in the basal region:
one in the endocardial section and two in the epicardial section. The ven-
tricular wall thickness W, which varies across different globular models, was
quantified as shown in Fig. 5.6. The positions were determined as follows: P1
corresponding to moving 15% of W from endocardium, P2 moving 85% of W,
and P3 located on the epicardial surface. The extreme nodes at 0% (endo) and
100% (epi) of W were selected and nodes P1 and P2 are selected as lying on the
line, connecting the endo and epi nodes. To determine the exact locations of
P1 and P2, a linear interpolation was first performed. Subsequently, the mesh
nodes closest to these theoretical P1 and P2 points were identified, ensuring
they lay within a radius of less than 887 µm, corresponding to the edge length
of the mesh elements. Once the spatial coordinates of the three points were
identified, the nearest nodes to the calculated positions were located, and the
AP was analyzed at these nodes.

Figure 5.6: Selection of endocardial and epicardial nodes for AP analysis. The ventricular
wall thickness was divided into percentages, with one node selected in the basal endocardial
section (P1-blue circle) and two nodes in the epicardial section (P2-green circle and P3-
magenta circle).
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All measurements for computing results were taken from the third simulated
heartbeat. QRS complex measurements were performed on the PCAQRS lead,
whereas measurements of the T-wave were performed on the PCAT lead. The
association between the resulted values for QRSd, Tpe and the QT interval and
changes in L, ϕ, and W was assessed using multiple linear regression.

5.3 Results

Markers ECG Intervals (ms) Waves amplitude (mV)

a. Clinical result preadolescents, median(IQR)

Dataset QRSd Tpe,c QTc Tpe,c/QTc QRSa Ta

Control 83(74-89) 76(74-81) 391(376-406) 0.196(0.188-0.207) 2.9(2.4-3.5) 0.8(0.6-1.0)
IUGR 87(81-90) 78(76-83) 389(381-399) 0.202(0.196-0.212) 3.1(2.3-3.6) 0.7(0.5-0.9)
p-value 0.039 0.031 0.703 0.026 0.553 0.318

b. Computational Simulations

Model QRSd Tpe QT Tpe/QT QRSa Ta

C 64.0 76 340 0.223 1.86 1.21
G1 69.0 78 344 0.226 1.76 1.29
G2 69.5 77 341 0.225 1.69 1.33
G3 72.0 75 343 0.218 2.25 1.18
G4 71.5 76 344 0.220 2.18 1.18
G5 81.5 78 343 0.227 1.78 1.37
G6 67.0 78 341 0.228 2.31 1.33
G7 76.0 79 344 0.229 2.04 1.33
G8 75.0 79 345 0.229 2.13 1.31

Table 5.2: a: ECG biomarkers from clinical data in preadolescents: control cohort (n=60)
and IUGR cohort (n=33). b: ECG biomarkers computed from simulations across the Gi

models. All simulations used RR=1 s, so QT and Tpe correspond to their corrected QTc and
Tpe,c, respectively.

5.3.1 In Silico analysis of geometric effects on ECG biomarkers

The in silico study explored the impact of geometric changes associated with
IUGR on depolarization and repolarization ECG biomarkers using the different
globular electrophysiological models, all derived from the biventricular control
C model. As shown in Table 5.2b, the simulations revealed significant changes
in QRSd along with more subtle changes in Tpe, all of which align with the
clinical findings listed in the top of Table 5.2a.

QRSd values measured in PCAQRS leads across all models, shown in Table
5.2b and illustrated in Fig. 5.7, reveal an increase relative to control C, ranging
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from 3 ms in G6 to 17.5 ms in G5.

Figure 5.7: a: QRS complex in lead PCAQRS of the C model and Gi models, with the marks
of the QRSonset, QRS peak, and the QRSend. b: Tpe in PCAT lead of the C and Gi models
with the marks of the T peak, and the Tend.

Measurements of Tpe and QT intervals in the PCAT lead as illustrated
in Fig. 5.7b, showed minor fluctuations, in line with clinical findings. Tpe

increased in six of the eight models, with a maximum increase of 3 ms in
G7 and G8. The QT interval increased across all models, ranging from a 1
ms increase in G2 and G6 to a 5 ms increase in G8. The increase in Tpe in
the globular models is similar to that found in clinical measurements, with a
median value of 2 ms. QT, on the other hand, shows a change in the opposite
direction to the clinical results, with a median increase of 3.5 ms in the globular
models. Tpe/QT ratio increases in the globular models, in agreement with the
clinical results.
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The geometric changes in the globular models resulted in small changes
in QRSa, as shown in Table 5.2b. The globular models exhibited an increase
in QRSa (median=2.09 mV) compared to the control model, consistent with
clinical findings. Conversely, Ta amplitude in the globular models also showed
an increase (median=1.32 mV), which contrasts with the trends observed in
clinical results.

The Table 5.2a include the results obtained in Chapter 4 to facilitate com-
parison with the results from the computational simulations. In the clinical
results, the comparison between the control and IUGR cohorts revealed differ-
ences in the ECG interval measurements. The IUGR cohort showed a signifi-
cant median increase of 4 ms in QRSd, with hardly any changes in QRS wave
amplitude (QRSa) compared to the control cohort. Additionally, the IUGR
cohort demonstrated a significant but moderate increase of 2 ms in median in
Tpe,c and Tpe,c/QTc ratio. Although the QTc interval as well as the T-wave
amplitude (Ta) were slightly lower in the IUGR cohort, these decreases were
not statistically significant.

5.3.2 Relationship between geometric variations and ECG biomarkers

Table 5.3 presents the results of the multiple linear regression analysis exam-
ining the relationship between the geometric properties tL, ϕ, and Wu and the
biomarkers measured from the synthetic ECG. Each of the ECG biomarkers
was modeled as a linear combination of the three modified geometric param-
eters, which were treated as independent variables. This allowed us to assess
both the extent to which anatomical variables account for changes in ECG
biomarkers and the individual contribution of each anatomical variable to the
ECG biomarker values.

The multiple regression analysis shows that anatomical variables contribute
more significantly to QRSd and to a lesser extent to Tpe. In the regression
model that considers individual variables, none of the three anatomical vari-
ables (ϕ, L, and W) individually explain the variability of any of the markers,
except for the contribution of W to Tpe (B=0.50, p-value=0.019).

When combining the independent geometric variables in pairs, the com-
bination of ϕ and W significantly contributes to QRSd (B=1.40 and 2.22,
with p-values=0.010 and 0.007, respectively). For Tpe, in the same combina-
tion, W shows a significant value (B=0.52, p-value=0.044). In the same ECG
biomarker, but in the combination of L and W, the latter shows a significant
value (B=0.57, p-value=0.039).
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Marker QRSd Tpe QT

B pi R2 pF B pi R2 pF B pi R2 pF

Individual variables
L -0.04 0.930 0.001 -0.11 0.382 0.11 -0.02 0.901 0.002
ϕ 0.65 0.297 0.15 -0.14 0.400 0.10 0.19 0.344 0.13

W 1.19 0.188 0.23 0.50 0.019 0.57 0.32 0.297 0.15
Pairs combined variables

L -0.58 0.339
0.28 0.370

-0.07 0.673
0.13 0.655

-0.19 0.360
0.25 0.421

ϕ 1.13 0.176 -0.08 0.718 0.35 0.208
L 0.50 0.380

0.33 0.297
0.06 0.601

0.59 0.071
0.12 0.550

0.21 0.500
W 1.76 0.135 0.57 0.039 0.45 0.261
ϕ 1.40 0.010

0.77 0.013 0.03 0.819
0.57 0.080

0.40 0.055
0.56 0.084

W 2.22 0.007 0.52 0.044 0.61 0.050
All three variables together

L -0.06 0.885
0.77 0.048

0.06 0.670
0.59 0.188

-0.05 0.794
0.57 0.206ϕ 1.43 0.028 0.00 0.987 0.43 0.095

W 2.18 0.023 0.57 0.066 0.58 0.113

Table 5.3: Multiple regression analysis between the geometric variables of globular models
tL, ϕ, and Wu and the QRSd, Tpe and QT intervals measured in the synthetic ECG. pi

indicates the p-value for each individual variable, while pF represents the significance value
of the model. Values with p-value ă 0.05 are highlighted in bold.

Combining all three variables together, the anatomical variables have a
strong contribution to QRSd, accounting for 77% of its variance. B value
revealed that increases in both basal diameter ϕ (B=1.43, p-value=0.028) and
left ventricular wall thickness W (B=2.18, p-value=0.023) lead to an increase
in QRSd. In contrast, the apex-to-base length L has minimal impact on QRSd.

Unlike QRSd, Tpe and QT intervals exhibited a moderate correlation with
the anatomical parameters (R2=0.59 and 0.57, respectively), with the increase
in wall thickness W being the most significant anatomical factor contributing
to the enhancement of these repolarization features (B=0.57 and 0.58, respec-
tively).

5.3.3 Role of transmural heterogeneities

The impact of electrophysiological transmural heterogeneities on the findings
of this study was evaluated by reducing the midmyocardial layer (which has the
longest APD values), thereby increasing the endocardial and epicardial layers
in C and G7.

Changes in transmural heterogeneities did not affect QRSd in either the
control (64 ms) or globular heart models (76 ms), as shown in Table 5.4. This
lack of impact is a consequence of the fact that removing the midmyocardial
layer mainly affects the APD within the transmural wall, affecting the repolar-
ization phase rather than the depolarization phase, which defines QRSd.
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Model
Marker ECG intervals (ms) Amplitude (mV)

QRSd Tpe QT Tpe/QT QRSa Ta

C(30-30-40) 64 76 340 0.223 1.86 1.21
C(48-4-48) 64 75 329 0.227 1.86 1.21
G7(30-30-40) 76 79 344 0.229 2.04 1.33
G7(48-4-48) 76 76 331 0.229 2.03 1.27

Table 5.4: Intervals and amplitudes measured on the control C and globular G7 models with
different transmural divisions: 30%, 30%, and 40% for endocardium, mid-myocardium, and
epicardium, and 48%, 4%, and 48%, respectively.

Therefore, transmural heterogeneities show an impact on the repolarization
Tpe and QT intervals. The removal of the midmyocardial layer resulted in a
moderate reduction of Tpe, with a decrease of 1 ms in the control models and a
3 ms reduction in the globular model G7. A reduction is seen in the QT interval,
showing a decrease of 11 ms in the control models and 13 ms in the globular
models. This reduction occurs because the removal of the midmyocardial layer
enlarges the endocardial and epicardial regions, both of which exhibit shorter
and more comparable APDs, leading to reduced repolarization dispersion and,
consequently, shorter Tpe and QT intervals.

No significant effect of the midmyocardial reduction is observed on Tpe/QT
or the maximum amplitudes QRSa and Ta.

5.3.4 Mechanisms behind the subtle Tpe changes compared to the larger
QRSd changes

To gain a deeper insight into the subtle changes in Tpe compared to the signif-
icant change in QRSd, we analyzed the AP at three node positions spanning
from the endocardium to the epicardium across all globular models. These
three nodes are transmurally distributed in all models: one is located at the
center of the endocardial-base section (P1endo), another at the center of the
epicardial-base section (P2epi), and the third on the external epicardial-base
surface of the LV (P3epi´e), which corresponds to the last region to depolarize.

To analyze the changes in the QRS complex, we examined the differences
in activation time (AT) at each node across the different globular models,
which represent the onset of depolarization. These ATs correspond to the
APD at 90% repolarization (APD90), a key metric that defines the APD. Fig-
ure 5.8a shows that the epicardial surface (P3epi´e) consistently defines the end
of activation (i.e., the region with the most delayed or longest AT) across all
anatomical models.
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Note that across the different P3epi´e nodes, the AT values vary between
54 and 65 ms, corresponding to the phase between the R and S waves of the
QRS complex in Fig. 5.7, marking the end of activation. Additionally, beyond
the impact of changes in L and ϕ, we found that the thicker the ventricular
wall, the longer it takes for P3epi´e to activate (highlighted by the magenta
circle, which represents the model with the greatest wall thickness).

Figure 5.8: a: AT and APD at three nodes of the mesh, P1endo on an intermediate node
of the endo-base section, P2epi on the middle epi-base section, and P3epi´e on the external
surface of the epi-base section. b: A contrast between RT and AT is presented, considering
the three selected nodes. The upper part of the figure outlines the location of these nodes
within the heart volume.

At P1endo, AT values in the Gi models shows low variability, averaging
35.6˘1.6 ms, close to the C model’s 35 ms. In contrast, at P2epi, AT increases
to 54.8˘4.6 ms and at P3epi´e, it reaches 58.6˘5.4 ms. Several globular models
display a delayed AT relative to the C model.

The Gi models showed an average APD90 of 299.6˘2.6 ms at P1endo, 247.5˘4.5
ms at P2epi, and 235.3˘4.5 ms at P3epi´e (see Fig. 5.8a). At P1endo, most Gi

models exceed the APD90 of the C model; however, this pattern reverses in
the epi nodes, where APD90 is shorter. This is attributed to the wider epi-
cardial layer, which reduces the influence of the adjacent midmyocardium’s
longer APD90 at the surface P3epi´e. These differences may explain why the
QT biomarker remains unchanged despite the significant widening of QRSd.

Fig. 5.8b illustrates the repolarization time (RT) of each node across all
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models, calculated as the sum of AT and APD90, expressed as RT “ AT `

APD90. The figure indicates that the endocardium is the last region to repo-
larize for all models, implying that the end of the T-wave is determined by the
APD characteristics of the endocardium. Therefore, W has minimal impact on
the end of the T-wave and consequently has little effect on Tpe or QT intervals.

Figure 5.9: AT maps on the LV of each globular model. The control model is displayed at
the top.

To visualize the variation in AT between the control model and the globular
models, Fig. 5.9 was included, with an emphasis on the ventricular base. The
AT maps in all Gi models, except for G4, indicate that AP propagation to the
base of the LV occurs more rapidly compared to the C model, particularly in
the region around the endocardial surface of the LV. The faster propagation is
attributed to the reduction of L in all Gi models, which, in turn, shortens the
AP propagation time. The Gi models with greater increases in W show their
impact on a longer AT on the outer epicardial surface of the LV. The greatest
AT delay is observed in models G5 and G8, where VTV is larger compared to
the other globular models.
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Figure 5.10: Eight independent standard ECG leads, together with PCAQRS, and PCAT
leads for each Gi model, overprinted with the ECGs from C model. The third beat of each
simulation was represented.

In Fig. 5.10, the calculated ECGs for each of the 8 virtual leads, along with
the PCAQRS and PCAT leads, are shown. In all leads, the globular models
show an earlier depolarization phase (earlier red upstroke of QRS complex),
although minimal, due to the shortening of SpI. Additionally, both QRSd and
QRSa (specifically in precordial lead V6 and limb leads I and II) increase due
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to the thickening of the free ventricular wall.

Ta tends to increase in the globular models, and in the PCAT measure-
ments, all Gi models exhibit an amplitude increase, except for G3 and G4.
Regarding the end of the T-wave, hardly differences are observed between the
Gi models and the control model C.

5.4 Discussion

Electrophysiological variations associated with IUGR have been identified in
different age cohorts [14, 64, 138] and linked to cardiovascular complications
[43,46]. Understanding the impact of reduced left ventricular SpI, increased W,
and VTV on cardiac electrical activity could contribute to a better understand-
ing of IUGR-related cardiac remodeling. This research reports the changes in
depolarization and repolarization intervals in control and IUGR subjects. The
results from the analysis of clinical data, support that the geometric changes as-
sociated with IUGR appeared together with an electrophysiological alteration,
which could be hypothesized to be related, at least partially. Additionally,
this chapter simulates anatomical cardiac changes due to IUGR using eight
different Gi models, derived from a control C model, to assess their impact on
depolarization and repolarization ECG intervals, using computational models
based on a real heart and torso anatomy.

The IUGR cohort presented a significantly prolonged QRSd compared to
the control cohort (Table 5.2). This increase could be associated with a larger
VTV, which delays electrical propagation, widening the QRS complex. The
significant increase in Tpe,c could also be linked to the thickening of the left
W. However, the QTc interval was found to be no significantly reduced in the
IUGR cohort.

Regarding the change in QRSd, our results align with previous studies [53,
54], where its prolongation and a greater QT dispersion were also observed
in [55]. We hypothesize that the increase in W impacts the intervals, especially
Tpe. To analyze the influence of geometric remodeling on electrophysiology, in
silico tests were conducted to better understand this relationship.

5.4.1 Cardiac remodeling in silico

Cardiac remodeling was simulated by deforming the C model into more globu-
lar ones Gi with i P t1, ..., 8u. Magnitude of changes in ϕ and L were based on
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geometric changes observed in clinical data, with the G1 model aiming for a per-
centage change similar to that reported in Sarvari et al. [13], with subsequent
models incrementally increasing these changes to evaluate their electrophysi-
ological impact. Deformations focused on the LV, but geometric effects also
affected the RV. L changes in the LV affected the entire model, leading to an
average reduction of 9.4% in right ventricular L, with a median value of 51.9
mm (range 50.5-53.0 mm). The right ventricular ϕ decreased by 1.2%, to 41.9
mm (range 41.4-42.6 mm), and the right ventricular SpI decreased by 8.15%.

The left ventricular W increased, primarily at the base, except in G8, where
it increased by approximately 40% in both ventricular walls and in G6, increas-
ing the width of the LV inward (see G8 and G6 in Fig. 5.5). VTV increases, as
shown in Table 5.1, mainly as a reflect of the increase in left ventricular wall
width. This width increase is significant in IUGR infants [8] and noticeable,
though non-significantly, in preadolescents [13].

The Purkinje network applied to the Gi models was reduced in length in
the apex-base direction and widened in the diametrical ϕ direction compared
to the C model. Its effect on a earlier activation is evident when observing the
AT on the epicardial periphery of the LV in Fig. 5.10 for all Gi models. While
this reduction in the L direction brought nodes closer, generating areas with
a higher node density, no evidence was found of conduction system changes
due to IUGR. This study focused on the geometric changes; hence, the same
Purkinje network configuration was used throughout the models.

For the simulated ECG on virtual electrodes, considering the QRS complex,
almost all models exhibited increased QRSd across all leads, also visible in
QRSd measurements on PCAQRS. A slight increase in QRSa and Ta is also
evident. In G8, the model with the highest VTV increase, a significant rise in
Ta is observed, mainly in leads V2, V3, and V4 (see Fig. 5.10).

The geometric changes applied to the globular models in this study were in-
troduced homogeneously across the ventricular wall; however, different strate-
gies could have been followed. In this study we had restricted to homoge-
neous changes since no evidences supporting non-homogeneous changes were
found [13].

5.4.2 Impact of left basal diameter ϕ and wall width W in QRSd

Previous studies have reported that during the fetal stage, changes in QRSd

exhibit contradictory patterns, as we can see in [51, 52, 58]. However, in our
study, with an IUGR and control preadolescent cohort, a significant median
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QRSd increase of 4 ms (p-value=0.039) was observed (see Table 5.2a).

In addition to these findings, we found in simulation that all globularly
deformed Gi models showed an increase in QRSd, in agreement with clinical
results and those pointing to QRSd widening as result of IUGR conditioning.
Through multiple regression analysis, it is observed that in QRSd, a significant
contribution of its variance, depends on geometric changes with an R2=0.77
and p-value=0.048. Two of the parameters alone have a p-valueă0.05 (ϕ: p-
value=0.028 and W: p-value=0.023), indicating that these variables have a
significant impact on the change in QRSd. These values should be analyzed
with caution due to the limited number of simulations (eight cases).

The deformations in wall ventricular thickness W varied across the models,
and revealed a strong relationship between the increase in W at the base and
the rise in QRSd. For instance, G6 produces the smallest change in QRSd (3
ms) and exhibits an increase in W toward the interior of the ventricle. In
contrast, model G5 shows an increase in W in the opposite direction, with a
corresponding QRSd increase of 17.5 ms.

In middle-aged and older adults, a QRSd ą 100 ms significantly increases
heart failure risk [39]. In this study, in both clinical results (QRSd=87 (81-90)
ms) and in silico results, QRSd did not exceed 81.5 ms, even in the extreme
case of G5, probably indicating low cardiac risk for its age, but pointing to
higher propensity in the IUGR cases. Clinical data showed an increase in QRS
complex maximum amplitude in the IUGR cohort, replicated in the models
(G3, G4, G6 to G8) simulations.

The VTV feature as such does not capture well the morphological changes
induced by IUGR. Note that only three out of eight cases (G5, G7, and G8,
see Table 5.1), result in larger VTV than the control heart C. When comput-
ing the regression of the ECG parameters QRSd Tpe and QT with VTV, no
significant correlation in any case was found, implying that the translation of
VTV to ECG changes is not straightforward. On the contrary, we observed
that morphological features, such as basal enlargement or apex-base length,
correlated to the observed changes in ECG characteristics.

5.4.3 Tpe and QT intervals

Tpe, related to spatial dispersion of ventricular repolarization, is significantly
increased with hypertrophy [139]. Clinical results showed a significant heart
rate corrected Tpe, Tpe,c, increase of 2 ms in the IUGR cohort (p-value=0.031)
and a non-significant decrease in T-wave amplitude of 0.15 mV. In simulations,
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Table 5.2b shows a small Tpe increase, with a maximum change of 2 ms. Except
for G3 and G4, Tpe increased in all globular models. The reduction here seems
to be related to T-wave peak delay associated with the lower T-wave amplitude
(Fig. 5.7b).

The increase in VTV leads to a subtle rise in Tpe across all Gi models,
except for G3 and G4. However, the extreme increase in VTV in G8 does not
result in a proportional rise in Tpe. In Table 5.3 we see that geometric changes
do not have a significant effect on Tpe and QT.

The QT interval showed a non-significant reduction of 2 ms in median
in clinical data. Despite the QRSd increase, the Tend mark remained nearly
constant (Fig. 5.7b). This is significant as the Gi models underwent various
geometric and volumetric changes without much effect on repolarization. The
subtle differences in the QT interval indicate that the increase in W does not
significantly affect the repolarization phase. As shown in Fig. 5.8, the APD90
in epicardial cells shows that the delay in the depolarization phase does not
directly affect the Tend point. In the same epi cells, it is observed that the
wider the W in the LV, the shorter the APD90. Additionally, it can be seen
that the endo cells determine the duration of QRSd. While endo cells activate
earlier, they are the last to repolarize (Fig. 5.8b), which explains why QT does
not show changes as remarkable as those observed in QRSd.

Several methodologies exist for detecting and delineating ECG waves, po-
tentially leading to different ECG interval values. However, to ensure a mean-
ingful comparative analysis of results across different models and between real
and simulated data, it is essential to use the same algorithms, as has been done
in this study, along with a reliable and widely used methodology [89].

The reduction of the midmyocardial section directly affected the T-wave,
leading to a decrease in both the Tpe and QT intervals (see Table 5.4). However,
this effect occurs alongside changes induced by SpI and W, which moderate
the overall variation in these intervals. As expected, modifications in trans-
mural composition did not influence QRSd, aligning with previous findings.
Additionally, it is important to acknowledge the ongoing debate regarding the
presence of M-cells with prolonged repolarization in human hearts [108, 140].
Interestingly, when the midmyocardial layer is reduced, the differences in QT
and Tpe intervals between the control and globular models become smaller,
showing better agreement with the clinical results in Table 5.2. The fact that
the differences between control and globular model in Tpe and QT when mid-
myocardium is reduced (Table 5.4) are smaller, and in better accordance with
the clinical results in Table 5.2 could suggest the possibility of questioning their
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existence.

A comparison of ECG wave intervals between the simulated models and
clinical data reveals interesting differences in the order of magnitude, as shown
in Table 5.2. While the simulated QRSd and Tpe parameters align well within
clinical ranges, the QT interval exhibits a slightly higher deviation. This dis-
crepancy may stem from differences in the RR interval or ionic properties be-
tween the control C model design [97] and the average subject geometry in the
dataset. However, since the primary analysis focuses on the relative changes
between the globular and control models, this difference is not expected to
significantly impact the comparative assessment.

All simulations were performed with RR=1000 ms. This allows compar-
isons with repolarization intervals in ECGs recorded at different heart rates by
considering heart rate corrected intervals, as presented in Table 5.2. Running
simulations at different RR interval values could allow for more personalized
heart rate analyses by selecting ECG data from patients with matching RR
intervals. However, this would require a significantly larger dataset, which is
beyond the scope of the current study.

The results suggest that the considered cardiac remodeling primarily af-
fects the depolarization cycle, notably QRSd. The incorporated globular model
changes only consider geometric variations. It can be speculated if other re-
modeling, as conduction abnormalities or electrophysiological modifications,
can add to better reproduce the ECG clinical observations. This can be the
subject of future studies.

The main finding of this chapter underscores the effect of anatomical re-
modeling in IUGR-born subjects on the ECG, specifically prolonging the QRSd

without influencing the QT interval. The computational framework offers in-
sights into the underlying mechanisms, identifying ventricular wall thickening
at the base as the primary factor driving these effects, without any ionic remod-
eling involved. It also represents a potentially useful clinical tool to monitor
cardiac risk derived from the IUGR condition.

5.5 Limitations

Beyond its findings, this study has some limitations that should be addressed.
First, the number of subjects in both the control and IUGR groups is limited.
While significant differences were identified in QRSd and Tpe, the findings
should be interpreted with caution. However, the results provide a foundation
for future research involving a larger cohort, which could further validate and
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refine the observed associations. Despite the sample size constraint, signifi-
cant differences were identified in QRSd and Tpe, with their variability ranges
indicating considerable distinctions in both biomarkers.

From a computational simulation perspective, this study has developed a
simulation framework designed to achieve a realistic scenario, specifically ana-
lyzing the effects of geometric changes resulting from IUGR while maintaining
other parameters, such as the conduction system and propagation velocity, as
constants. To achieve this, eight globular models were developed based on
clinically observed geometric changes, incorporating additional modifications
to evaluate their impact on cardiac electrophysiology. While various alterna-
tive approaches could be explored for constructing globular models, the ones
used in this study encompass a meaningful range of variations in ϕ, L, W,
and VTV. The findings highlight a strong relationship between changes in W
and their impact on QRSd. Nevertheless, further investigation is necessary,
considering parameters beyond those addressed in this study.

The selection of eight models represents a balance between comprehensive
evaluation and capturing the range of plausible anatomical dynamics. While
a more extensive set of models with gradual variations could provide deeper
insights, this study offers valuable learning that can guide future work. Further
refinements, including additional remodeling, may help address phenomena not
fully observed or replicated in this study.

5.6 Conclusion

This chapter has shown a direct relationship between anatomical cardiac re-
modeling and ECG changes which are compared with a cohort of preadoles-
cents born with IUGR. In the clinical results, a significant increase in QRSd

and a slight increase in Tpe,c were observed in ECG data when compared to
the control cohort. However, no significant differences were found in the QT
interval.

In silico simulation results reveal that anatomical changes induced by IUGR,
particularly in apex-base length L, basal diameter ϕ, and ventricular wall thick-
ness W, significantly impact electrocardiographic parameters. The observed
increases in QRSd and Tpe align with clinical data, reinforcing a direct con-
nection between geometrical deformations and ECG modifications. However,
while the simulated QT interval shows a 1% increase, clinical observations show
no change in the QT interval. This discrepancy may be attributed to cellu-
lar coupling within the computational mesh, affecting AP propagation during
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the T-wave, as evidenced by the pilot test generating a model with different
transmural cellular distribution.

The variation in QRSd in IUGR patients highlights an direct relationship
with increased ventricular wall thickness W, particularly at the basal region.
In contrast, changes in Tpe and the QT interval, which are more strongly
linked to transmural heterogeneities, highlight the need for further research to
investigate additional electrophysiological mechanisms beyond the geometrical
factors explored in this study.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Main findings

6.1.1 Angular variation of
depolarization and re-
polarization loops in
silico

6.1.2 ECG interval
biomarkers in clinical
studies

6.1.3 Biomarkers in the syn-
thetic ECG

6.2 General conclusions

6.3 Perspectives for future work

This PhD thesis has investigated the electrophysiological effects resulting
from geometric changes induced by IUGR. Using globular computational mod-
els derived from measurements in a cohort of preadolescents born with IUGR,
key structural parameters including apex-to-base length, basal diameter ϕ, and
ventricular wall thickness W, were analized with a primary focus on the left
ventricle.

Additionally, cardiovascular risk-associated biomarkers (QRSd, Tpe, and
QT) were assessed within the same cohort. To further explore the mechanisms
behind these relationships, in silico simulations were conducted to evaluate
the impact of reduced sphericity index SpI and ventricular wall thickness W
on the studied biomarkers. The results provide new insights into the potential
mechanisms linking altered cardiac geometry to electrophysiological risks in
individuals affected by IUGR.
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This final chapter synthesizes the analysis of the results obtained through-
out this PhD thesis and presents key perspectives for future research directions.

6.1 Main findings

The central hypothesis of this thesis posits that anatomical cardiac remodeling
as a consequence of IUGR plays a significant role in the electrophysiological
changes associated with increased cardiovascular risk. While various effects
of IUGR have been observed in newborns, some of these alterations diminish
over time, whereas others persist into later stages of life, including preadoles-
cence and adulthood. The impact of IUGR or other adverse conditions during
the fetal stage has been proposed as significant factors contributing to a higher
risk of cardiovascular problems in adulthood. However, the precise relationship
between geometric remodeling and cardiac electrophysiology remains unclear.
For the first time, this thesis systematically evaluates the electrophysiologi-
cal effects of changes in SpI and W using in silico models. These analyses
investigated the direction of the dominant vector during depolarization and
repolarization loops, as well as key ECG biomarkers associated with cardiovas-
cular risk.

6.1.1 Angular variation of depolarization and repolarization loops in sil-
ico

To assess the impact of geometric alterations induced by IUGR on the depo-
larization and repolarization loops, these were computed using a control in
silico model and eight deformed globular models. Analysis of the dominant
vector directions in the globular models revealed significant changes compared
to the control model, partially attributed to alterations in the SpI. To rule out
the influence of heart displacement within the torso on these electrophysiologi-
cal variations, additional simulations incorporating this factor were performed.
While positional changes led to some electrical alterations, their magnitude was
significantly smaller, confirming that the observed variations primarily result
from geometric remodeling rather than positional effects.

The direction of the dominant vectors in the globular models exhibited
changes across all spatial planes. Among these, the observed reduction in pa-
rameters θRT-XY and θR-XZ ´ θT-XZ is consistent with reported clinical trends
in preadolescents and adults, emphasizing their relevance as biomarkers for
quantifying sphericity reduction. These findings are particularly significant
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as they provide a quantifiable link between electrophysiological changes and
structural alterations in cardiac geometry. Furthermore, the relative measures
derived from the depolarization-repolarization relationship demonstrated lower
sensitivity to heart-to-electrode positioning, enhancing their robustness and re-
liability across different clinical scenarios and patient conditions. Such stability
is crucial for their potential integration into routine diagnostics, making them
more robust and suitable for clinical use.

The discrepancies observed in the absolute angles between depolarization
and repolarization loops in computational simulations, compared to clinical
data from adults and/or preadolescents, highlight a critical gap in our under-
standing of cardiac electrophysiological remodeling across different age groups.
This misalignment may stem from the transient nature of remodeling during
preadolescence, which could attenuate or evolve in adulthood, thereby compli-
cating direct comparisons.

6.1.2 ECG interval biomarkers in clinical studies

Differences in the duration of ECG biomarkers associated with cardiovascular
risk (QRSd, Tpe, and QT) have been widely reported in the literature, particu-
larly in newborns, although the results have often been inconsistent. Whether
the effects of IUGR persist into adulthood remains an open research question
requiring further investigation. In this study, we analyzed these biomarkers in
a cohort of preadolescents diagnosed with IUGR at birth. The measurement
of biomarker durations across the 12 standard ECG leads revealed significant
differences. Specifically, QRSd showed notable changes in lead II, while Tpe

and the Tpe/QT ratio presented significant alterations in lead V4.

To synthesize the primary information across the 12 leads and provide a
more objective delineation, principal component analysis was applied, result-
ing in the generation of two new derived leads: PCAQRS and PCAT . These
derived leads facilitated a more comprehensive and systematic evaluation of
the biomarkers, improving the interpretation and reliability of the findings in
this cohort.

The biomarker measurements performed on the newly derived leads, has
shown a direct relationship between anatomical cardiac remodeling and ECG
changes in the cohort of preadolescents who born with IUGR. The analysis re-
vealed a significant increase in QRSd and a slight but notable increase in Tpe,c

were observed in ECG data when compared to the control cohort. Interestingly,
no significant differences were found in the QT interval, indicating that while
some aspects of repolarization dynamics are affected, the overall repolarization
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duration remains relatively preserved. These findings underscore the impact of
IUGR on cardiac electrophysiology, providing important insights into the sig-
nificance of QRSd and Tpe as biomarkers for detecting and monitoring cardiac
remodeling.

6.1.3 Biomarkers in the synthetic ECG

The observed increase in the duration of QRSd and Tpe biomarkers in the co-
hort of preadolescents diagnosed with IUGR at birth suggested a hypothesis:
in addition to the reduction in the SpI, the increase in W might significantly
influence these biomarkers. To explore the impact of these geometric changes
on the biomarkers, this study modeled cardiac remodeling by incorporating
variations in the SpI and W. The effects of these geometric alterations on
electrophysiology were reflected in the observed changes in the duration of de-
polarization and repolarization biomarkers. These findings reinforce the idea
that structural remodeling plays a critical role in modifying cardiac electro-
physiological characteristics, providing valuable insights into the mechanisms
linking anatomical and functional changes in IUGR cases.

In silico simulation results reveal that anatomical changes induced by IUGR,
particularly alterations in apex-base length L, basal diameter ϕ, and ventric-
ular wall thickness W, have a significant effect on ECG biomarkers. These
geometrical alterations are associated with observed increases in QRSd and
Tpe, findings that align closely with clinical data and further support a direct
connection between geometrical deformations and ECG modifications. How-
ever, while the simulated QT interval shows an increase, clinical observations
report no change in this parameter.

The variation in QRSd observed in IUGR models highlights a direct re-
lationship with increased W, particularly at the basal region, suggesting that
structural remodeling significantly impacts the depolarization phase of the car-
diac cycle. In contrast, changes in Tpe and the QT interval are more strongly
linked to transmural heterogeneities, highlighting the complexity of repolariza-
tion dynamics. These observations suggest that geometrical factors such as W
and SpI play a critical role, particularly in explaining the variations observed
in depolarization parameters.
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6.2 General conclusions

Cardiac remodeling induced by IUGR has been recognized as a significant fac-
tor in electrophysiological alterations associated with increased cardiovascular
risk. Clinical studies have shown that this remodeling, evident in newborns,
can have long-term consequences, with persistent manifestations in preadoles-
cence and potentially into adulthood. However, the specific relationship be-
tween geometric cardiac alterations and electrophysiological changes remains
poorly understood. In this research, for the first time, the effects of anatom-
ical remodeling on electrophysiological parameters were evaluated through in
silico simulations. Changes in the SpI and their influence on the direction
of depolarization and repolarization loops were analyzed. Globular models
demonstrated significant variations in the dominant vectors of these phases,
largely attributed to changes in cardiac geometry. Additionally, simulations
considering heart displacement within the torso ruled out this factor as the
primary cause of the observed electrophysiological alterations.

ECG data from preadolescents diagnosed with IUGR at birth were ana-
lyzed using both standard leads and newly derived leads generated through
PCA. This approach identified a significant increase in QRSd and a slight but
noticeable increase in Tpe,c compared to the control cohort, while no signifi-
cant differences were observed in the QT interval. These findings highlight the
relevance of QRSd and Tpe as biomarkers of cardiac remodeling.

The in silico results confirmed that geometric alterations induced by IUGR,
such as reduced SpI and increased W, significantly impact the studied ECG
biomarkers. In particular, a direct relationship was observed between increased
QRSd and basal W, while changes in Tpe and QT interval were more closely
associated with transmural heterogeneities. However, the simulations showed
an increase in the QT interval that did not align with clinical observations, sug-
gesting the need to investigate other mechanisms, such as cellular heterogeneity
or cellular coupling within the models.

This research establishes a connection between anatomical remodeling in-
duced by IUGR and electrophysiological changes observed in the ECG. We
have shown how geometric factors like the SpI and W play a critical role, es-
pecially in explaining alterations in depolarization parameters. These findings
underscore the complexity of the mechanisms involved and the need for further
exploration through both computational and clinical approaches to advance the
understanding of the impact of IUGR on cardiovascular health and risk.
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6.3 Perspectives for future work

The analysis of the results obtained in this study, the methodology employed,
and the review of the state of the art have allowed us to establish several future
research directions within this line of investigation.

Effects of heart position in the torso on computational simulations

The variation in the direction of the dominant vectors of depolarization and
repolarization loops was evaluated and compared with the impact of displacing
the heart model within the torso. It was observed that the effect of displace-
ment was significantly smaller than the impact of geometric remodeling. In
this context, it may be valuable to assess the effect of rotating the heart model
within the torso on the direction of the dominant vectors.

The simulation results were consistent with clinical data for certain mea-
surements and specific planes (θRT-XY and θR-XZ ´ θT-XZ). However, differences
in trends for angular measurements, where no similarity was found, could be
attributed to the rotation of the model. Although no evidence in the current
literature supports heart rotation as a consequence of IUGR, this alteration
could partially explain the observed angular changes. This hypothesis emerged
after observing that using different ECG-to-VCG transformation matrices in-
troduced subtle variations in angular results. This is due to differences in the
coefficients within the transformation matrices, such as the Kors and Dower
matrices, and the specific leads contributing to the VCG. A potential extension
of this thesis could involve further investigation into the sensitivity of angular
measurements to variations in cardiac orientations. Specifically, a degree of
uncertainty may arise from realistic and plausible heart positions, and future
work could explore how heart model rotation influences changes in the direc-
tion of the dominant vectors. This would provide a deeper understanding of
the impact of cardiac orientation on electrophysiological measurements.

Impact of IUGR on the Purkinje conduction system

In our study, we analyzed the impact of geometric variations on cardiac elec-
trophysiology while maintaining a consistent Purkinje conduction system net-
work in the computational models. The network was only adapted to changes
in the endocardial surface of the globular models. However, modifications of
the conduction system and its propagation direction could potentially occur
as a result of cardiac remodeling in IUGR. The presence and effect of these
changes, however, remain unclear and warrant further investigation.
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Clinical analysis of ECG biomarkers identified in IUGR

This study identified several biomarkers with high potential as indicators of
cardiac remodeling in ECG and VCG. Evaluating these parameters in a clini-
cal setting could demonstrate their utility in identifying cardiac alterations not
only due to IUGR but also in other scenarios involving anatomical remodel-
ing. Assessing these biomarkers in a larger cohort would allow for improved
adjustment of depolarization and repolarization interval corrections while de-
termining whether remodeling effects are significant. Furthermore, a longitu-
dinal study could reveal whether the electrophysiological changes observed in
preadolescence persist into adulthood, as suggested by previous research.

In silico modeling of realistic heart models

The computational cost and simulation time for solving the reaction-diffusion
system using FEM have been significantly reduced. This improvement will en-
able a greater number of simulations to be conducted in shorter time frames,
allowing for a more comprehensive exploration of various cardiac remodeling
scenarios and their effects on electrophysiology.

These perspectives provide a road map for expanding this line of research,
leveraging advanced modeling techniques and clinical data to enhance our un-
derstanding of the relationship between cardiac geometry and electrophysiology
in IUGR and other conditions.
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[74] M. Potse, B. Dubé, J. Richer, A. Vinet, and R. M. Gulrajani, “A com-
parison of monodomain and bidomain reaction-diffusion models for ac-
tion potential propagation in the human heart,” IEEE Transactions on
Biomedical Engineering, vol. 53, no. 12, pp. 2425–2435, 2006.

[75] J. Mayourian, E. A. Sobie, and K. D. Costa, “An introduction to com-
putational modeling of cardiac electrophysiology and arrhythmogenicity,”
Experimental Models of Cardiovascular Diseases: Methods and Protocols,
pp. 17–35, 2018.

[76] E. A. Heidenreich, J. M. Ferrero, M. Doblaré, and J. F. Rodŕıguez,
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Bailón, R., Pueyo, E. and Laguna, P., “Changes in QRS and T-wave
Loops Subsequent to an Increase in Left Ventricle Globularity as in In-
trauterine Growth Restriction: a Simulation Study”, 2020 Computing in
Cardiology, Rimini, Italy, 2020, pp. 1-4, doi: 10.22489/CinC.2020.438.

• Bueno-Palomeque, F.L., Mountris, K.A., Mincholé, A., Ortigosa, N.,
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